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Preface

It is a pleasure to complete this book that is devoted to the fundamental study of
vortex-induced oscillations. This study is borne of the desire to understand such
fluid–structure interactions at a fundamental level, and to derive mathematical
models within the framework of the flow-oscillator paradigm.

This monograph is a compendium of the efforts of the authors over two decades.
We view it as a preliminary effort that has many opportunities for extensions and
added insights by others who are so interested.

We find that the variational framework for such modeling efforts provides cer-
tain advantages for the derivation of the governing equations, but these equations
are not unique. Rather, the derived equations depend on the physical assumptions
made initially and throughout the analysis. Our primary goal has been to create a
modeling framework within which flow-oscillators can reside, and to show how a
number of well-known flow-oscillators, formulated by others, can be viewed as
being a part of this framework. An advantage of this framework is that assumptions
are explicit and can be removed or changed. Other assumptions can be added. Each
of these alterations leads to different governing equations, as one would expect. But
the assumptions are explicit, physical, understood, and open to debate.

We appreciate the work of many of our colleagues on this problem of
vortex-induced oscillations, and from whom we have learned much. We hope that
this effort by us resulting in a new perspective proves to be interesting and useful.

Piscataway, USA Haym Benaroya
June 2019
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Chapter 1
Introduction

Abstract This chapter introduces the focus problem of this monograph, vortex-
induced oscillations,which iswithin the fluid–structure interaction class of problems.
The organization of the monograph is provided.

1.1 Background and Overview

The problem of fluid–structure interaction (FSI) has long been one of the great
challenges in engineering. It is a crucial consideration in the design of many bluff-
body engineering structures, such as offshore structures, skyscrapers, aircraft, and
bridges. It is also a serious design consideration for aerodynamic bodies, such as
wings, but this is beyond our scope. While the importance of the subject has been
understood for well over a century, it has been only in the past few decades that
efforts have been made to analytically model the general behavior of such systems.
Parallel to analytical attempts, many experiments have been devoted to gathering
data and interpreting such interactions. Consequently, analytical dynamics-based
modeling of such problems has evolved with coupling to experimental data resulting
in various semi-analytical representations. Generally, attempts have been made to
model vortex-induced vibration (VIV) problems as few degrees-of-freedom (DOF)
oscillatory models; therefore, they are referred to as reduced-order models.

Due to the complexity of the interactions between fluid and structure, in particular
for vortex-induced vibration, a variety of efforts have been undertaken to explain the
physics of this coupling. Initially, the efforts were experimental so that “reality”
could be visualized, and then explained. Tremendous efforts have led to impressive
results by numerous experimentalists along with an extensive phenomenological
understanding of this behavior. The practical needs of industry required more than
just understanding; it required designs of structures and machines that could operate
safely for long periods of time in fluid environments where complex interactions
occur. For vortex-induced oscillations, this led to the need for design equations that
were representative of the experimental data, as well as technologies to minimize
the effects of shedding vortices. Physical theory lagged experimental data, of course,
but the need for governing design equations was there, resulting in the formulation

© Springer Nature Switzerland AG 2020
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2 1 Introduction

of governing equations that qualitatively mimicked the data and could be made to fit
the data in specific instances by the use of nonphysical “arbitrary” parameters. Such
semi-empirical equations have formed the backbone of reduced-order modeling for
VIV.

Our monograph represents a line of work with the goal of laying a fundamental
foundation for such reduced-order modeling. This effort is based on the variational
principles of mechanics. Before we go to that work in Chap. 4 and subsequent chap-
ters, we review the efforts of the community. In Chap.2, we provide a representative
reviewof the literature for bluff bodies. InChap.3,we summarize variationalmechan-
ics. In Chaps. 4–7, we provide detailed derivations of a sequence of our analytical
dynamics modeling efforts of VIV.

1.2 Introduction to the Model Problem

For experimental studies of VIV, certain types of structural configurations have been
preferred in the literature, where a rigid solid body with one or two degree(s)-of-
freedom is immersed in a flow. While the experiments have been conducted on a
variety of solid shapes (and occasionally on flexible bodies), reduced-order semi-
analytical models have been generally developed for single DOF rigid bluff bodies,
specifically for circular cylinders. The most commonly used model, called themodel
problem [5], is a type of inverted solid pendulum that is immersed in a flow, rests on
elastic supports and can onlymove transversely to the flow direction. A secondmodel
is the translating cylinder. Schematic diagrams of elements of two representative
configurations of the model problem are shown in Figs. 1.1 and 1.2. The model
problem has been widely used since it possesses a simple geometric configuration,
and yet, it exhibits the majority of the nonlinear behaviors observed in VIV systems.
Consequently, the majority of VIV experiments have been conducted based on the
model problem. Both in experimental and analytical studies, the flow is controlled
or considered to be two dimensional for all time, as are the shedding vortices.

The purpose of this work is to present our theoretical studies that derive reduced-
ordermodels fromfirst principles,where assumptions are explicitly stated. Therefore,
experimental observations are not the main focus of this research work. However, a
few key features observed in the experimental studies are summarized for those who
are not familiar with the subject. An in-depth review of experimental studies of VIV
can be found in [4].

Startingwith the stagnant fluid, if the speed of the flowpast a bluff-body cylinder is
increased, three different behavioral regimes are identified: pre-synchronization, res-
onant synchronization, and classical lock-in. Pre-synchronization is the first regime
where the structure starts oscillating and vortices are first observed. The amplitudes
of the structural oscillations are low and the vortices’ strength are weak to moderate.
Observed in this region is a beating behavior, that is, the peak amplitudes of structural
response increase and decrease gradually as the structure oscillates. Moreover, the
flow drives the structure in this region.
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Fig. 1.1 A representative
configuration of the model
problem: translating cylinder

Fig. 1.2 A representative
configuration of the model
problem: inverted pendulum
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As the average velocity of the flow is increased, vortices become stronger until
the frequency of the vortex shedding reaches the natural frequency of the structure,
where near-resonant behavior is observed. Thus, the structural response reaches a
maximum and this is called the resonant synchronization region. Similar to the pre-
synchronization region, beating behavior is noticeable but weaker, and the structure
remains driven by the flow.

If the flow velocity is increased further, constant structural oscillation ampli-
tude and frequency are observed for a range of flow velocities. This phenomenon
is called classical lock-in. Unlike the other two regions, the flow is modulated by
the structure and the observed vortices are the least organized. The existence of
three distinct regimes in the frequency–amplitude response curves of an inverted
pendulum is shown in Fig. 1.3. As in Fig. 2.1, many experiments show the exis-
tence of hysteretic behavior, where the maximum amplitude of the oscillations are
larger as the velocity is increased than when it is decreased. VIV is a complicated
phenomenon. The structural response depends on many factors, such as shedding
frequency, Reynolds number, material damping, structural stiffness, surface rough-
ness, cylinder length, density of the fluid, and mass of the cylinder, [4, 8]. Therefore,

Fig. 1.3 The frequency–amplitude response curves of an inverted pendulum, where A is the ampli-
tude of oscillation, D is the diameter of the cylinder, Fs is the frequency of oscillation, Fn is the
natural frequency of the cylinder,U represents the fluid velocity; �, © amplitude of oscillation for
two independent but identical experimental runs; × frequency of oscillation and vortex shedding
frequency in which VIV was observed; ♦ frequency of vortex shedding where the cylinder was
stationary; I pre-synchronization; I I resonant synchronization; I I I classic lock-in [2]. Reprinted
with permission
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reduced-order modeling of VIV has evolved in parallel to experiments in order to
quantify our understanding of this phenomenon.

Efforts tomodel VIV as reduced-order systems can be divided into two categories:
empirical models and first-principles models. Moreover, the empirical models can be
divided into two subcategories: wake-oscillator (wake-body) models and experimen-
tal force-coefficient models. Thewake-oscillatormodels are based on the assumption
that an immersed structure in a flow experiences nonlinear oscillator-like hydrody-
namic forces. Therefore, the aim is to obtain nonlinear fluid force equations from
the experimentally acquired data that can be coupled with the structural equation of
motion. One of the early models is the one proposed by Hartlen and Currie [6]. They
used a van der Pol-type fluid oscillator to model the fluid–structure system,

ẍ + 2ζ ẋ + x = aω2
0CL (1.1)

C̈L − αω0ĊL + γ

ω0
Ċ3

L + ω2
0CL = β ẋ , (1.2)

where a, ω0, and ζ are the known structural parameters, and the fluid parameters α,
β, and γ are found experimentally.

The experimental force-coefficient models are single degree-of-freedom models.
They only include a single forcing function obtained experimentally. Generally, the
empirical models have relative success in capturing the features of VIV. However,
thesemodels neglect the dynamic coupling between the flowand the structure by only
considering the forces as they are seen by the structure. Therefore, they do not provide
much understanding of the physics of the problem, as the fluid and structure exchange
energy. These ad hoc methods are outside the scope of this work that is focused on
first-principles models, specifically, using variational principles. Useful reviews of
the empirical models can be found in [1, 3, 4].While variational principles have been
known for well over a century, it was not until 1973 that McIver was among the first
researchers to propose the use of variational methods in modeling fluid–structure
interaction problems [7]. Also, the work by Benaroya and Wei in 2000 is one of
the earliest attempts to use such methods for VIV problems [2]. Consequently, the
literature on the subject is very limited.

In the next chapter, we provide an overview of the literature on VIV. The field is
vast and our review should be considered to be representative rather than compre-
hensive. This review is intended to provide the reader a feel for the physics of the
dynamic behavior, and a summary of relevant modeling efforts.
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Chapter 2
Literature in Vortex-Induced Oscillations

Abstract A literature review is provided in this chapter of vortex-induced oscilla-
tions.While the literature is vast, our review is selective but representative of the field.
Reviewed are: (i) experimental studies on: fluid forces, three-dimensionality and
free-surface effects, vortex-shedding modes and synchronization regions, frequency
dependence of the added mass, the dynamics of cylinders with low mass-damping;
(ii) semi-empirical models: wake-oscillator, single degree-of-freedom, force decom-
position; (iii) variational approaches; and (iv) numerical approaches.

2.1 Introduction

Vortex-induced vibration (VIV) occurs when shedding vortices (a von Kármán vor-
tex street) exert oscillatory forces on a cylinder in the direction perpendicular to both
the flow and the structure. The structure starts to oscillate due to these forces if it is
not fixed. For fixed cylinders, the frequency of shedding is related to the nondimen-
sional Strouhal number, defined as S = fvD/U , where fv is the frequency of vortex
shedding, U is the steady velocity of the flow, and D is the diameter of the circular
cylinder. The Strouhal number is found to be nearly constant with a value of 0.2 for
a large range of Reynolds numbers. This range is often called the subcritical range
and spans the Reynolds number range from 300 to 2 × 105 [19].

For flow past cylinders that are free to vibrate, the phenomenon of synchronization
or lock-in is observed. For low flow speeds, the cylinder will initially respond at the
frequency fv. This frequency is fixed by the Strouhal number. As the flow speed
is increased, the shedding frequency approaches the fundamental natural frequency
of the cylinder, fn. In this regime of flow speeds, the vortex-shedding frequency no
longer follows the Strouhal relationship. Rather, the shedding frequency becomes
“locked-in” to the natural frequency of the cylinder. Within the lock-in regime large
body motions are observed (the structure undergoes near-resonance vibration).

It is alsowell known that a hysteresis behaviormay exist in the amplitude variation
and frequency capture depending on the approach to the resonance range—whether
from a low velocity or from a high velocity [88]. As will be discussed later, the
two branches of this hysteresis loop are associated with different vortex-shedding
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Fig. 2.1 Oscillation characteristics for a freely vibrating circular cylinder with light damping. N
is the body oscillation frequency, n is the vortex-shedding frequency, V = D is the normalized
maximum amplitude of oscillation measured at a particular value of the reduced velocity, and
φo is the phase angle between the fluid force and the cylinder displacement. O, vortex-shedding
frequency; +, cylinder frequency; �, phase angle; x, oscillation amplitude [4]. Reprinted with
permission of the author

modes and transition between these branches is associated with a phase jump of
∼180◦ [65]. Shown in Fig. 2.1 is a typical response in the lock-in region of a freely
vibrating circular cylinder with light damping. The hysteresis effect is clearly seen,
with higher amplitudes achievedwhen the reduced velocity is increased over a certain
range. Here, N is the body oscillation frequency, n is the vortex-shedding frequency,
Ȳ is the maximum amplitude of oscillation measured at a particular value of the
reduced velocity, and φ◦ is the phase angle between the fluid force and the cylinder
displacement. The straight line S = 0.198 is the line of constant Strouhal number.
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The amplitude of the structural response during lock-in and the band of fluid
velocities over which the lock-in phenomenon exists is strongly dependent on a
reduced dampingparameter expressing the ratio of the damping force to the excitation
force. The Scruton number, Sc = 4πmζ/ρD2, is but one of many representations for
this reduced damping parameter found in the literature. As the reduced damping
parameter increases, lock-in becomes characterized by a decreasing peak structural
amplitude and occurs over a decreasing band of velocities. It is also worth noting that
different phenomena are seen in structures with high and low structure–fluid density
ratiosM ∗ = m/ρD2, where m is the cylinder mass per unit length and ρ is the fluid
density. For systems with high M ∗ , the vortex-shedding frequency is entrained by
the structural frequency. For systems with low M ∗, it is the fluid oscillation which
sets the frequency, and the entrainment frequency instead tends toward the shedding
frequency fv.

The engineering implications of VIV have been well documented in the literature.
Structures such as tall buildings, chimneys, stacks, and long-span bridges develop
pronounced vibrations when exposed to fluid flow. For example, studies focusing
on the VIV of these structures are found in references [18, 22, 59, 74]. The length
and higher flexibility of some of these structures further aggravates the problem.
In offshore applications, VIV of long slender structures such as pipelines, risers,
tendons, and spar platforms challenge engineering designers [17]. Some examples
of fundamental studies on the nature of the VIV of marine structures are included in
references [25, 30, 50, 100, 105]. Extensive research has also been done in the area
of VIV assessment [21, 69, 72] and suppression [3, 49] .

In this review, both experimental and theoretical investigations of the fundamental
aspects of vortex-induced vibration of circular cylinders are discussed in some detail.
The goal has been to be thorough without being exhaustive. The main focus is on
the semi-empirical models used to predict the response of the cylinder to the forces
from the flow. These models are not rigorous and generally provide minimal insights
into the flow field. To understand the flow effect on a structure, it is important that
the actual flow field be described. Consequently, a secondary focus of this review is
to discuss the flow characteristics around the cylinder. The flow field generated by
flow separation around a body is a very complex fluid dynamics problem. However,
much progress has been made toward the understanding of flow around bluff bodies.
This is especially true in the field of computational fluid dynamics (CFD), and in
keeping with the primary focus of this review, only selected papers highlighting this
progress have been included.

Many reviews of the subject have been written that primarily focused on the
experimental data [4, 7, 8, 64, 73, 88]. A recent one is by Sarpkaya [92]. While
there continues to be extensive work on VIV, this work is still an excellent repre-
sentation of our understanding. At about the same time, a review paper by two of
us [34] focused on semi-empirical, reduced-order, modeling efforts. Since that time,
additional review papers have appeared: Williamson and Govardhan [109], Bearman
[5], and Wu et al. [111].

While VIV continues to be the subject of intensive research efforts and is quickly
evolving, the need for reduced-order models continues to this day. Among their
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attractions is the fact that they can be used in higher Reynolds number flows than
CFD models and they have been solved in both the time and frequency domains.
In addition, an alternative new method for the modeling of VIV is discussed, an
approach that is the basis for this monograph. The method is based on the variational
principles of mechanics and leads to a more fundamental (without ad hoc assump-
tions) derivation of the reduced-order equations of motion, yet remains inexorably
linked to physical data. Experimental data helps to verify the model predictions, thus
leading to the most advantageous model framework.

2.2 Experimental Studies

There are innumerable experimental studies on the vortex-induced vibration of bluff
bodies, especially circular cylinders. These studies have examined a multitude of
phenomena, from vortex shedding from a stationary bluff body to vortex shedding
from an elastic body. The vibration caused by vortices generated by the flow past a
structure depends on several factors. The correlation of the force components, the
Reynolds number, the shedding frequencies, and the added mass effects are just a
few of these. The literature is rich with experiments in which many of these factors
have been considered, usually by varying one or two factors and holding the rest
fixed. Here, key papers highlighting the influences of some of these factors on the
structural response are discussed. Attention is focused mostly on results pertaining
to the structural response. However, since VIV is indeed a coupled phenomena, some
mention must be made of the hydrodynamics.

Before proceeding, it is worthwhile to define those variables that consistently
appear in the equations developed in this section of the review. The outer diameter
of a circular cylinder is designated by D, the length of the cylinder by L, the free-
stream velocity of the flow by U , and the fluid density by ρ. The Strouhal number,
S, is defined as S = fvD/U , where fv is taken to be the natural vortex-shedding
frequency of a fixed cylinder. The reduced velocity is defined as Vr = U/fnD, where
fn is the natural frequency of the structure. The normalized damping is defined as
ζ = csys/ccrit , where csys is the system damping, and ccrit is the critical damping.

Bearman [4] presents a comprehensive review of experimental studies related to
vortex shedding from bluff bodies. He addresses the important question of the role
of afterbody shape in vortex-induced vibration and results pertaining to a variety
of afterbody shapes are included. Bearman first examines the mechanism of vortex
shedding from a fixed bluff body. The presence of two shear layers is primarily
responsible for vortex shedding. The presence of the body does not directly cause
the vortex shedding, but it instead modifies the vortex- shedding process by allowing
feedback between the wake and the shedding of circulation at the separation points.

Another important point discussed is the absence of two-dimensionality in the
vortices shed from a two-dimensional bluff body in uniform flow. The spanwise
coupling between the two shear layers that lead to the generation of vortex shedding is
generally weak. This implies that unsteady quantities related to vortex shedding (e.g.,
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surface pressure) are not constant along the span of the body. However, continuous
regions of similar properties are characterized in terms of correlation lengths. Small
departures from two-dimensionality, in the form of a taper along the axis of the bluff
body or the presence of shear flow, leads to significant reductions in the vortex-
shedding correlation length.

Bearman also examines vortex shedding from oscillating bluff bodies. The fun-
damental difference between fixed and oscillating bluff bodies is that the motion of
the cylinder can take control of the instability mechanism that leads to vortex shed-
ding. This is manifested in the capture of the vortex-shedding frequency by the body
natural frequency over a range of reduced velocities. The vortex-shedding correla-
tion length is significantly increased when the vortex-shedding frequency coincides
with the body oscillation frequency. The range of reduced velocities over which the
vortex-shedding frequency coincides with the natural frequency of the body depends
on the oscillation amplitude. Larger ranges of frequency capture result from larger
oscillation amplitudes.

It is worth pointing out that the capture range will always include the reduced
velocity value corresponding to the inverse Strouhal number, and that maximum
amplitude is attained near to (but not exactly) this value. In other words, the reduced
velocity for maximum amplitude is close to 1/S. The location of this resonant point
within the capture range depends on the shape of the afterbody.

In the capture range, flow conditions around a bluff body change rapidly. The
fluctuating lift coefficient increases due to the improved two dimensionality of the
flow. This improved two dimensionality (increased correlation length) increases
the strength of the shed vortices. The increase in the lift coefficient can also be
attributed to the influence of the body motion, which manifests itself through the
reduction of the length of the vortex-formation region and the formation of stronger
vortices near the base of the body. The mechanism governing the phase of the vortex-
induced force relative to the body motion has also been explored by Bearman. The
changes in phase angle through the capture range occur in a progressive and not
discontinuous fashion. In the lower end of the lock-in range, a vortex formed on
one side of the cylinder is shed when the cylinder is near to attaining its maximum
amplitude on the opposite side (Mode 1). As the reduced velocity is increased, the
timing of vortex shedding suddenly changes, and the same vortex is now shed when
the cylinder reaches its maximum amplitude on the same side (Mode 2). Clearly, the
point in an oscillation cycle at which the cylinder receives its maximum transverse
thrust changes drastically over a narrow range of reduced velocities. Zdravkovich
[113] discusses in detail the modification of vortex shedding in the synchronization
range. The existence of the two modes, Mode 1 and Mode 2, is used to explain the
existence of the hysteresis effect.

Bearman [4] discusses free versus forced vibrations in experiments. Forced vibra-
tion experiments offer the advantage that the reduced velocity and amplitude ratios
can be independently varied. In free vibration experiments, these two parameters
are inseparable, since varying the reduced velocity leads to changes in the ampli-
tude ratio. The major disadvantage of forced vibration experiments is that only a
very limited range of reduced velocities and amplitude ratios studied will actually
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correspond to those encountered in a free vibration. Bearman states that free and
forced vibration flows are the same, provided that one assumes that the exact history
of motion is inconsequential.

2.2.1 Fluid Forces on an Oscillating Cylinder

Vortex shedding from a circular cylinder produces alternating forces on the cylinder
and it is these forces that cause the cylinder to vibrate if it is free to do so. Experiments
by Sarpkaya [87] determine the in-phase and out-of-phase components of the time-
dependent force acting on a rigid circular cylinder undergoing forced transverse
oscillations in a uniform stream. These force components are used in the prediction
of the dynamic response of an elastically mounted cylinder in the synchronization
range. The details of this aspect of the investigation are relegated to the section
of this review describing semi-empirical models. Preliminary experimental work
measures the mean fluid-induced force on the cylinder in the direction of flow for
various amplitudes and frequencies of cylinder oscillation in the transverse direction.
The in-line force is found to increase as A/D increases, where A is the transverse
oscillation amplitude. For a given value of A/D, the in-line force reaches a maximum
for D = VT (mathematically similar to a Strouhal number) in the range 0.18–0.20,
where T is the oscillation period and V has the same meaning as U . Furthermore,
synchronization is found to occur at a frequency slightly lower than the Strouhal
frequency for a stationary cylinder, 0.21, corresponding to the range of Reynolds
numbers considered by Sarpkaya, 5000–25,000.

In considering the transverse force on the cylinder, the lift coefficient CL is
expressed in terms of an in-phase inertia force and an out-of-phase drag force. The
inertia coefficient Cml characterizes the in-phase force, while the out-of-phase force
is characterized by the drag coefficient Cdl . The drag and inertia coefficients are
assumed independent of the Reynolds number in the range considered, 5000–25,000.
Synchronization ismanifested by a rapid decrease in the inertia coefficient and a rapid
increase in the absolute value of the drag coefficient. The experiments also confirm
that the net effect of the cylinder–flow interaction near synchronization, forA/D < 1,
is the same as for periodic flow over a cylinder at rest. This suggests that the fluid
becomes the oscillator under these conditions.

Themajor implication is then that use of themaximum inertia coefficient obtained
by oscillating the cylinder in a fluid otherwise at rest, Cml = 1, does not give the cor-
rect results sinceCml has been shown to reach a value of about 2 near synchronization.
There is a range of Vr = VT/D near perfect synchronization, Vr ∼ 5, where the drag
coefficient is found to be in-phase (negative) with the direction ofmotion of the cylin-
der. In this range, the drag coefficient actually helps to magnify the oscillations, and
for this reason the range is often referred to as the negative damping region.

Gopalkrishnan [36] measures the vortex-induced lift and drag forces on a smooth
circular cylinder undergoing forced sinusoidal oscillations transverse to the free
stream. Themeasurements are conducted inwater. The lift force phase angle (defined
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in the same way as φo in Fig. 2.1) is found to be very different for large oscillation
amplitudes than for small oscillation amplitudes. This is partially responsible for
the amplitude-limited nature of VIV. The range of reduced velocities where the
cylinder is excited into oscillations by the flow (the lift coefficient excitation region)
is found to not coincide with the lock-in region. Furthermore, the excitation region
is found to be dependent on the phase, while lock-in is found to be a frequency-
dependent effect. The author also measures the lift and drag forces on a cylinder
subjected to an amplitude-modulated force causing beating motions. The presence
of beating is found to cause a reduction in the mean drag coefficient, an increase in
the rms oscillating drag coefficient, and increased extent of the primary excitation
regions (vs. sinusoidal excitation). The overall magnitude of the lift coefficient was
comparable to that corresponding to sinusoidal forcing.

2.2.2 Three-Dimensionality and Free-Surface Effects

Three-dimensional features naturally arise in the VIV problem, where elastic
structures are characterized by their eigenmodes and wake flows show secondary
instabilities [30]. The transition to three dimensionality in the near wake of a cir-
cular cylinder is discussed by Williamson [106]. Three-dimensional structures in
the wake were found to occur for Reynolds numbers greater than about 178. These
three-dimensional structures are attributed directly to the deformation of the pri-
mary wake vortices, and were not the result of any secondary (Kelvin–Helmholtz)
vortices caused by high-frequency oscillations within the separating shear layers.
The transition to three dimensionality is found to involve two successive transitions,
each characterized by a discontinuity in the Strouhal–Reynolds number relationship.
These discontinuities can be seen in Fig. 2.2. The first discontinuity (Re: 170–180) is
associated with the transition from periodic and laminar vortex shedding to shedding
involving the formation of vortex loops. The second discontinuity (Re: 225–270) is
related to the transition from the vortex loops to finer scale streamwise vortices. The
first discontinuity is found to be hysteretic, while the second discontinuity is not.
A more comprehensive discussion on these discontinuities (so-called Mode A and
Mode B secondary 3D instabilities), and vortex dynamics in bluff body wakes in
general, can be found in two review papers by Williamson [107, 108]. Specifically,
comparisons of measurements and theoretical predictions of spanwise instabilities
for modes “A” and “B” are given in Fig. 10 of Williamson [108].

The question of three dimensionality in the wake of a surface-piercing rigid cylin-
der mounted as an inverted pendulum is examined in detail by Voorhees and Wei
[102]. The cylinder is characterized by a low mass ratio, m∗ = 1.90, and high mass-
damping,m∗ζ = 0.103.Themass ratio is defined as themass of the cylinder assembly
divided by the mass of water displaced by the cylinder, m∗ = m/ρπr2L. The ratio
of mechanical to critical damping is represented by ζ . This study, for Re: 2300–
6800, found that the response characteristics of the cylinder are similar to those
seen in elastically mounted cylinders of similar m∗ and m∗ζ . Strong axial flows
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Fig. 2.2 a Variation in Strouhal number as a function of Reynolds number; b frequency spectra at
first discontinuity; c frequency spectra at second discontinuity [114]. Reprinted with permission

associated with the Kármán vortices are observed, and these flows are generally
directed upwards toward the free surface. Below the free surface, these axial flows
can be predominantly attributed to the linearly increasing oscillation amplitude along
the span. Near the free surface, however, there is an equal probability of upflow and
downflow. These upflows and downflows are shown to bewell correlated to the quasi-
periodic beating of the cylinder amplitude at the reference reduced velocityU ∗ = 4.9
(Re: 3400) in the synchronization range. In essence, the effect of the free surface is
to disrupt the primary upflow mechanism and also to induce lateral spreading of the
top portions of the Kármán vortices.

Regarding free surfaces, several fundamental aspects of vortex-formation are
found to depend on the gap between the cylinder and the free surface, as discussed
by Lin and Rockwell [71] for the case of a fully submerged cylinder oriented parallel
to the free surface. The influence of a free surface on the wake structure has also
been investigated by Sheridan et al. [94, 95].

2.2.3 Vortex-Shedding Modes and Synchronization Regions

The character of the vortex shedding is important in that it influences lift force phase
and, consequently, the energy transfer between the fluid and the body. Williamson
and Roshko [110] explore the existence of regions of vortex synchronization in the
wavelength–amplitude plane. From the outset, the Reynolds number is not treated
as an independent parameter in this study. The Reynolds number is kept within a
certain range, 30 < Re < 1000, but is never held fixed. The amplitude ratio equals
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A/D. The wavelength ratio is λ/D = UTe/D, where Te = 1/fe is the period of cylin-
der oscillation in the transverse direction. The wavelength ratio is equivalent to the
reduced velocity, but has the distinct advantage that it introduces the trajectory along
which the body travels relative to the fluid. Within the fundamental lock-in region
(λ/D ≈ 5 or Te ≈ Ts, where Ts is the period of vortex shedding for a non-oscillating
cylinder), the acceleration of the cylinder at the start of each half-cycle induces the
rolling-up of each of the separating shear layers into a new pair of vortices. Con-
sequently, the cylinder sheds four regions of vorticity in each cycle. The authors
find that below a critical trajectory wavelength (for a given amplitude ratio), each
half-cycle results in the coalescence of a pair of like-signed vortices. Consequently,
two regions of opposite vorticity are fed into the downstream wake per cycle. The
resulting formation is similar to the classic von Kármán vortex street wake and is
called the 2S mode. Above the critical trajectory wavelength, the like-sign vortices
are found to convect away from each other. Each of these vortices is then paired
up with a vortex of opposite sign. The resulting formation is two vortex pairs (of
opposite signs) convecting laterally away from the centerline. This mode is called
the 2P mode.

At exactly the critical wavelength, four regions are no longer formed. Only two
vortices are formed in each cycle, and the resulting shedvorticity ismore concentrated
than at other wavelengths. This condition is called the resonant synchronization. The
resonant synchronization is important because it coincides (approximately) with the
peak in the lift forces seen in experimental results. The conclusion is that the larger
forces are being induced by the shedding of more concentrated vorticity. Figure 2.3
is a map of vortex synchronization patterns near the fundamental lock-in region. The
critical curve represents the transition from one mode of vortex formation to another.
Curves I and II represent locations, where the forces on the body show a sharp jump.

The transition from the 2S mode to the 2P mode can be sudden, and it is this
abrupt change in the dynamics of the vortex wake that is a plausible explanation for
the sharp changes in the character of the body forces through the primary lock-in.
The jump in the phase angle φ between the lift force and the body motion seen near
the natural shedding frequency (Te ≈ Ts) can be attributed to the process of pairing
in the 2P mode, which causes a sharp change in the timing of the shedding. Since it
is possible that in a certain small range of wavelength either one of the two modes
can exist, hysteresis will result. The 2P → 2S (decreasing wavelength) jump occurs
for a lower wavelength than does the 2S → 2P (increasing wavelength) jump. This
is illustrated in Fig. 2.4.

A more general approach for categorizing the vortex-shedding modes is taken
by Zdravkovich [114]. Vortex shedding from a cylinder is classified as either low-
speed mode or high-speed mode. The low-speed mode is related to laminar wake
instability, while the high-speed mode is related to vortex formation and shedding.
The transition state between the low- and high-speed modes is characterized by
“fingers” or distortions of eddy filaments in the near wake. These “fingers” cause
irregular vortex filaments to appear along the span. Zdravkovich also describes two
modes in the streamwise oscillation of a cylinder in an oscillatory flow. Near the
synchronization frequency, which would, in this case, be approximately twice the
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Fig. 2.3 Map of vortex synchronization near the fundamental lock-in. A/D is the amplitude ratio
and λ/D is the wavelength ratio. The “critical curve” represents the transition from one mode of
vortex formation to another. Curves I and II represent locations where the forces on the body show
a sharp jump [110]. Reprinted with permission

natural shedding frequency, the following modes are found: One vortex formed per
half-cycle and two vortices formed per half-cycle. Interestingly, the transition state
from the first mode to the second mode is characterized by one vortex formed in odd
half-cycles and two vortices formed in even half-cycles.

2.2.4 The Frequency Dependence of the Added Mass

The added mass is not the same for a body oscillating at a given frequency in a still
fluid as for a bodyoscillating at the same frequency in amovingfluid. The relationship
between added mass and response frequency for lightly damped elastically mounted
rigid cylinders in uniform flow (Re: 104 − 6 × 104) is examined by Vikestad et al.
[101]. The cylinder is allowed to vibrate in the crossflow direction only. Two different
experiments are conducted for various values of the reduced velocity: those with no
support excitation, and those with support (external) excitation at a given frequency.
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Fig. 2.4 Variation of the lift
force phase angle φ with
wavelength ratio λ/D [110].
Reprinted with permission

The reduced velocity Ur = U/foD is defined on the basis of the natural frequency
(fo) measured in still water. Since the natural frequency is generally not constant but
depends on the added mass (fn = fn(Ca)), it is not possible to conduct experiments
on the dependence of the oscillation frequency on the added mass without fixing the
reduced velocity. This follows from the fact that the oscillation frequency is itself
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dependent on the reduced velocity, leading to a “circular” problem. The added mass
coefficient is estimated from

Ca = − 8

nTρπD2L(ω2xo)2

∫ t+nT

t
Fvẍdt, (2.1)

whereFv is the crossflowcomponent of the total hydrodynamic force, ẍ is the cylinder
acceleration,T is the periodof cylinder oscillation,ω2xo is the acceleration amplitude,
and n is the number of periods over which integration is performed.

For experiments conducted without support excitation, two different calcula-
tions are performed using Eq.2.1: an average Ca over many periods, and a time-
dependent Ca obtained by averaging over a sequence of single periods. For Ca

calculated over many periods, the authors define the mean oscillation frequency
as fosc = √

(ẍrms/xrms)/2π and the true natural frequency as

fn(Ur) = 1

2π

√
kTOT

m + ρVcylCa(Ur)
,

wherem is the cylinder effective drymass, kTOT is the total stiffness of the oscillatory
system, andVcyl is the cylinder volume.The results of plotting fosc/fo and fosc/fn versus
Ur (Fig. 2.5) show no evidence that the oscillation frequency is locked-in to one fixed
natural frequency. Instead, the oscillation frequency is the true natural frequency over
a wide range of reduced velocities. In fact, since the addedmass coefficient decreases
with reduced velocity (see Fig. 4a of [101]), the natural frequency increases (Eq.2.1)
with reduced velocity. According to the authors, this is the reason why low mass
ratio cylinders have lock-in regions that extend over a broader range of flow speeds.

For Ca calculated over single periods, the variation in the added mass from one
vibration cycle to next is shown to be considerably large. This variation is found
to be least in the range of reduced velocities Ur: 4–6. This is the range of reduced
velocities for which there is a strong correlation between the added mass coefficient
and the cylinder displacement. The variation in the added mass from cycle to cycle
is also shown to be closely correlated to the cycle-to-cycle variation in the response
frequency. Again, this is attributed to changes in the added mass-dependent natural
frequency. The interested reader is referred to the journal paper for details of the
experimental results pertaining to support (external) excitation.

2.2.5 Dynamics of Cylinders with Low Mass-Damping

Khalak and Williamson [60] study the forces and vortex-induced response of a rigid
circular cylinder in an experimental facility characterized by a very low mass ratio
m∗ and a very low normalized damping ratio ζ . The combined mass-damping param-
eter m∗ζ has a value of 0.013, a value at least one order of magnitude lower than
any previous study. Initially, the cylinder is held fixed (static) in a uniform flow. The
test cylinder has either a free end, which produced oblique vortex shedding, or an
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Fig. 2.5 Mean oscillation frequency divided by the natural frequency in still water, fosc = f0; shown
by the sloped lines. Mean oscillation frequency divided by the true natural frequency, fosc = fn;
shown by the horizontal lines. Both are shown as functions of the reduced velocity Ur [101].
Reprinted with permission

end-cylinder (a larger cylinder placed coaxially) which produces parallel shedding.
The total fluctuating lift and drag forces on the cylinder are measured for both end
conditions as a function of the Reynolds number. The time-averaged drag coefficient
is found to be consistently higher in the case of parallel shedding and this result is
essentially independent of Reynolds number. TheRMS lift coefficient is also found to
be higher in the case of parallel shedding, but the difference is not Reynolds number
independent. Spectral analysis indicates that the lift force is dominated by a single
peak at the shedding frequency in the case of parallel shedding, while in the case of
oblique shedding two smaller peaks are present.

The transverse response of the elastically mounted cylinder is also examined in
the same work. The response of the cylinder is found to have two distinct resonant
branches. Hysteresis results from moving between these branches, and the jump
between the branches can be interpreted as a change in the vortex-shedding mode.
These two resonant branches, called the upper (very high amplitude response) and
lower branches (moderate amplitude response), can be seen in Fig. 2.6. Note that the
reduced velocity is formed using the natural frequency in air fn, U ∗ = U/fnD. Also
shown is data from Feng [32], which is obtained for a much higher mass-damping
parameter ofm∗ ζ = 0.36.Clearly, there is a substantial increase in both the amplitude
and range of the response for lower values of mass-damping. Note that the values of
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Fig. 2.6 Maximumresponse amplitudesAmaxas functions of the reducedvelocityU∗ form∗ = 2.4
(�) and m∗ = 248 (�) [61]. Reprinted with permission

m∗ and ζ did not include the effects of added mass. Also shown in Fig. 2.6 are the
initial excitation region and the desynchronization region as described in [61]. The
classical experiments of Feng (high m∗ ζ ) show the absence of the upper branch and
only two response branches exist. The initial branch has been shown to be associated
with the 2S mode of vortex formation, while the lower branch corresponds with the
2P mode [63].

The mass ratio m∗ and the normalized damping ζ are found to independently
affect the response of the system. By maintaining the value of m∗ ζ constant, the
value of m∗ is independently adjusted. Lower values of m∗ are manifested in the
form of higher response amplitudes and a larger range of response in the lower res-
onance branch. However, changes to m∗ do not significantly alter the characteristics
of the upper branch. The level of maximum excitation in the upper branch is found to
be well characterized by the combined mass-damping parameterm∗ζ [62, 63]. Most
importantly, these effects cannot be explained by including the added mass. Presum-
ably, for low mass ratios the inertia of the fluid being accelerated by the cylinder is
important. A linear equation of motion is developed with the inclusion of an inviscid
added mass force. The failure of the added mass to explain the mass dependence of
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Fig. 2.7 The two distinct
types of amplitude response:
high m∗ζ and low m∗ζ : The
mode transitions are either
hysteretic (H) or
intermittently switching (I)
[63]. Reprinted with
permission

the response led the authors to conjecture that it is instead the phase angle φ which is
responsible. The classical “mass-damping” parameter (m∗ + CA)ζ has been shown
to collapse peak amplitude data over a wide range of mass ratios. The use of the
combined parameter is valid down to at least (m∗ + CA)ζ ∼ 0.006 [63].

In their subsequent paper [63],Khalak andWilliamson show that as the normalized
velocity is increased, the transition from the initial excitation region to the upper
branch is hysteretic. The transition from the upper branch to the lower branch also
involves a jump but is followed by intermittent switching. This intermittence is
clearly seen in the instantaneous phase measurements between the lift force and
the displacement in the transition region. Both of the transitions are associated with
jumps in response amplitude and frequency, but only the transition from the upper
to the lower branch is associated with a 180◦ jump in the phase angle. Figure 2.7 is
a schematic of the differences between high-m∗ζ and low-m∗ζ amplitude response.
Perhaps the most interesting result is that in the excitation regime, the frequency
of cylinder oscillation is significantly higher than the structural natural frequency.
It is also below the natural vortex shedding frequency of a non-oscillating cylinder
(see Fig. 4 of [63]). These characteristics are not what would be expected from a
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classical lock-in. Other investigations byWilliamson’s group at Cornell can be found
in references [39–41].

As part of a new paradigm to support the reduced-order analytical modeling
of fluid–structure interactions, Dong et al. [23] use high-resolution Digital Particle
Image Velocimetry (DPIV) to measure fluid energy transport terms. The terms form
part of the equation of motion for a rigid circular cylinder with a low mass-damping
(m∗ζ = 0.0377) mounted like an inverted pendulum. The equation of motion is
derived using a form of Hamilton’s Principle appropriately developed for systems
of changing mass. More specifically, the governing equation is formulated using the
control volume (CV) approach. It is worth mentioning here that, except for the quasi-
two dimensionality of the flow, no empirical assumptions are incorporated into the
model. The assumption made is reasonable in light of the fact that Voorhees andWei
[102] show that three-dimensional effects are dominant near the free surface. The
fluid energy terms that are calculated from theDPIV velocity vectors are the time rate
change of the fluid kinetic energy within the CV, the net flux of fluid kinetic energy
across the boundaries of the CV, and the work done on the CV boundaries by pressure
and viscous forces. These terms are calculated for a single value of the reduced
velocity U ∗ corresponding to a Reynolds number of 2300. This corresponds to the
resonant synchronization regime, where the cylinder response exhibits a beating
behavior (i.e., large-amplitude modulated oscillations).

The results of the study indicate that the choice of a CV is crucial to obtaining
energy transport traces that are more easily interpreted.

2.2.6 Additional Studies

There have been many additional more specialized studies of vortex-induced
vibration. Huera-Huarte and Bearman [51, 52] considered the wake structures and
vortex-induced vibrations of a long flexible cylinder. Fujarra et al. [33] studied the
vortex-induced oscillations of a flexible cantilever beam. Branković and Bearman
[13] studied the vortex-induced vibration of a straked cylinder, noting that the familiar
phase jump did not occur.

When circular cylinders are allowed to oscillate with two degrees- of-freedom
rather than just in a transverse direction, in addition to the figure eight motion,
characteristics of the flow and shedding change. Jeon andGharib [58] note a dramatic
increase in phase coherence and the disappearance of the 2P mode, and that the
transverse motion sets the frequency of shedding and the streamwise motion the
relative phase. Laneville [68] concurs with these results. Jauvits and Williamson
[57] studied the response of an elastically mounted cylinder free to move in two
degrees-of-freedom, which has low mass and damping. They find that the transverse
motion, the modes of vibration and the vortex wake dynamics change very little
with the added freedom to move in two directions. Their principle conclusion is that
results from experiments where only transverse oscillations are allowed are valid for
those structures that undergo two degree-of-freedom oscillations.
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Bourdier and Chaplin [12] studied vortex-induced vibration of a rigid cylinder on
elastic supports with end-stops. Cagney and Balabani [15] studied wake modes of a
cylinder undergoing free streamwise vortex-induced vibration, which tend to be an
order of magnitude lower that those in the transverse direction. Lam and Liu [66]
studied large-amplitude transverse oscillations in a slow uniform cross flow.

2.3 Semi-empirical Models

In this review chapter, every attempt has been made to preserve the notation of the
governing equations as given in the references. This facilitates the reader’s ability to
correspond between this review and a given paper. Work with structures undergo-
ing vortex-induced vibration can be classified into three main types. The first class
consists of wake-body (wake-oscillator) coupled models, in which the body and the
wake oscillations are coupled through common terms in equations for both. The
second class, the single degree-of-freedom (SDOF) models, use a single dynamic
equation with aeroelastic forcing terms on the right-hand side of the equation. The
third class, the force-decomposition models, rely on experimental measurements of
certain components of the forces on the structure.

2.3.1 Wake-Oscillator Models

Several wake-oscillator models have been proposed in the literature. The models
generally have the following characteristics: The oscillator is self-exciting and self-
limiting, the natural frequency of the oscillator is proportional to the free stream
velocity such that the Strouhal relationship is satisfied, and the cylinder motion inter-
acts with the oscillator. The latter essentially says that the cylinder motion strongly
affects the lift forces, which in turn influence the cylinder motion. Also, the mod-
els assume that the flow around the cylinder is two dimensional (i.e., the flow is
fully correlated). Consequently, the models are limited to moderate to large response
amplitudes. These models often do not include any analysis of the flow field and
their value is at best to explain and simulate experimental results. For this reason,
these models are often referred to as phenomenological. The modeler’s desire is to
obtain the equations of the cylinder oscillator and the fluid oscillator by independent
means and then use them together to predict the response of the combined fluid-
elastic system [24]. Parkinson [83] presents a comprehensive review of the modeling
of flow-induced vibrations in bluff bodies.
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2.3.1.1 Rigid Cylinders

Bishop and Hassan [9] are credited with first suggesting the idea of using a van der
Pol-type oscillator to represent the time-varying forces on a cylinder due to vor-
tex shedding. Their work is noteworthy for linking experimental results to possible
classes of dynamic behavior and in this way they laid the foundation for reduced-
order mathematical modeling of vortex-induced vibration. They characterized the
regimes of behavior, including that there is a synchronization region—entrainment—
when shedding frequency is close to structural natural frequency, and that there is
a hysteretic behavior—a jump in response—depending on whether the driving fre-
quency is increasing or decreasing. Their experiments showed that the wake could be
entrained to oscillate as well at 1/2 and 1/3 the natural frequency. Another important
conclusion drawn from the data was that the wake behaves under external forcing
as a nonlinear self-excited oscillator. This led to the use of van der Pol equations for
the mathematical modeling of the “flow oscillator”.

Hartlen and Currie [47] formulated the most noteworthy of the oscillator models.
In their model, a van der Pol soft nonlinear oscillator for the lift force is coupled to the
cylinder motion by a linear dependence on the cylinder velocity. The cylinder motion
is restricted to pure translation in the transverse direction, perpendicular to both the
flow direction and the cylinder axis. The cylinder is restrained by linear springs
and is linearly damped. The model is given by the pair of coupled nondimensional
differential equations,

x
′′
r + 2ζx

′
r + xr = aω2

ocL (2.2)

c
′′
L − αωoc

′
L + γ

ωo
(c

′
L)

3 + ω2
ocL = βx

′
r, (2.3)

where primes denote time derivatives with respect to the nondimensional time τ =
ωnt, xr is the dimensionless cylinder displacement, cL is the lift coefficient, ωo is the
ratio of the Strouhal shedding frequency to the natural frequency of the cylinder,ωo =
fo/fn, and ζ is thematerial damping factor. The parameter a is a known dimensionless
constant. Of the undetermined parameters α, γ , and β, only two must be chosen to
provide the best fit to experimental data. This follows from the fact that α and γ

are related to each other by the expression CLo = (4α/3 γ )1/2, where CLo is the
amplitude of the fluctuation of cL on a fixed cylinder. It is worth noting that the
second term on the left-hand side of Eq.2.3 provides the growth of the lift coefficient
cL, while the third term on the left-hand side of the same equation prevents its
unlimited growth. These terms are important to the success of the model because the
large-amplitude oscillations characteristic of VIV are accompanied by a significant
(yet finite) increase in the lift coefficient.

With the appropriate choice of parameters, the Hartlen and Currie model qual-
itatively captures many of the features seen in experimental results [81, 88]. For
instance, a large cylinder oscillation amplitude resonance region occurs when the
vortex shedding frequency is near the natural frequency of the cylinder. The fre-
quency of oscillation in this region is nearly constant at a value close to the cylinder
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Fig. 2.8 Amplitude and
frequency response of the
Hartlen–Currie model. ω is
proportional to the flow
velocity. Solid lines
represent stable branches of
the periodic motions, while
dotted lines represent
unstable branches. Arrows
show jumps in amplitude and
frequency corresponding to
sweeps of ω [81]. Reprinted
with permission

natural frequency. The hysteresis effects seen in the experimental results of Feng [32]
are also seen in the analysis of the Hartlen and Currie model by Ng et al. [81] using
multiple scales and bifurcation analyses. Figure 2.8 is an illustration of the ampli-
tude and frequency responses of the Hartlen and Currie model with ζ = 0.0015,
α = 0.02, γ = 2/3, a = 0.002 and β = 0.4. The horizontal axis ω is proportional
to the flow velocity. Solid lines represent stable branches of the periodic motions,
while dotted lines represent unstable branches. Arrows show jumps in amplitude and
frequency corresponding to sweeps of ω.

Skop and Griffin [98] develop a model to resolve what they felt were inadequacies
of the Hartlen and Currie model, including the fact that the model parameters are not
related to any physical parameters of the system. A modified van der Pol equation
is again employed as the governing equation of the lift, and an equation is presented
for the oscillatory motion of the body. The equations are
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where ωs is the shedding frequency, CL is the oscillating lift coefficient, CLo is the
fluctuating lift amplitude from a stationary cylinder, ωn is the undamped natural
frequency of the spring–mass system, and ζ is the sum of the structural, fluid, and
externally applied damping.M is the mass of the cylinder andμ = ρLD2

/
8π2S2M

is a parameter representing the ratio of the displaced mass of fluid to the mass of the
cylinder. The parameters G, H , and F are to be determined from experimental data.

Solutions to these governing equations in the lock-in state (frequency entrainment)
are sought using the method of van der Pol, in which one seeks solutions of the form
X /D = aCLo sinωt and CL = ACLo sin(ωt + ϕ), where ϕ is the phase difference
between the fluctuating lift coefficient and the cylinder displacement. Substitution of
the assumed solutions into the governing equations results in relationships between
the various model parameters. Relationships between the two independent model
parameters G and H and the physical mass and damping parameters μ and ζ are
formulated by considering a variety of experimental results from the literature and
then using a best-fit line. For instance, the relation for G is given as log10 G =
0.23 − 0.19(ζ/μ). However, the fact that the parameters G and H are obtained for
each experimental value of ζ andμ by trial and error is an inherent flaw in this model.
The value of the third empirical constant is given as F = 4Gζ 2

/
μH .

Using these relationships, the authors are able to quantitatively predict the results
of a different set of resonant vibration experiments found in the literature with rea-
sonable accuracy. The question can, of course, be raised of how much predictive
value to assign a model which has been “tweaked” from the beginning.

In a subsequent paper, Griffin et al. [44] compare the results of their own exper-
iments with spring-mounted cylinders in a wind tunnel and the results predicted
by their wake-oscillator model. Measurements are made of the vibration amplitude
and frequency under a variety of flow conditions at Reynolds numbers between
350 and 1000. All measurements are conducted under conditions of synchronization
between the vortex-shedding frequency and the cylinder oscillation frequency. The
major conclusions of the study are as follows, with (E) denoting experimental results,
(T) denoting theoretical results and (E-T) denoting compared results:

• The magnitude and location of the peak resonant amplitude and the detuning
between the vibration and cylinder natural frequencies are quantitatively predicted
by the model (E-T).

• The maximum lift occurs at a flow speed somewhat less than that which produces
the largest amplitude (T).

• The maximum energy transfer to the cylinder occurs at the flow speed which
produces the largest amplitude (E-T).

• There is a substantial change in the phase angle ϕ between lift and the cylinder
motion in the synchronization regime (T).

• The energy transfer to the cylinder per vibration cycle will be positive if the lift
force includes a component which is in phase with the cylinder velocity (T).

• Up to a 75% increase in the drag coefficient from the fixed cylinder value is
measured at a peak amplitude of one diameter (E).
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Like the Hartlen and Currie model, the Skop and Griffin model [98] contradicts
several findings by Feng [32]. Feng finds that the maximum lift and maximum cylin-
der displacement occurred at the same value of flow speed. Feng also finds that the
cylinder will continue to oscillate at its natural frequency outside the lock-in range.

Iwan and Blevins [55] arrive at fluid-oscillator equations by considering the fluid
mechanics of the vortex street. Themodel is basedon the introductionof a hiddenfluid
variable z,which captures thefluid dynamics effects of the problem.The equations are

ÿ + 2ζTωnẏ + ω2
ny = a

′
1z̈ + a

′′
4ż
U

D
(2.6)
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where ζT is the total effective damping coefficient, ut is the translational velocity of
the vortex street shed from the cylinder, and K

′
is a parameter related to the Strouhal

number and the ratio ut/U . The total effective damping coefficient is the sum of
the structural viscous damping and the viscous fluid damping. All of the empirical
parameters a

′
i and a

′′
i of the model but one are determined from experimental data

for fixed and harmonically forced cylinders. The model is then used to predict the
response of elastically mounted rigid cylinders.

The response of the cylinder is found to be dependent on the structural viscous
damping ζs, the ratio of the shedding frequency to the natural frequency of the
cylinder ωs/ωn, and the ratio of the displaced fluid mass to the cylinder mass. This
mass ratio is defined as ρD2/2m. The peak amplitude of cylinder oscillation for the
resonant condition is found to depend on a single variable called the reduced mass-
damping parameter, δr = 4πmζs/ρD2. Note that this parameter is identical to the
Scruton number,

Sc = 4πmζ

ρD2
.

The model correctly predicts the entrainment effect (or lock-in). The entrainment
effect (width of the frequency band over which lock-in persists) is shown to increase
with decreased structural damping, and increased ratio of displaced fluid mass to
cylinder mass. The amplitude of the peak resonant response is found to be inversely
proportional to the reduced damping.

Landl [67] includes a nonlinear aerodynamic damping term of fifth order in his
two-equation model for vortex-induced vibrations of a bluff body. The equations are
given in dimensionless form by

ẍ + δẋ + x = a�2cL (2.8)

c̈L + (α − βc2L+γ c4L)ċL + �2cL = bẋ, (2.9)

where δ is a damping parameter, a is a mass parameter, and � = ωs/ωo is the ratio
of the Strouhal frequency to the natural frequency of the cylinder. The parameters α,
β, γ , and b are constants that can be chosen to approximate a given problem.
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The author believes that inclusion of the damping term γ c4LċL results in a wake-
oscillator model better able to capture the hysteresis effect. The hard excitation and
soft excitation regimes seen in experimental results can be explained in terms of
the three physically possible solutions of Eqs. 2.8 and 2.9: the zero solution and
two additional positive solutions. The stability and instability of these solutions
are investigated using the method of Lyapunov. Hard excitation regimes of flow
velocities (or frequency ratios fs/fo) are those where two stable states are possible
for a given flow velocity (or frequency ratio): the position of rest and a vibration of
finite amplitude. Soft excitation ranges are those where the rest position is unstable
so that a finite oscillation is always generated. Sometimes the second state in the
hard excitation ranges is not that of rest, but an oscillation with small amplitude at
the same frequency as the high amplitude oscillation. This phenomena cannot be
explained by the mathematical model.

More recently, Facchinetti et al. [31] present an excellent review of the dynam-
ics of wake-oscillator models for 2D vortex-induced vibrations. More specifically,
the authors examine three different types of coupling terms for the action f of the
structure on the fluid wake oscillator. In general, the action term is the right-hand
side of a given fluid-oscillator equation. For instance, f = bẋ for the Landl model
as can be easily deduced from Eq.2.9. Velocity coupling f = Aẋ, displacement cou-
pling f = Ax, and acceleration coupling f = Aẍ are considered. Velocity coupling
is used extensively in the literature [47, 55, 67, 98]. With these different forms of
coupling, the wake-oscillator models are compared with experimental data from the
literature. It is found that the displacement and velocity couplings fail to predict the
lift phase seen in experimental results of vortex shedding from cylinders forced to
oscillate. Displacement coupling fails to predict the lift magnification at lock-in and
almost all prominent features of vortex-induced vibration at low values of the Skop–
Griffin parameter SG , while velocity coupling fails to predict the range of lock-in for
low values of SG . The Skop–Griffin parameter is a single combined mass-damping
parameter often used in the literature and is given by SG = 8π2S2μζ , where μ is
the dimensionless mass ratio and ζ = rs/2m�s is the structure reduced damping.
rs is the viscous dissipation in the supports, m is the mass of the structure plus the
fluid added mass, and �s is the structure natural frequency. The dimensionless mass
ratio is defined by the authors as μ = (

mf + ms
)
/ρD2, where mf = CM ρπD2/4 is

the fluid added mass, and ms is the mass of the structure. CM is the added mass
coefficient.

The key findingmade by the authors is that the acceleration coupling succeeded in
qualitatively modeling the features of VIV considered in the paper. Figure 2.9 illus-
trates the differences between the lock-in domains predicted by the model equations
for (a) displacement coupling, (b) velocity coupling, and (c) acceleration coupling
for a representative low value of SG = 0.01. Comparison experimental data showing
the upper and lower bounds of lock-in is represented by the triangles.
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Fig. 2.9 Lock-in domains as
a function of the reduced
mass m∗ for SG = 0.01 and
for the three different
couplings: a displacement
coupling, b velocity
coupling, and c acceleration
coupling. Comparison
experimental data showing
the upper and lower bounds
of lock-in is represented by
� [31]. Reprinted with
permission
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2.3.1.2 Elastic Cylinders

Several attempts have been made to extend the wake-oscillator models to elastic
structural elements such as beams and cables. Iwan [53] extended the Iwan–Blevins
model to predict the maximumVIV amplitude of taut strings and circular cylindrical
beams with different end conditions. It is assumed that a strip theory approach can be
applied to extend the equation of motion for the hidden flow variable z to the elastic
structure. The strip theory approach assumes that there is no spanwise coupling in
the flow, although the theory may fail to be accurate at small amplitudes of structural
vibration since at these amplitudes the shedding process tends to be uncorrelated in
spanwise composition. The structure is assumed to possess classical normal modes
and the analysis is restricted to the cases in which the natural frequency of one of
the modes is very near the shedding frequency, while all other modal frequencies are
substantially removed from the shedding frequency. The author obtains an equation
relating the maximum response amplitude for the structure in the nth mode, Ynmax , to
various structural parameters:

Ynmax

D
= a4

√
4/3γn

2π3S2μrζ T
n

[
(a1 − a4)

a2
+ a24

π2a2Sμrζ T
n

] 1
2

. (2.10)

Interestingly enough, the details of the structure enter into Eq.2.10 only through
a dimensionless mode shape parameter γn, and the product of the mass ratio μr =
4m/ρπD2 and the modal damping ratio of the structure ζn. ζ T

n is taken to be the sum
of ζn and damping due to interaction with the fluid. The ai are dimensionless model
parameters.

A comparison ismade of a “universal”maximum response amplitudewith various
experimental results of maximum VIV for three structural elements: cables, pivoted
rods, and rigid cylinders. The response amplitude curves (Ynmax/D)/ γn are plotted
as a function of μrζn using Eq.2.10 for each structural element (Figure 2.10). The
product μrζn is often referred to as the reduced damping and is almost identical
to the Skop–Griffin parameter and the Scruton number discussed previously. The
theoretical results show good agreement with experiments for amplitudes of response
greater than 0.1 diameter. The data for the three different structural elements are
shown to be consistent when normalized by the mode shape parameter.

Skop and Griffin [99] start with their version of a wake-oscillator model and
proceed to extend it to elastic cylinders in an almost identical fashion, as above.
They obtain the following equation for the maximum oscillation amplitude in the ith

pure mode,
Yi,MAX (x)

D
= AMAX

(
SG,i

) |ψi(x)|√
Iiiii

,

where ψi(x) is expression for the normalized mode. For example, ψ1(x) = x/L with
ψi 
=1 = 0 for a pivoted rigid rod, andψi(x) = sin(iπx/L) for a pinned–pinned beam.
AMAX is an amplitude parameter that is a function of the modal response parameter
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Fig. 2.10 Normalizedmaximumamplitude of responseYn−max/D/γn versusmass-dampingparam-
eter μrζn for different structural elements. ©, rigid cylinder experiments; �, pivoted rod experi-
ments;�, cable experiments;—, theory; – –, empirical formula. γn = 1 (rigid cylinder), γn = 1.291
(pivoted rod) and γ n = 1.155 (string or cable) [53]. Reprinted with permission of the author

SG,i = ζi/μii, and μii is given by

μii = ρ̄D̄

8πS2Mi

∫ L

0
ρ∗(x)

[
D∗(x)

]3 [
ω∗
S(x)

]2
[ψi(x)]

2 dx, (2.11)

where (·)∗ denotes a dimensionless variable, ω∗
S(x) is the dimensionless shedding

frequency, ρ̄ is the average fluid density over the shedding region, D̄ is the aver-
age cylinder diameter over the shedding region, and Mi is the effective mass in
the ith mode. The integral in Eq.2.11 is taken only over cylinder sections at which
shedding occurs. Iiiii is defined by
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Iiiii =
∫ L

0
[ψi(x)]

4 dx

/∫ L

0
[ψi(x)]

2 dx .

For example, I−1/2
iiii = I−1/2

1111 = 1.2910 for a pivoted rigid rod. In general, good agree-
ment is obtained with experimental data for flexible structures and cables, especially
for SG < 0.5 and SG > 2.

Iwan [54] derives an analyticalmodel for theVIVof nonuniform structures. In par-
ticular, he considers elastic systems that could be described by the one-dimensional
dampedwave equation (e.g., cables). Hismodel also allows for nonuniform flow pro-
files and accounts for inactive elements. Iwan finds that for a particular pure response
mode, the equations describing the system response reduced to those obtained for a
rigid cylinder. In particular, for the nth mode,

d2ȳn
dt2

+ 2ζ T
n ωn

d ȳn
dt

+ ω2
nȳn =

(
α4

νn

)
d z̄n
dt

, (2.12)

where α4 is a model parameter, ζ T
n is an effective (including fluid damping) structural

damping, ȳn(t) is the modal coefficient of the transverse displacement of the elastic
system, y(x, t), and zn(t) is the modal coefficient of the flow variable z(x, y). νn is a
parameter representing the effective system mass, defined as

νn =
∫ L

0
m(x)ξ 2

n (x)dx

/∫ L

0
s(x)ξ 2

n (x)dx,

wherem(x) is themass per unit length of the cable including the added fluidmass and
any point masses, s(x) is a function specifying which portions of the cable are being
excited by locked-in vortex shedding, and ξn(x) are the mode shapes. Equation2.12
is essentially the same equation that governs the response of an elastically mounted
rigid cylinder, with the presence of the parameter νn and the definition of ζ T

n being
the only differences.

The numerical results for various cable systems show that the response amplitude
is strongly affected by cable nonuniformity. The reduction of the active region, the
region over which vortex shedding occurs, and/or the addition of masses, generally
reduces the amplitude of VIV.

Later models have added further refinements to the older models just described.
Dowell [24] presents a method of constructing a fluid-oscillator equation for CL

which takes into account known theoretical and experimental behaviors of the fluid.
Various self-consistency checks are performed on the model and numerical results
are compared with those obtained from the Skop–Griffin model [98]. Several funda-
mental differences between the results are noted. Dowell’s fluid oscillator is given
by

C̈L − ε
[
1 − 4CL/CLo)

2
]
ωsĊL + ω2

s CL = −B1(D/V 2)y

+ ω2
s

[
A1 (ẏ/V ) − A3 (ẏ/V )3 + A5 (ẏ/V )5 + A7 (ẏ/V )7

]
, (2.13)
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where ωs is the fluid frequency given by the Strouhal relationship, ε is a parameter to
be determined, {A1,A3,A5,A7,B1} are slowly varying functions of Reynolds number
that are held fixed, and CLo is the peak magnitude of the limit-cycle oscillation
obtained from Eq.2.13 with y = 0 (a fixed cylinder). CLo is assumed to be a weak
function of the Reynolds number and is assigned typical values.

Skop and Balasubramanian [97] present a modified form of the Skop–Griffin
model [99] for flexible cylinders. The goal of the model is to accurately capture
the asymptotic, self-limiting structural response near zero structural damping. The
fluctuating lift force CL is separated into two components: one component satisfying
a van der Pol equation driven by the transverse motion of the cylinder, and one
component which is linearly proportional to the transverse velocity of the cylinder
(the stall term). Mathematically,

CL(x, t) = Q(x, t) − 2α

ωs
Ẏ (x, t),

where α is the stall parameter, ωs is the intrinsic vortex-shedding frequency deter-
mined from the Strouhal relationship, Q(x, t) is the component of CL satisfying a
van der Pol-type equation, Ẏ is the time derivative of the amplitude of structural
motion, and x is the length variable along the structure.

Krenk and Nielsen [65] propose a double oscillator model in which the mutual
forcing terms are developed based on the premise that energy flows directly between
the fluid and structure. This means that the forcing terms correspond to the same
flow of energy at all times. In dimensional form, the coupled equations are given by

mo
(
ẍ + 2ζoωoẋ + ω2

ox
) = 1

2
ρU 2DL

ẇ

U
γ (2.14)

mf

[
ẅ − 2ζf ωs

(
1 − w2 + ẇ2/ω2

s

w2
o

)
ẇ + ω2

s w

]
= −1

2
ρU 2DL

ẋ

U
γ, (2.15)

where x is the structural displacement, w is the transverse motion of a representative
fluid mass mf , ζf is the fluid damping ratio, ωs is the undamped angular frequency
of the fluid oscillator (determined from the Strouhal relation), γ is a dimensionless
coupling parameter taken as a constant, and the parameters mo, ζo, and ωo have their
usual meanings. The parameter wo controls the amplitude of the self-induced vibra-
tion of the fluid oscillator in the case of a stationary cylinder. Note that a quadratic
fluid damping term has been included in the formulation. Energy generation over
a period begins with the negative damping (provides the self-excitation) term in
Eq.2.15. This energy is extracted by means of the right-hand side of Eq.2.14. The
transfer of energy to the cylinder occurs via the right-hand side of Eq. 2.15. This
energy is then dissipated by the structural damping term.

Values for themodel parameters are taken from experiments, and themodel results
display branching from below and above the lock-in region. The solution in the lock-
in region is unstable, which the authors claim will lead to transition between the two
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modes of oscillation. However, changes in model parameters do not show similar
effects to changes in experimental parameters.

2.3.2 SDOF Models

Proponents of this type of modeling include Scanlan and Simiu [96], Basu and
Vickery [2], and Goswami et al. [38]. Single degree-of-freedom (SDOF) models
use a single ordinary differential equation to describe the behavior of the structural
oscillator.

Using the notation of Goswami et al. [38], the general form of such models is
given by

m(ẍ + 2ζωnẋ + ω2
nx) = F(x, ẋ, ẍ, ωst), (2.16)

where m is the mass of cylinder, x is the transverse (lift direction) displacement, ωs

is the Strouhal frequency, and F is an aeroelastic forcing function. The influence of
the wake dynamics is incorporated into Eq.2.16 via the appropriate choice of the
function F . They propose a model for the VIV of a flexibly supported cylinder that
is a hybrid of the nonlinear SDOF model of Scanlan and Simiu [96] and the coupled
wake-oscillator model of Billah [8]. The general form of this model is given by

m(ẍ + 2ζωnẋ + ω2
nx)

= 1

2
ρU 2D

[
Y1(K)

ẋ

D
+ Y2(K)

x2

D2

ẋ

U
+ J1(K)

x

D
+ J2(K)

x

D
cos(2ωst)

]
. (2.17)

In Eq.2.17, K = ωnD
/
U is the reduced frequency, Y1(K) is a linear aeroelastic

damping term, Y2(K) is a nonlinear aeroelastic damping term, J1(K) is an aeroelas-
tic stiffness term, and J2(K) is a parametric stiffness term. In essence, Y1(K) and
Y2(K) represent the self-excitation and self-limitation characteristics of the response.
J2(K) represents the coupling between the wake and the cylinder, and represents the
key contribution of the wake oscillator. J1(K) represents the shift in the mechanical
response frequency from the zero-wind frequency fn. In other words, J1(K) repre-
sents any shift in the cylinder natural frequency from its zero-wind (resting state)
value. The parameter values (Y1,Y2, J1, J2) are estimated through a range of reduced
velocities and damping from experimental results [37] and the method of slowly
varying parameters.

The results indicate a negligible frequency shift and consequently J1 can be taken
as zero. The remaining parameters (Y1,Y2, J2) are collectively found to influence the
peak amplitude of the response at lock-in, the location of the maximum response,
and the band of appreciable response. The authors do not compare the performance
of their model with experimental results from the literature.

Bearman [4] considers the following equation for a flexibly mounted bluff body
(not necessarily a circular cylinder),
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M ÿ + 4πNoδsM ẏ + 4π2N 2
oMy = CyρU

2D/2, (2.18)

where y is the displacement in the transverse direction, No is the undamped natural
frequency of the body, M is the mass per unit length of the body, δs is the fraction
of critical damping, and Cy is the transverse force coefficient for the bluff body
due to the shedding vortices. Assuming that for large enough amplitudes the fluid
force and the body displacement both oscillate at a certain frequency nv, and that the
fluid force must lead the cylinder motion by some phase angle φ, then solutions of
the form y = ȳ sin(2πnvt) and Cy = C̄y sin(2πnvt + φ) are sought. The following
relationships are obtained by replacing the assumed solutions into Eq.2.18,

No

nv
=

[
1 − C̄y

4π2
cos(φ)

(
ρD2

2M

) (
U

NoD

)2 ( y

D

)−1
]−1/2

(2.19)

ȳ

D
= C̄y

4π2
sin(φ)

(
ρD2

2M δs

)(
U

NoD

)2 No

nv
, (2.20)

where ρD2/2M is the mass ratio, ρD2/2M δs is the mass-damping parameter, and
U/NoD is the reduced velocity. Clearly, the frequency ratio No/nv and the amplitude
ratio ȳ/D depend on the mass ratio. As seen from Eq.2.19, a large value of the mass
ratio means that the frequency of oscillation of the cylinder is appreciably different
from its natural frequency. It is only for small values of the mass ratio that No ≈ Nv.
Equation2.20 shows that it is that part of the fluctuating transverse force coefficient
that is in-phase with the cylinder velocity which affects the amplitude ratio.

Chen et al. [20] present an unsteady flow theory for the structural response of a
one DOF circular cylinder to vortex shedding. The model correctly pointed out the
fluid-elastic instabilities in the lock-in region. For low oscillation amplitudes, as the
flow passes through the lock-in region, the modal damping may become negative
and the system becomes unstable. The amplitude continues to grow until it becomes
large enough so that modal damping values increase and the system is stabilized.

2.3.2.1 Specific Applications of SDOF Models

Cai and Chen [16] studied the wind-induced large-amplitude response of a stack
supported by cable guy wires at four levels. An unsteady flow theory developed in
Chen et al. [20] is used to model the VIV of the stack. The theory is essentially a
single degree-of-freedom model in which the effects of the flowing fluid are charac-
terized as the fluid damping and stiffness, and these parameters are in turn dependent
on oscillation amplitude, reduced flow velocity, and Reynolds number. For the stack
considered by itself, it is found that the third mode, with natural frequency ≈2.2Hz,
is most vulnerable to vortex-shedding-induced resonance due to a large modal par-
ticipation factor. The stack vibration can then be said to be due primarily to vortex
shedding at the lower portion, which is mostly associated with the third mode. For



36 2 Literature in Vortex-Induced Oscillations

the stack-cable system, both the stack and the cables show characteristic peaks in
their spectra at the lock-in resonances of the stack modes. Parametric resonances
(secondary peaks) in the cables are a result of stack motion at the ends of the cable
supports. In general, primary parametric resonances occur in cables with natural
frequencies that are approximately half the lock-in frequency (i.e., the shedding fre-
quency) of a given stack mode. Wind speed, cable tension, and damping are found to
affect the parametric resonances. The parametric resonances in the cablesmay be sig-
nificantly reduced by changing their natural frequencies through careful adjustment
of the tensions.

A technique for the extraction of aeroelastic parameters from wind tunnel tests is
described in Gupta et al. [46]. These parameters are used in the SDOF mathematical
model for the VIV of a structure at lock-in. The authors use Scanlan’s model,

m(z̈ + 2ζωnż + ω2
nz) = 1

2
ρU 2D

[
Y1

(
1 − ε

z2

D2

)
ż

U
+ Y2

z

D

]
= F(z, ż,U, t).

(2.21)
The instantaneous fluctuating lift force term, 1

2CL sin(ωt + φ), has been neglected
in this formulation since it is generally smaller than the aerodynamic lift caused by
the motion of the body (i.e., F(z, ż,U, t)). The unknown parameters in Eq.2.21 are
the linear aeroelastic damping, Y1, and the nonlinear aeroelastic damping, ε. The
linear aeroelastic stiffness, Y2, can be easily determined from oscillation frequency
measurements. The technique described in the paper is based on the concepts of
invariant embedding and nonlinear filtering theory, and is shown to be effective
even for turbulent (noisy) conditions. Furthermore, the method works regardless of
the initial conditions of the experiments (decaying method vs. self-excited method)
and in situations where the steady state amplitude is very small. The calculated
values of the parameters Y1 and ε are presented as a function of the Scruton number,
Sc = 4πmζ/ρD2, for a variety of section models, including laminar flow over a
smooth cylinder and turbulent flow over a smooth cylinder.

2.3.3 Force-Decomposition Models

Sarpkaya [87] is credited with introducing the force decomposition model. In his
model, the lift force on an elastically mounted rigid cylinder is decomposed into
a fluid inertia force related to the cylinder displacement and a fluid damping force
related to the cylinder velocity. The lift coefficient, CL, is expressed as

CL = Cmlπ
2UmT

D

(
D

V̄T

)2

sin {ωt} − 8

3π
Cdl

(
UmT

D

)2 (
D

V̄T

)2

cos {ωt} , (2.22)

where Cml is the inertia coefficient, Cdl is the drag coefficient, T is the period of
the transverse motion of the cylinder,Um = 2πA/D, and Vr = V̄ T/D is the reduced
velocity. A is the maximum amplitude of the cylinder motion, and V̄ is the velocity
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of the ambient flow. Equation2.22 can then be incorporated into the equation of
motion for an elastically mounted, linearly damped, and periodically forced cylinder,
yielding

ẍr + 2ζ ẋr + xr = ρr�
2

(
Cml sin {�τ } − 16

3π2
XrCdl cos {�τ }

)
. (2.23)

In Eq.2.23, xr = x/D,� is the ratio of the cylinder oscillation frequency to its natural
frequency fc/fn, ρr is the ratio of the fluid density to the density of the cylinder ρf /ρc,
and τ = ωnt. If the values of Cml and Cdl corresponding to the Vr value at perfect
synchronization can be determined from experiments, then Eq.2.23 can be solved,
and the response of the cylinder in the synchronization region ascertained.

Sarpkaya shows through a parametric study that the maximum response of the
cylinder is governed by a single parameter, the stability (mass-damping) parameter
SG , for values of this parameter larger than about unity. This stability parameter
is defined as SG = ζ/ao, the ratio of the material damping to a mass ratio. For
low values of the stability parameter, the mass ratio ao and damping ζ affect the
response separately. It is important to note that SG , as defined by the author, can
also be written as SG = 8π2ζS2M /ρD. In this form, it can be recognized as the
Skop–Griffin parameter.

Griffin [42] and Griffin and Koopman [43] split the fluid force into an excitation
part and a reaction part that includes all the motion-dependent force components.
In nondimensional form, the equation of motion for an elastically mounted rigid
cylinder is written as

ÿ + 2ωnζsẏ + ω2
ny = μω2

s (CL − CR) ,

where CL is the lift coefficient, CR is the reaction coefficient, ωs is the Strouhal fre-
quency, ζs is the structural viscous damping, and μ is a mass parameter equal to the
inverse Skop–Griffin parameter (i.e.,μ = 1/SG). The fluid dynamic reaction (damp-
ing) force in phase opposition with the cylinder velocity is measured as a function of
incident flow speeds (Re: 300–1000), including the lock-in speed. Also measured is
the lift component in phase with the cylinder velocity. This is the component of the
lift coefficient that is associated with energy transfer to the vibrating cylinder.

Wang et al. [103] introduce a nonlinear fluid-force model for the VIV of a single
elastically supported rigid cylinder in a uniform crossflow. The vibration of the cylin-
der in the transverse (y) and streamwise (x) directions are analyzed using a 2-DOF
structural model. The equations of motion are obtained from Euler–Bernoulli beam
theory and the effects of vibration mode are accounted for through a modal analysis
approach. The uncoupledmodal equations ofmotion are given in dimensionless form
by

Ẍn(z, t) + 2ζsnωn0Ẋn(z, t) + ω2
n0Xn(z, t) = fxn(z, t)

/
2Mr

Ÿn(z, t) + 2ζsnωn0Ẏn(z, t) + ω2
n0Yn(t) = fyn(z, t)

/
2Mr ,
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where z is along the axis of the cylinder, ζsn is the structural damping in the nth mode,
Mr is structural mass ratio, ωn0 is the natural frequency of a stationary cylinder,
fxn(z, t) is the fluid-force coefficient in the streamwise direction in the nth mode, and
fyn(z, t) is the fluid-force coefficient in the transverse direction in the nth mode. Note
that for an elasticallymounted rigid cylinder (n = 1), fx1(t) = cD(t) − cL(t)Ẏ1(t) and
fy1(t) = cD(t)Ẏ1(t) − cL(t), where cD(t) is the drag force coefficient and cL(t) is the
lift force coefficient. It is also worth mentioning that for a stationary rigid cylinder,
the transverse and streamwise fluid-force coefficients will coincide with the lift and
drag force coefficients, respectively.

A 2-DOF model is used because it has been found that streamwise oscillations
have a substantial effect on the transverse vibrations and their characteristics [115].
Higher harmonics representing the nonlinearity in the fluid–structure interaction are
accounted for in the form of nonlinear expressions for the fluid forcing terms. The
fluid-force components of the model are obtained from amplitude and frequency
data for a freely vibrating cylinder in crossflow by carrying out a spectral analysis
of the time series of structural vibrations using the autoregressive–moving-average
(ARMA) technique. Analysis of the power spectral density of the cylinder response
indicates the presence of higher harmonics in both the resonance and off-resonance
responses. Specifically, the vortex-shedding frequency and higher harmonics of
the shedding frequency are present in the resonance response. The off-resonance
response shows the presence of the vortex-shedding frequency and higher normal
modes of the structure. The fluid-force components of the model are found to be
dependent on structural damping and mass ratio. The model is used to predict the
VIV of an elastic cylinder which is fixed at both ends, and the results were com-
pared with experimental results and the SDOFmodel of Sarpkaya. The experimental
results of Goswami et al. [37] verify the presence of both the shedding frequency
and the natural frequency of the structure in the spectrum of the cylinder vibration
within lock-in and outside lock-in. The structural response thus contains two distinct
frequencies and these are manifested in the form of a beat. This has been verified by
the Benaroya-Wei [6] model discussed in more detail in Chap.4.

2.4 Variational Approach

Efforts tomodel fluid dynamics by using variational principles can be traced back to a
work byMillikan in [77]. He tried to obtain the governing equations of steadymotion
of a viscous, incompressible fluid by using Lagrange’s equations. He started from
the energy balance equation of a control volume. Then, he imposed the continuity
equation on the energy balance equation by means of Lagrangian undetermined
multipliers. He concluded that it is impossible to obtain the Navier–Stokes equations
for a steady motion of a viscous, incompressible fluid from Lagrange’s equations
unless certain conditions aremet.However,Millikan could not find realistic examples
where those conditions are met.

https://doi.org/10.1007/978-3-030-26133-7_4
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Since Millikan’s work, tens of attempts have been made to carry out similar
studies. Next, we review a few of these that are believed to be good representative
works. In Chaps. 6 and 7, we refer to some of these papers in order to point out some
of the difficulties faced in using variational methods for fluid systems. The challenges
are extensive.

Another early attempt in applying Hamilton’s principle to a system of particles is
the work by Eckart [26]. His goal was to obtain the equations governing electrody-
namic motions. He used Hamilton’s principle and imposed Maxwell’s equations in
the form of electromagnetic potentials (as constraints) by utilizing Lagrange multi-
pliers. The resulting variational equation can be considered for modeling an irrota-
tional ideal fluid system if the electromagnetic potentials are replaced with velocity
potentials.

In 1954, Herivel [48] argued that it is hard to imagine how Hamilton’s princi-
ple would follow the same exact rules in the Eulerian description as it follows in
the Lagrangian one. Therefore, one must first transform the Lagrangian function to
Eulerian formbefore imposing the variations. He also explained thatHamilton’s prin-
ciple can only be used in the absence of irreversible processes, that is, it can only be
applied to an ideal fluid. Therefore, Herivel used a Jacobian matrix and transformed
the Lagrangian coordinates into the Eulerian frame. Similar to Eckart’s work, he used
Lagrangian multipliers to impose the continuity and the entropy transport equations.
Then, he utilized a specific form of Clebsch’s transformation to obtain the velocity
potentials. The resulting variational equation was an extension of Hamilton’s princi-
ple containing Lagrangian variations and Eulerian functions. Compared to the earlier
models, Herivel’s method has the advantage that it can also be used for rotational
motions.

In a later paper, Eckart [27] discussed the difficulties of deriving a general vari-
ational principle in a Eulerian representation, and that, therefore, the Lagrangian
approach is preferable. Considering the conservation law in terms of a Lagrangian
energy–moment tensor, he used a Jacobian matrix to backtrack the particles to their
initial positions while normalizing the coordinates with respect to density. Then, he
obtained the Lagrangian equations for the motion of both incompressible and com-
pressible fluids. Also, he discussed the importance of Clebsch’s transformation when
integrating problems involving vorticity. Eckart’s model has the disadvantage that
it requires the coordinates of each particle to be specified at least at two different
points in time.

Penfield [84] used Hamilton’s principle to derive the equation of motion for a
simple, inviscid fluid. He makes some interesting points regarding the application of
Hamilton’s principle. The pertinent variables can be classified as either geometric
(e.g., position, velocity, strain) or force (force, pressure, stress). Constitutive laws
govern the physical properties of thematerial or systemand relate force andgeometric
variables. Penfield mentions that geometric laws are usually the most obvious while
force laws the least.

Seliger and Whitham [93] present a discussion of variational principles in con-
tinuum mechanics, in particular, fluid dynamics, plasma physics and elasticity. The

https://doi.org/10.1007/978-3-030-26133-7_6
https://doi.org/10.1007/978-3-030-26133-7_7
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discussion is in the context of finding a variational principle for a given system of
equations. An interesting discussion opens their paper:

When Lagrangian coordinates are used in continuummechanics, the similarity with a system
of discrete particles is observed. In particular, the equations of motion can be derived from
Hamilton’s principle that the difference between the kinetic energy and potential energy be
stationary. The sum over particles becomes an integral over a volume of material, but no
essential change is required. However, when an Eulerian description is adopted, this close
similarity with a system of particles is lost; it becomes more difficult to find suitable varia-
tional principles and to see the connection between the variational principles that have been
found for different specific problems. Perhaps one can argue that the Eulerian description is
introduced primarily as amathematical device and, as a consequence,we getmore involved in
straight mathematical manipulations; the basic physics is described by Hamilton’s principle,
but the Eulerian description raises mathematical problems.

Bretherton [14] tried to obtain the Eulerian equations of motion from the
Lagrangian formulation of Hamilton’s principle. His main aim was to clarify some
of the inconsistencies in the literature. He stipulated that there must exist an inverse
mapping function of Lagrangian trajectories that can be used to trace particle posi-
tions to some earlier configuration. As a result, he assumed that the density at each
instant of time is related to the density at some reference time via the Jacobian map-
ping of Lagrangian trajectories to the inverse mapping function. Having obtained the
Eulerian variations as functions of the Lagrangian virtual displacement, he applied
the Eulerian variation to the action integral. The results were equations containing
the Eulerian functions and the Lagrangian virtual displacements. As an example,
Bretherton obtained Kelvin’s circulation theorem using his variational approach.

Another effort in applyingHamilton’s principle to fluidmechanics problems is the
work by Leech [70]. He argued that Hamilton’s principle cannot be directly applied
to a control volume as it is defined for a system of particles. Also, he discussed
that the variational operator does not commute with the control volume. Rather it
commutes with mass integrals as the integration limits are invariant. Moreover, he
noted that Hamilton’s principle expressed in the form δ

∫
Ldt = 0 can only be used

for conservative systems. For nonconservative systems, the original statement of the
principle must be used. Additionally, he assumed that there must exist a function
that maps the instantaneous displacements of fluid particles to a reference state.
Then, he used the Jacobian matrix to map the integrals back to a reference frame—in
the same manner that is usually used to prove Reynolds transport theorem (RTT).
His manipulations resulted in an integral equation containing the variation of the
mapping functions. Then, Leech suggested that one may use Hamilton’s principle to
optimize an assumed solution. Therefore, a class of displacement functions (called
admissible functions) can be chosen for a problem and their weighting functions can
be optimized using his formula. To elaborate on his method, he considered a few
problems. One such problem was the interaction between an incompressible inviscid
flow and a structure, called d’Alembert’s paradox, in which d’Alembert proved that
the drag force is zero.

Salmon [85, 86] developed a substantive discussion of the application of Hamil-
ton’s principle to problems of fluid mechanics. Of particular interest is his develop-
ment of Eulerian forms of Hamilton’s principle.
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McIver [75] formulated an approach tomodelingfluid dynamics using an extended
form of Hamilton’s principle for problems involving fluid–structure interactions.
His approach is provided in more detail in Chap.7. Having considered Hamilton’s
principle for a system of continuous particles, McIver utilized Reynolds transport
theorem tomodify the principle for a system of changingmass (control volume,CV ).
For a moving control volume, it is customary to consider the relative velocities of the
fluid particles with respect to the control volume. However, McIver considered the
velocity of the control volume with respect to the fluid particles, ur , for which he did
not provide any justification. PerhapsMcIver’s aimwas to introduce the backtracking
concept that has been used by the previously mentioned authors at this stage of his
formulation. Also, he assumed that the virtual work performed on a control volume
is purely due to the surface tractions at the control surface. Therefore, using the stress
dyadic, σ̄ , he considered the virtual work to be

δW =
∫
CS

δr · σ̄ · n dA, (2.24)

where δr is the virtual displacement, n is the normal vector to the differential surface
element dA, and CS is the control surface. For fluid–structure interaction problems,
the control volume can be chosen so that some portions of the control surface match
the structural surfaces. Denoting the portions of the CS where the flow cannot pass
through by CSC (closed CS), and representing the rest of the CS by CSO (open CS),
McIver’s extension of Hamilton’s principle is given by

δ

∫ t2

t1

(T − �)CV dt +
∫ t2

t1

∫
CSO

[δr · σ̄ · n +ρ (u · δr) (ur · n)] dAdt

+
∫ t2

t1

∫
CSC

δr · σ̄ · ndAdt = 0, (2.25)

where u is the absolute velocity of the fluid particles, T is the kinetic energy and �

is the potential energy.
Equation2.25 represents a stationary process if the integrand of the second term

always disappears at CSO, that is,

σ̄ + ρuur = 0, or (σ̄ + ρuur) · n = 0 at CSO. (2.26)

Therefore, the applicability of McIver’s equation is restricted to the cases where
such a control volume can be distinguished from the physics of the problem, where
the fluid is bounded by the structure. McIver considered two simple problems as
examples, a rocket problem and a flexible pipe problem.

Along similar lines, Xing and Price [112] modified Hamilton’s principle for non-
linear ship–water interactions. They considered that imposing virtual displacements
cause the particles to be virtually transported across an assumed control volume.
They defined a general integral function of interest, say H , as

https://doi.org/10.1007/978-3-030-26133-7_7
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H [φ] =
∫ t2

t1

∫
CV

F

(
φ,

∂φ

∂t

)
dVdt, (2.27)

where φ is a continuously differentiable function of displacement, x, and time, t.
Denoting the local variation (Eulerian) by δ̄ and the material variation (Lagrangian)
by δ, they obtained the local variation of H to be

δ̄H =
∫ t2

t1

{∫
CV

δ̄FdV +
∫
CS

F

(
φ,

∂φ

∂t

)
(δx · n) dA

}
dt. (2.28)

Therefore, the variation ofH is twofold: the Eulerian variation inside the control vol-
ume and the flux ofH due toLagrangian virtual displacements. Then, theirmodelwas
applied to a rigid ship traveling in calm water and in waves. Xing and Price’s method
requires further simplifications and assumptions as it contained both Lagrangian and
Eulerian variations.

Benaroya and Wei [6] considered a more general type of FSI problem than
McIver, where the fluid contains the structure. They showed thatHamilton’s principle
becomes a statement of the first law of thermodynamics, or conservation of energy,
when the configuration is not known at any time. Similar to McIver’s approach, they
used the RTT to relate Hamilton’s principle to a control volume. However, unlike
the McIver’s use of RTT, they chose the conventional form of RTT where the rela-
tive velocities, ur , are the relative fluid particle velocities with respect to the control
volume. They presented their governing equation as

d

dt
(Tstructure + �structure)CV =

∫
CS

1

2
ρu2 (ur · n) dA (2.29)

+
∫
CS

(−pn+ τ ) · udA − (mfluiduu̇)CV ,

where mfluid is the mass of fluid contained by the CV , p is the pressure, and τ

is the shearing force. They explained that the terms on left-hand side of Eq.2.29
are the structural dynamic terms, and the right-hand side terms can be evaluated
experimentally. The result is the acceleration of the structure that can be integrated
twice to obtain the structure’s displacement.

In parallel with their theoretical development, Benaroya and Wei conducted a
series of experiments [23] on the VIV of a circular cylinder in uniform flow. The
cylinder was free to vibrate transversely to the flow direction. Having input the exper-
imental data to Eq.2.29, they showed that their model is successful in predicting the
frequencies of the structural oscillation as well as in capturing the beating behavior
that is usually observed in VIV. However, the predicted response amplitudes were
roughly half of the experimental values. Their results are shown in Fig. 2.11. They
concluded that these differences are most likely due to the choice of control volume.
Having obtained a CV for which the predictions of the model matched the exper-
imental values (shown in Fig. 2.12), they concluded that the control volume must
contain both upstream and downstream sections of the flow where the downstream
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Fig. 2.11 Predicted (bottom) versus experimental (top) amplitudes. Both plots are in seconds [6].
Reprinted with permission

control surface is far enough from the structure as to not pass through the vortex
formation region, yet not too far as it will not capture the true kinetic energy flux due
to the dissipation of energy. Benaroya and Wei showed that when the configuration
is unknown, which is the case for the majority of fluid and fluid–structure interac-
tion problems, the result of Hamilton’s principle is not a variational principle. This
approach is detailed in Chap.4.

However, the satisfactory results of their studies motivated the research work by
Gabbai and Benaroya to modify the same approach as to obtain a variational method
[35]. The experiments show the existence of a formation region (cavity) in the vicinity
of a cylinder that is immersed in a flow. They assumed that the energy is evenly
exchanged between the cylinder and the wake in the formation region. Denoting the
displacement of this cavity by w, they obtained their variational equation as

∫ t2

t1

amcavityẇδẇdt + δ

∫ t2

t1

1

2
mẋ2dt − δ

∫ t2

t1

1

2
kx2dt −

∫ t2

t1

cẋδxdt

−
∫ t2

t1

δW (ẇ, ẅ, x, ẋ, ẍ, t) dt − δ

∫ t2

t1

F(w, t)δwdt = 0, (2.30)

where the overdot denotes d/dt, m denotes the mass, x is the displacement of the
cylinder, k is the structural stiffness, c is the structural damping, δ is the variational
operator, t is time, F is the fluid stiffness, andW represents instantaneous total work

https://doi.org/10.1007/978-3-030-26133-7_4
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Fig. 2.12 Comparison of phase-averaged cylinder position versus time measurements (solid line)
with reduced-order model response (dotted line). Reprinted with permission

done by the transverse hydrodynamic force acting on the cylinder, Ffl/st , and by the
viscous and pressure forces inside the cavity, Fμ/p. Therefore,

δW (ẇ, ẅ, x, ẋ, ẍ, t) = −Ffl/st (ẇ, ẅ, ẋ, ẍ, t) δx + Fμ/p (ẇ, ẅ, ẋ, ẍ, t) δw. (2.31)

Then, based on the literature, the authors proposed some general functions for ẇ, ẅ,
ẋ, ẍ, t, and lift coefficient for Ffl/st and Fμ/p. They showed that three of the existing
wake-oscillator models are each a specific case of their more general model. This
approach is discussed in Chap.5.

As evident from the literature, the efforts to apply Hamilton’s principle and
Lagrange’s equations to the problems of fluid dynamics have had relative success in
certain cases, mainly ideal fluids. There exist no general variational approaches for
fluid–structure interactions, nor for fluid dynamics problems. One main challenge
arises from relating the variational principles in the Lagrangian frame to the Eule-
rian frame, and the relations between dynamic properties described in these reference
frames. A recent development along these lines has been put forth by Mottaghi and
Benaroya [79, 80], and is discussed in Chaps. 6 and 7.

https://doi.org/10.1007/978-3-030-26133-7_5
https://doi.org/10.1007/978-3-030-26133-7_6
https://doi.org/10.1007/978-3-030-26133-7_7
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2.5 Numerical Methods

Numerical methods are an alternative way to solve the fully coupled problem of VIV
of bluff bodies. Among the major methods used are time-marching schemes (for
example, Jadic et al. [56]) and direct numerical simulation (for example, Evangelinos
[28]), the discrete vortex method, and the vortex-in-cell method. These numerical
simulations are usually restricted to the lower end of the Reynolds number spectrum.

Zhou et al. [115] use the vortex-in-cell method to solve the problem of two-
dimensional incompressible flow past an elastic circular cylinder. The detailed
numerical formulation of the vortex-in-cell method is quite complex and beyond
the scope of this review. Details can be found in Meneghini and Bearman [76] and
Sarpkaya [89, 90]. The structure is modeled as a spring–damper–mass system with
two translational degrees-of-freedom. A constant Reynolds number of 200 is chosen
for all simulations, based on the fact that at this Reynolds number the shedding vor-
tices are still two-dimensional and the wake is laminar. A finite-difference scheme
is implemented to solve the vorticity transport equation. The forcing terms on the
right-hand side of the cylinder equations of motion at each time step are obtained
from the flow-field calculations through the integration of the pressure and wall shear
stress around the cylinder surface. The reference frame is fixed on the cylinder and
consequently, after the cylinder motion is determined at each time step, a flow equal
and opposite to the cylinder motion must be superimposed to the flow field. The
frequency characteristics of the force, displacement, and velocity fields are obtained
using an ARMA technique. The fluid motion is then solved in the next time step
accounting for these effects. The process is repeated in an iterative way.

The results of the numerical simulations indicate that the cylinder response is not
only strongly dependent on the Skop–Griffin parameter (reduced damping), but also
on the mass ratio. It is the natural frequency of the fluid–structure system f ∗

n and not
the structural natural frequency fn that is very close to the natural shedding frequency
f ∗
s when the peak structural response occurs. The importance of the fluid damping,
through theSkop–Griffin parameter, is illustrated bynoting that evenwhen the natural
frequency of the fluid–structure system is near the natural shedding frequency, a
limit-cycle oscillation (i.e., a self-limited oscillation) results. The amplitude of the
limit-cycle oscillation decreases as the Skop–Griffin parameter increases. In general,
the 1-DOF (transverse motion only) model is only able to qualitatively reproduce
some of the results obtainedwith the 2-DOFmodel. This suggests that the streamwise
motion does indeed influence the motion in the transverse direction.

2.5.1 Direct Numerical Simulation

Evangelinos et al. [29] use direct numerical simulations (DNS) based on spectral
elements to simulate the flow past rigid and flexible cylinders. The simulations are
conducted at a Reynolds number of 1000, where the flow exhibits a turbulent wake,
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Table 2.1 Summary of time- and span-averaged amplitude, lift and drag coefficients at lock-in
[29]. Reprinted with permission

Cylinder type ymax/d yrms/d (Cl)rms Cd (Cd )rms

Stationary 0 0 0.12 1.04 0.02

Rigid 0.75 0.51 1.53 2.11 0.65

Short beam—free 0.93 0.51 0.83 1.86 0.48

Short beam—fixed 1.09 0.43 0.86 1.81 0.43

Long beam—free 0.61 0.36 0.93 1.75 0.51

Long beam—fixed 0.85 0.25 1.16 1.62 0.44

and the cylinder is allowed only vertical motions in the crossflow direction. Themain
assumptions are that there is no structural damping and that the structural eigenfre-
quency is “locked-in” to the Strouhal number of the corresponding stationary cylinder
flow. Simulations are conducted for a rigid cylinder of normalized spanwise length
Lz = 4π , where the cylinder diameter d is used as the scaling factor. Simulations for
flexible cylinders are conducted for the following cases: (1) a short cylinder of span-
wise length Lz = 4π with free ends, (2) a long cylinder of spanwise length Lz = 378
with free ends, (3) a short cylinder of spanwise length Lz = 4π with pinned ends,
and (4) a long cylinder of spanwise length Lz = 378 with pinned ends.

Table2.1 presents a summary of the results of the simulations. It is stated that
the errors in the given values are less than 10%. Note that the RMS lift coefficient
(Cl)rms for the freely oscillating rigid cylinder is much larger than it is for the other
cases, while the stationary cylinder has the smallest value. The same can be said for
the mean and RMS values of the drag coefficients, Cd and (Cd )rms, respectively.

Guilmineau and Quetey [45] consider vortex shedding from the forced oscillation
of a circular cylinder in two distinct cases: the flow induced by the harmonic in-line
oscillation of a cylinder in a quiescent body of water, and the flow induced by a
transversely oscillating cylinder in a uniform flow of Reynolds number 185. In both
cases, the two-dimensional unsteady Navier–Stokes equations are solved using a
control volume approach with an algorithm (consistent physical interpolation, CPI)
implemented to reconstruct the velocity fluxes. For the in-line oscillation study, the
Reynolds number is fixed at 100 and the Keulegan–Carpenter (KC) number is fixed
at 5. The Reynolds number is defined by Re = UmD/ν and the Keulegan–Carpenter
number is defined by KC = Um/feD, whereUm is the maximum oscillatory velocity,
ν is the kinematic viscosity, and fe is the frequency of the oscillatory flow.

At the KC number used in the study, a periodic vortex formation is observed,
consisting of vortices with symmetrical locations with respect to the line of motion
of the cylinder. The in-line force time history acting is computed and the results
compared with that predicted by theMorison equation. Agreement is generally good,
except for the extremes of the time history. For the transverse oscillation study,
the mechanisms of vortex switching are examined as functions of the ratio of the
vortex shedding or excitation frequency (fe) to the natural shedding frequency from



2.5 Numerical Methods 47

Fig. 2.13 Instantaneous vorticity contours for Re = 185 and A/D = 0.2. In all frames, the location
of the cylinder is at its extreme upper position. Values of fe = f0 equal to: a 0.80, b 0.90, c 1.00,
d 1.10, e 1.12, f 1.20 [45]. Reprinted with permission

a stationary cylinder (fo), fe/fo. As fe/fo increased, the concentration of vorticity in
the wake of the cylinder moves closer to the cylinder, resulting in a tighter vortex
structure (Fig. 2.13). A limiting position is reached and the vorticity concentration
abruptly switches to the opposite side of the cylinder.

Willden and Graham [104] use a quasi-three-dimensional extension of strip the-
ory to simulate the low Reynolds number VIV of a long flexible circular cylin-
der with a low mass ratio and zero damping. The reduced velocity is defined as
Vr = U/fnD, where fn is the natural frequency of the cylinder. The mass ratio is
defined as m∗ = 2m/ρD2, where m is the mass per unit length of the cylinder. The
simulations for free transverse vibration of the flexibly mounted cylinder indicate
that for very low mass ratios, the fluid (through the added mass) is dominant over the
structure in controlling the oscillatory frequency throughout lock-in. In other words,
the oscillatory and vortex-shedding frequencies remain locked-in to one another
throughout the reduced velocity range simulated, Vr = 2.5–16. This phenomenon
does not occur in systems with high mass ratios. For such systems, the vortex-
shedding frequency is entrained by the structural frequency, fv ≈ fn. It is also seen
that the body oscillates at approximately the natural frequency of the combined fluid
and structure system throughout lock-in. By decomposing the component of lift coef-
ficient in-phase with the cylinder motion into contributions from pressure and shear
forces, it is found that the shear force component in-phase with the cylinder velocity
effectively acts as hydrodynamic damping, balancing the positive excitation force
provided by the pressure force in-phase with the cylinder velocity. These shear and
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pressure forces are found to be quite large in magnitude. Shear flow simulations past
the 3D cylinder are also performed and cellular shedding in the wake is observed.
Despite the presence of the shear flow, the vortex shedding remained correlated over
a substantial length of the cylinder.

Blackburn et al. [11] present a complementary numerical and experimental study
of the VIV of a rigid cylinder at lowReynolds number flow. The fluid andmechanical
(mass ratio, mass-damping) dynamic parameters are matched in both the simulations
and the experiments. Two-dimensional flow simulations were unable to predict the
nature of the multi-branched plot of amplitude A∗ versus SVr . The Strouhal number
S for a fixed cylinder is used to normalize the reduced velocity Vr , thus leading
to the product SVr . The reasoning behind this normalization is that the 2D and 3D
simulations actually have different Strouhal numbers for the sameReynolds numbers,
0.225 and 0.205, respectively. Three-dimensional flow simulations generate results
similar to the experimental results, in spite of the fact that the cylinder end boundary
conditions are not exactly the same as in the experiments and the axial resolution
and extent of the simulations are less than desirable. The 3D simulations coincide
with the experimental results in the prediction of a 2P type vortex-shedding mode
for a representative SVr value of 1.27 along the lower branch of the response curve.
The 2P type vortex-shedding mode is first reported in Williamson and Roshko [110]
and corresponds to two pairs of counterrotating vortices per shedding cycle.

Blackburn and Henderson [10] conduct a detailed numerical study of the phase
change of vortex shedding with respect to cylinder motion commonly observed in
experimental studies of flows past stationary and oscillating cylinders. In this con-
text, phase change means the change in the phase angle φ between the cylinder
crossflow displacement y(t) and the fundamental harmonic of the lift force FL. The
Reynolds number is fixed at 500 and the oscillation amplitude of the cylinder is
fixed at ymax/D = 0.25. Experimental studies have indicated that the timing of vor-
tex formation switches phase by approximately 180◦ over a narrow band of structural
oscillation frequencies in the primary lock-in regime. In other words, there exists a
certain frequency range such that for a fixed point in the cylinder motion cycle, the
side of the cylinder where the first vortex is formed will change abruptly. The switch
is found to affect the sign of the mechanical energy transfer between the cylinder
and the surrounding fluid, as well as the phase of the vortex-induced forces on the
cylinder. Furthermore, the timing of this phase shift is strongly affected by the fre-
quency ratio F = fo/fv, where fo is the cylinder crossflow oscillation frequency and
fv is the natural shedding frequency from a fixed cylinder. The dimensionless form
of the mechanical energy transferred from the flowing fluid to an oscillating cylinder
per motion cycle is given as

E = 1

2

∮
(CLdα + αdCL), (2.32)

where CL is the lift coefficient and α is an instantaneous dimensionless displacement
variableα(t) = y(t)/D.Positive values ofE correspond towork done on the cylinder,
while negative values correspond to work done on the surrounding fluid. It can be
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shown that E is positive when φ is in the range 0–180◦. The sign of E is ascertained
from the phase plane plot of y(t) versus CL, which is in the form of a limit cycle
during frequency entrainment (lock-in). The sign of E is positive if the direction of
traverse in the limit cycle is clockwise. By considering the range 0.75 < F < 1.05
and calculating E for each increment (or decrement) �F from two initial points
F = 0.875 and F = 0.975, a bifurcation solution with hysteresis effects is found in
the transition to these states.

Four solution branches corresponding to periodic shedding states are observed:
two branches associated with Kármán street wakes (K1 and K2), a branch charac-
terized as the asymmetric two-cycle mode (A1), and a branch characterized as the
asymmetric synchronized branch (A2). The K1 branch has negative values of E at
lower frequencies and progresses to positive values at higher frequencies. The A1

and A2 branches always have positive values of E. The K2 branch always has neg-
ative values of E. The transitions between the branches is rather complicated and
cannot be easily categorized. Of interest is a band of frequencies 0.905 < F < 0.95,
termed the weakly chaotic oscillator range, in which the sign of E changes between
the K1 and K2 branches. In this band, the sign of E and the phase angle φ transi-
tion from positive to negative values in a discontinuous fashion. Figure2.14 shows
the different branches in the F–E plane. It is suggested that the relaxation oscillator
behavior seen in this range is indicative of different mechanisms vying for control
of the wake dynamics. The competing mechanisms are the relative magnitudes of
the pressure-gradient and the surface-acceleration vorticity generation. Several tests
are performed to test the validity of this hypothesis, and results presented do lend
validity to this claim.

2.5.2 The Finite Element Method

Barhoush et al. [1] use an approach based on the finite element method and Scanlan’s
vortex-shedding empirical model to analyze the VIV response of plane frame (2D)
structures. The equations of motion for a plane frame element, having two degrees-
of-freedom per node, are obtained from Hamilton’s principle. The equations motion
for the plane frame element are obtained in terms of the displacements and rotations
at its nodes. The virtual work of the nonconservative forces acting on the element
consists of two components: (1) the mechanical damping, which is represented by
a velocity-dependent force; and (2) the aerodynamic damping, which is assumed to
have a form similar to that found in Scanlan’s model [96]. See Eq.2.21.

The response of the structure is obtained by adding up the contributions of each
element. A good representation of steady-state vortex-induced vibration behavior is
obtained. The extension of the approach to space frame elements (elements of a 3D
structure) is readily made and is discussed in the paper.

A finite element analysis of the VIV of a circular cylinder at Reynolds numbers
in the range of 100–140 is performed by Nomura [82]. Similarly, Mittal and Kumar
[78] use the finite element method to investigate the VIV of a circular cylinder
mounted on lightly damped springs. The cylinder is allowed to vibrate in both the
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Fig. 2.14 Energy transfer coefficient E as a function of the frequency ratio F for periodic wake
flows. �, Kármán street mode, branch K1; �, Kármán street mode, branch K2; ©, asymmetric
two-cycle mode, branch A1; �, asymmetric synchronized mode, branch A2; frequency ratios for
aperiodic regimes are shown hatched. Inset shows paths followed during sweeps of the frequency
ratio F . Note the bifurcations between the different wake modes [10]. Reprinted with permission

in-line and in the crossflow directions at Re = 325. The behavior of the oscillator for
various values of the structural natural frequency (Fs), including those that are sub
and superharmonics of the natural vortex shedding, is investigated. In most cases, the
trajectory of the cylinder is found to correspond to a Lissajou figure. For cylinders
with effective material density much smaller than that of the surrounding fluid, a
region of slight detuning is found to exist in a certain range of Fs values. In this
region, the vortex-shedding frequency of the oscillating cylinder does not exactly
match the structural frequency. This phenomenon is called “a soft lock-in” by the
authors and the detuning is found to vanish if the cylinder density is made much
larger than the mass of the surrounding fluid.
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2.6 Discussion

A variety of issues concerning the vortex-induced vibration of circular cylinders
have been discussed. Selected papers highlighted the influence of vortex-induced
unsteady forces on the cylinder, including the phase of the forces relative to the body
motion. The phenomenon of lock-in has been discussed and the factors that influence
the response of the cylinder (mass and damping) have been listed. The mathematical
modeling of vortex-induced oscillations, using nonlinear oscillators and flow-field
simulations has been described. The development in the techniques used to attempt
to solve the fully coupled problem, based on the fundamental principles of fluid
dynamics and the theory of elasticity, has been illustrated with examples from the
literature.

In the future, research should be directed toward the better prediction of the
dynamic response of structures to VIV, which is an inherently nonlinear, self-
regulated, multi degree-of-freedom phenomenon. Vortex shedding gives rise to
unpredictable forces. This is only one of a multitude of factors that continues to
makeVIV prediction in industrial applications substandard. In thewords of Sarpkaya
[91]: “They [industrial applications] continue to require the input of the in-phase and
out-of-phase components of the transverse force, in-line drag, correlation lengths,
damping coefficients, relative roughness, shear, waves, and currents, among other
governing and influencing parameters, and thus the input of relatively large safety
factors.”

Better prediction of VIV will hopefully lead to better suppression. This is most
important to the structural integrity of our offshore structures and our tall land struc-
tures constantly subjected to winds. The payoff will be in longer service lives for
these structures.

The following chapters are the focus of this monograph. They represent an effort
to couple reduced-order VIV models to first principles in the form of variational
laws. Chapter3 provides a review of basic variational mechanics. Chapter 4 derives
a reduced-order model based on Hamilton’s principle as an extension of the ideas of
McIver. Chapter5 derives reduced-order models based on Hamilton’s principle and
virtual displacementswith comparisons to key reduced-ordermodels in the literature.
Chapters6 and 7 derive reduced-order models based on Jourdain’s principle and
virtual velocities. Each chapter also includes highlights of the earlier chapters in
order to ease the reader through the complex material.
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Chapter 3
Introduction to Analytical Mechanics

Abstract This chapter presents several of the most important concepts from ana-
lytical dynamics. We derive Lagrange’s equation and how it can be used for the
derivation of governing equations of motion. It is, especially, useful for the deriva-
tion of the equations of motion for systems, discrete or continuous, with more than
one degree-of-freedom, where the Newtonian free body diagrams become more dif-
ficult to apply. We also derive Hamilton’s principle, an integral energy formulation,
also applicable to both discrete and continuous systems, and see how it is related
to Lagrange’s equation. Hamilton’s principle is, especially, relevant to the work in
Chaps. 4 and 5.

3.1 Introduction

The basis of this chapter is the principle of virtual work. There are many advantages
to the analytical approach of Lagrange and Hamilton over Newton’s force analysis.
This is, especially, true for systems of interacting bodies, where each exerts a force on
the other and where constraints, such as boundaries, also exert forces on the system,
limiting motion. Such auxiliary conditions can be more easily handled using the
analytical approach.

The analytical approaches are based on variational principles, which are the uni-
fying basis of the equations that follow. The term variational is from the calculus of
variations, the foundation for such techniques. An important advantage of the ana-
lytical method is that the equations of motion are coordinate-independent. Newton’s
second law of motion is not.

To motivate and explain the procedure, consider the simple function: y = f (x).
The variable y can represent a displacement curve of a cable or beam. The variational
approach is based on comparing the function f (x) with a slightly modified function
fε(x) = f (x) + εφ(x), where ε can be as small as necessary, including zero, and φ

must be continuous and differentiable. For any value of the independent variable x ,
the variation, or difference is defined as

δy ≡ fε(x) − f (x) = εφ(x).
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There are two fundamental points to be emphasized, here, (i) the variation is arbitrary
or virtual and (ii) it is an infinitesimal change since ε can be made arbitrarily small.
Note that while both δy and dy represent infinitesimal changes in the function f (x),
dy refers to a change in f (x) caused by an infinitesimal change of the independent
variable dx , while δy is an infinitesimal change of y that results in a new function
y + δy.

This process of variation is for each fixed value of x . Therefore, x is not varied,
meaning that δx = 0, and the two end points of this function are prescribed and
therefore also not varied. The variation is between definite limits. When we work
with time as the independent variable, the beginning and ending times are prescribed
and therefore not varied.

As we will discover below, in applying the variational procedures to a particular
system, in addition to finding the governing the equation of motion, the necessary
number of boundary conditions is also derived. The stationary value conditions
imposed by the variational principles result in both the differential equations and
the boundary conditions.

Before proceeding with the details of the analytical techniques, it is useful to
summarize the key topics to be examined in this chapter:

• The principle of virtual work is introduced alongwith its relation to the equilibrium
of a body.

• The principle of virtual work, in conjunction with d’Alembert’s principle, is
extended to include dynamic systems.

• Lagrange’s equation and Hamilton’s variational principle are then derived from
d’Alembert’s principle.

Jourdain’s principle, which is related to the topics in this chapter, is introduced
and discussed later in this monograph, where it is applied directly.

3.2 Virtual Work

The principle of virtual work is the basis for the remainder of this chapter and also
forms the foundation for the variational principles of mechanics. Some of the most
powerful computational models are based on a variational approach.

3.2.1 Work and Energy

The concepts of work and energy are reviewed before proceeding to virtual work.
Consider a particle of mass m moving along a curve C under the action of a force F
as shown in Fig. 3.1. In this chapter, we follow the custom in dynamics of showing
vectors as boldface variables.
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Fig. 3.1 Work done by force
F in the direction dr

The position of the particle with respect to an origin O is given by the vector r,
which is a function of time. The work necessary to move the mass a distance dr is
dW = F · dr. The work done to move the particle from position r1 to position r2 is

W12 =
∫ r2

r1
F · dr.

Assuming the mass of the particle to be constant, Newton’s second law of motion
can be written as

F = m
d ṙ
dt

= m
d

dt

(
dr
dt

)
.

The goal here is to connect force, work, and energy. Using dr = ṙdt , and the above
equations,

W12 =
∫ t2

t1

m
d ṙ
dt

· ṙdt

= 1

2

∫ t2

t1

m
d

dt
(ṙ · ṙ) dt

= 1

2
m[(ṙ2 · ṙ2) − (ṙ1 · ṙ1)]

= 1

2
m(ṙ22 − ṙ21 )

= T2 − T1,

where the limits of integration have been transformed from r to t , and T is the kinetic
energy of the mass, T = 1

2mṙ · ṙ. As expected, we started with a scalar, the work,
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Fig. 3.2 Path dependence

and ended with a scalar, the change in kinetic energy. The kinetic energy of a body
is defined as the total work that must be done on the body to bring it from a state of
rest to a velocity ṙ. Thus, for v = |ṙ|,

T =
∫ v

0
mv dv

= 1

2
mv2.

Next, the work done by the force is related to the respective change in position of
the mass. To do this, define a conservative force field as one where the work done
depends only on the initial and the final positions of the particle and is independent
of the path connecting these positions. An example of a conservative force field is
gravity. Nonconservative forces, such as friction and external forces, are energy-
dissipating, and for these the work done is path-dependent.

From Fig. 3.2, any path within the conservative force field which connects points
1 and 2 can be selected, and the work done bringing the particle from 1 to 2 will be
the same, and is denoted by

W12c =
∫ r2

r1
F · dr

︸ ︷︷ ︸
Path I

=
∫ r2

r1
F · dr

︸ ︷︷ ︸
Path II

.

The potential energy V (r1) is associated with position r1 and is defined as the
work done1 by a conservative force moving a particle from position r1 to a reference
position rp,

1Had the limits been interchanged, subsequent equations would be of opposite signs.
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V (r1) =
∫ rp

r1
F · dr.

Relate the work done moving a particle in a conservative force field to the potential
energy of the particle. To do this, consider again W12c but choose the arbitrary path
through reference position rp, then

W12c =
∫ rp

r1
F · dr +

∫ r2

rp

F · dr

=
∫ rp

r1
F · dr −

∫ rp

r2
F · dr

= −[V (r2) − V (r1)]
= −(V2 − V1).

By this equation, the work done in a conservative force field is the negative of the
change in potential energy. From vector calculus, a conservative force equals the
negative of the gradient of the potential energy function.

Finally, if we denote W12nc as the nonconservative work, then

W12nc = W12 − W12c

= (T2 − T1) + (V2 − V1)

= (T2 + V2) − (T1 + V1)

= E2 − E1,

where Ei denotes the total energy in state i . Therefore, W12nc is a measure of the
change in particle energy due to dissipation, and if W12nc = 0 then E2 = E1. That
is, the energy of the particle is constant and there is conservation of energy.

Gravitational potential energy is defined as the work (mgh) done against the
gravitational field to elevate a bodyofmassm adistanceh above an arbitrary reference
plane (datum).

3.2.2 Virtual Work

The Principle of Virtual Work states that the virtual work performed by the applied
forces undergoing infinitesimal virtual displacements compatible with the system
constraints is zero,

δW =
N∑

i=1

Fi · δri = 0. (3.1)
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A constraint is a physical barrier to free motion, for example, a wall, a string con-
necting two bodies, or a magnetic field. Equation3.1 applies to static systems, or
quasi-static systems where inertia effects can be ignored. The dynamic version of
the principle of virtual work, known as d’Alembert’s principle, is developed in the
next section. These principles form the basis for the variational principles that follow.

Our formulation is for a system of N particles moving in three dimensions. The
results are applicable for discrete as well as continuous systems. Virtual displace-
ments are defined in each of the three dimensions for each particle,

δxi , δyi , δzi ,

where 1 ≤ i ≤ N . Virtual displacements may be interpreted as possible alternate
configurations of the system of particles. These alternate configurations must be
consistent with the system constraints. We consider the system at its initial configu-
ration and at its alternate configuration due to the virtual displacement. Time is not a
variable here since we are only examining the system in two possible configurations.
Time will be soon considered with d’Alembert’s principle.

Consider the initial configuration of the N masses along with the constraints on
them via a constraint equation,

g(x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN , t) = c, (3.2)

and the alternate configuration resulting from a virtual displacement,

g(x1 + δx1, y1 + δy1, z1 + δz1, . . . , zN + δzN , t) = c, (3.3)

where parameter t is included to demonstrate that it is not varied. The system con-
straints are within the constant c.

A goal is to examine in detail the rules that govern the variations in Eq.3.3. When
completed, we will be able to relate the virtual work done by forces undergoing a
virtual displacement. This is interpreted as a statement of static equilibrium.

Proceed by expanding Eq.3.3 about the unvaried path via a Taylor series repre-
sentation. Only first-order terms are retained,

g(x1, y1, z1, . . . , xN , yN , zN , t) +
N∑

i=1

(
∂g

∂xi
δxi + ∂g

∂yi
δyi + ∂g

∂zi
δzi

)
= c. (3.4)

We know fromEq.3.2 that g() = c, and upon substitution, Eq. 3.4 yields the relations
that must be satisfied so that the virtual displacements are compatible with system
constraints,

N∑
i=1

(
∂g

∂xi
δxi + ∂g

∂yi
δyi + ∂g

∂zi
δzi

)
= 0. (3.5)
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Each of the N masses can move in three possible coordinate directions. Therefore,
in general, Eq. 3.5 relates 3N unknowns, but with one equation. Since one variable
may be written in terms of the remainder, there are 3N − 1 variables.

Next, assume that the N particles are subject to resultant force Fi = Fi + fi ,
where Fi is an applied force, and fi is a constraint force. For the system to be in static
equilibrium, every particle is at rest, and Fi = 0 in any possible configuration. For
the virtual displacement configuration, static equilibrium requires that

Fi · δri = 0,

or
Fi · (δxi · i + δyi · j + δzi · k) = 0,

where i, j, and k are the unit vectors in three-dimensional space.
Given virtual displacements, one can proceed to define virtual work as the product

of a force and its corresponding virtual displacement. For the system in equilibrium,
the virtual work for the entire system vanishes according to the relation

δW =
N∑

i=1

Fi · δri = 0

=
N∑

i=1

Fi · δri +
N∑

i=1

fi · δri = 0.

Before proceeding, consider the types of constraints to which a structure may be
exposed. Likely examples include physical boundaries, in which case the boundary
force is perpendicular to the motion of the body and there is no work performed.
It is possible that contact friction will do work in resisting a motion. Dissipative
forces such as friction will be introduced later in this chapter when dynamic motion
is added. Therefore,

∑N
i=1 fi · δri = 0. The remaining equation is given the name

principle of virtual work for a static system,

δW =
N∑

i=1

Fi · δri = 0,

where Fi represents the external forces on the system.
For the special but useful case of a conservative system,

δW =
N∑

i=1

Fi · δri

= −δV
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= −
N∑

i=1

(
∂V

∂xi
δxi + ∂V

∂yi
δyi + ∂V

∂zi
δzi

)

= 0,

where V is the potential energy of the system. Since the variations are independent
and arbitrary, the coefficients of the variations must equal zero,

Fxi = ∂V

∂xi
= 0

Fyi = ∂V

∂yi
= 0

Fzi = ∂V

∂zi
= 0.

These three equations can be used to define the static equilibrium configuration for
the system.Weproceed nextwith d’Alembert’s principle, which extends the principle
of virtual work to time-dependent problems.

3.2.3 D’Alembert’s Principle

D’Alembert extended the applicability of the principle of virtual work to dynamic
problems. Newton’s law of motion can be rewritten as d’Alembert’s principle in the
following form for N particles:

Fi + fi − mi r̈i = 0, i = 1, 2, . . . , N . (3.6)

The term−mi r̈i is considered an inertia force. Each force in Eq.3.6may be a constant
or a function of time. The virtual work performed by the i th particle is

(Fi + fi − mi r̈i ) · δri = 0,

where the virtual displacements δri are compatible with the constraints. Assuming
virtual work due to constraint forces equals zero, the virtual work for the system is

N∑
i=1

(Fi − mi r̈i ) · δri = 0, (3.7)

where this is called the generalized principle of d’Alembert. (Fi − mi r̈i ) is sometimes
called the effective force. d’Alembert’s principle will be used in the next section to
derive Lagrange’s equation.
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The importance of d’Alembert’s principle lies in the fact that it is more than a reformulation
of Newton’s equation. It is the expression of a principle. We know that the vanishing of a
force in Newtonian mechanics means equilibrium. Hence, [Eq. 3.6] says that the addition of
the force of inertia to the other forces produces equilibrium. But this means that if we have
any criterion for the equilibrium of a mechanical system, we can immediately extend that
criterion to a system which is in motion. All we have to do is add the new “force of inertia”
to the previous forces. By this device dynamics is reduced to statics. [1, p. 89].

The linking of Newton’s second law of motion with the principle of virtual work
clarifies that the principle is equally applicable to masses at rest and to masses
in motion. The virtual displacement involves a possible but purely mathematical
experiment that can be applied at any specific time. At that instant, the actual motion
of the body does not enter into account and the dynamic problem is reduced to a
static one.

3.3 Lagrange’s Equation

Lagrange’s equation is an energy-based expression that provides a general formula-
tion for the equations of motion of a dynamical system. The behavior of the system
may be linear or nonlinear, and the advantage of the method becomes evident for
multi-degree-of-freedom systems. In addition, this approach is based on the energies
of the system, the kinetic, potential, and strain energies. Therefore, it is not necessary
to invoke the vectorial approach in applying Lagrange’s equation as one must with
Newton’s second law of motion.

The equations derived below are written in terms of the generalized coordinates
qk . The physical coordinates, ri , of an n degree-of-freedom system for N particles
can be related to the generalized coordinates by an appropriate set of equations,

ri = ri (q1, q2, . . . , qn), i = 1, 2, . . . , N . (3.8)

The purpose of these transformations from physical coordinates, which are vectorial,
to generalized coordinates, which are not, is to recast the vectorial d’Alembert’s
principle into the scalar Lagrange’s equation.

In the following derivations, d’Alembert’s generalized principle is expanded and
rewritten in terms of potential and kinetic energies, all functions of the generalized
coordinates. First, derive the relations between physical and generalized coordinates.

The total derivative of Eq.3.8 is

ṙi = ∂ri

∂q1

dq1

dt
+ ∂ri

∂q2

dq2

dt
+ · · · + ∂ri

∂qn

dqn

dt

= ∂ri

∂q1
q̇1 + ∂ri

∂q2
q̇2 + · · · + ∂ri

∂qn
q̇n
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=
n∑

k=1

∂ri

∂qk
q̇k, i = 1, 2, . . . , N .

Then differentiate these equations with respect to q̇k ,

∂ ṙi

∂q̇k
= ∂ri

∂qk
, i = 1, 2, . . . , N , k = 1, 2, . . . , n.

Since variations δri follow the same rules as differentials dri , the variations of ri

and ṙi are

δri = ∂ri

∂q1
δq1 + ∂ri

∂q2
δq2 + · · · + ∂ri

∂qn
δqn

=
n∑

k=1

∂ri

∂qk
δqk, i = 1, 2, . . . , N

δṙi = ∂ri

∂q1
δq̇1 + ∂ri

∂q2
δq̇2 + · · · + ∂ri

∂qn
δq̇n

=
n∑

k=1

∂ri

∂qk
δq̇k, i = 1, 2, . . . , N .

Now consider the second term of d’Alembert’s principle, Eq. 3.7, written in terms
of the generalized coordinates,

N∑
i=1

mi r̈i · δri =
N∑

i=1

(
mi r̈i ·

n∑
k=1

∂ri

∂qk
δqk

)

=
n∑

k=1

(
N∑

i=1

mi r̈i · ∂ri

∂qk

)
δqk . (3.9)

Examine Eq.3.9 more closely in order to recast it in an energy form. For a particular
term within the interior sum, we can perform the following algebra:

mi r̈i · ∂ri

∂qk
= d

dt

(
mi ṙi · ∂ri

∂qk

)
− mi ṙi · d

dt

(
∂ri

∂qk

)

= d

dt

(
mi ṙi · ∂ri

∂qk

)
− mi ṙi · ∂ ṙi

∂qk

=
[

d

dt

(
∂

∂q̇k

)
− ∂

∂qk

] (
1

2
mi ṙi · ṙi

)
. (3.10)

Then Eq.3.9 becomes
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N∑
i=1

mi r̈i · δri =
n∑

k=1

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
δqk,

where the kinetic energy T is defined as

T = 1

2

N∑
i=1

mi ṙi · ṙi = T (q1, . . . , qn, q̇1, . . . , q̇n).

The other term in d’Alembert’s principle is the virtual work δW = ∑N
i=1 Fi · δri ,

and so d’Alembert’s equation can be written as

n∑
k=1

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

]
δqk = δW. (3.11)

To explicitly show the virtual work in terms of forces Fi , write them in terms of the
generalized coordinates. Consider the virtual work done by these forces,

δW =
N∑

i=1

Fi · δri

=
N∑

i=1

Fi ·
n∑

k=1

∂ri

∂qk
δqk

=
n∑

k=1

(
N∑

i=1

Fi · ∂ri

∂qk

)
δqk

=
n∑

k=1

Qk δqk, (3.12)

where Qk are called the generalized forces. The generalized force also may be a
torque, and will likely be a complicated expression. Before further specializing the
generalized force, look at an example that shows how the generalized force can be
identified.

D’Alembert’s equation can be further specialized on the way to Lagrange’s equa-
tion by separately considering the conservative (derivable from potential energy V )
and nonconservative forces acting on the system. From Eq.3.12,

N∑
i=1

Fi · δri = δW = δWc + δWnc.

Work in a conservative vector field equals the negative of the change in potential,
−δV . The virtualwork of nonconservative generalized forces Qknc undergoing virtual
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displacements δqk is given by
∑n

k=1 Qknc δqk . Therefore,

δW = −
(

∂V

∂q1
δq1 + . . . + ∂V

∂qn
δqn

)
+

n∑
k=1

Qknc δqk

= −
n∑

k=1

(
∂V

∂qk
− Qknc

)
δqk .

D’Alembert’s generalized principle, Eq. 3.11, becomes

n∑
k=1

[
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
+ ∂V

∂qk
− Qknc

]
δqk = 0.

Since the virtual displacements δqk are arbitrary, the expression in the square brackets
must equal zero for each k. Therefore,

d

dt

(
∂T

∂ q̇k

)
− ∂T

∂qk
+ ∂V

∂qk
= Qk, k = 1, 2, . . . , n, (3.13)

where Qk ≡ Qknc includes dissipative forces such as damping and nonconservative
external forces. These are Lagrange’s equations of motion, one equation for each of
the n degrees of freedom. It is customary to define the Lagrangian function as

L = T − V .

Since potential energy V is a function of position only, it cannot vary with velocity,
and therefore,

∂T

∂q̇k
= ∂(T − V )

∂q̇k
= ∂L

∂ q̇k
,

and Eq.3.13 becomes

d

dt

(
∂L

∂ q̇k

)
− ∂L

∂qk
= Qk, k = 1, 2, . . . , n. (3.14)

There are several key advantages to Lagrange’s equation:

• Lagrange’s equation contains only scalar quantities, eliminating the force and
acceleration vectors inherent in Newton’s second law of motion.

• There is one Lagrange equation for each degree-of-freedom, whereas the use of
free body diagrams in Newton’s formulation leads to extraneous equations result-
ing from the internal forces between bodies that are attached to each other. Via
Newton’s approach, such internal forces have to be eliminated after the equations
of motion are derived. Of course, in some applications, these internal forces are
needed.
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• Lagrange’s equation is independent of the coordinate system since the energy
functions T and V are scalar.

3.3.1 Lagrange’s Equation for Small Oscillations

We have learned that Lagrange’s equation can be utilized to derive the fully nonlinear
equations of motion for a dynamic system. But in many applications, vibration is
essentially linear. Therefore, it is of interest to examine how Lagrange’s equation
simplifies for small amplitude oscillations about equilibrium.

Expand the expression for the potential energy V (q1, q2, . . . , qn) in an n-variable
Taylor series2 about an arbitrary equilibrium reference position V (0, 0, . . . , 0),

V (q1, q2, . . . , qn) = 1

2

(
∂2V

∂q2
1

q2
1 + ∂2V

∂q2
2

q2
2 + · · · + 2

∂2V

∂q1∂q2
q1q2 + · · ·

)
+ · · · .

Use ismade that V (0, 0, . . . , 0) = 0 and ∂V/∂qi = 0 in the equilibriumposition. For
small amplitudes, qi to powers two and higher can be ignored, leaving the approxi-
mation

V ≈ 1

2

n∑
i=1

n∑
j=1

∂2V

∂qi∂q j
qi q j = 1

2

n∑
i=1

n∑
j=1

ki j qi q j ,

where ki j are known as the stiffness coefficients. The kinetic energy is given by

T = 1

2

n∑
i=1

n∑
j=1

mi j q̇i q̇ j .

Substituting the above expressions into Lagrange’s equation leads to the following
n coupled equations of motion:

[m]{q̈} + [k]{q} = {0}. (3.15)

2

f (x, y, z) = f (0, 0, 0) + fx (0, 0, 0) · (x − x(0)) + fy(0, 0, 0) · (y − y(0))

+ fz(0, 0, 0) · (z − z(0)) + 1

2
( fxx (0, 0, 0) · (x − x(0))2 + · · ·

+2 fxy(0, 0, 0) · (x − x(0))(y − y(0)) + · · · ) + · · · .
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3.3.2 Lagrange’s Equation with Damping

Prior to this section, damping was not formally considered in the variational formu-
lation. Here, the inclusion of damping is examined. Rather than proceeding with a
full derivation, as we have for Lagrange’s equation and Hamilton’s principle, it is
preferable to state a final result, and refer the reader to an excellent reference, Wells
[2], that includes many examples.

There are many types of damping, and the particular application will deter-
mine which is most suitable. For example, when damping has been included, it
has been exclusively viscous damping, which is proportional to the first power of the
speed and opposite in direction to its motion. This form of damping is adequate if
the speed is “not too great.” At higher speed, the damping may be proportional to
the speed taken to a power greater than one.

For viscous damping, there is a special form for the generalized force,

Q D = −∂ R

∂q̇

for each generalized coordinate, where R is known as the Rayleigh dissipation func-
tion and is given by

R = 1

2

∑
k

∑
l

ckl q̇k q̇l ,

where the ckl are damping coefficients. For the kth generalized coordinate then,

Q Dk = − ∂ R

∂q̇k
= −

∑
l

ckl q̇l ,

with the resulting Lagrange’s equation,

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
+ ∂V

∂qk
+ ∂ R

∂q̇k
= Qk, k = 1, 2, . . . , n.

3.4 Hamilton’s Principle

We now offer an alternate approach to the derivation of Lagrange’s equation. Along
the way we derive Hamilton’s principle, a very powerful integral variational state-
ment. Begin with Eq.3.9, and continue along a new path by rewriting the left-hand
side of that equation as follows:

N∑
i=1

mi r̈i · δri =
N∑

i=1

mi
d

dt
(ṙi · δri ) − δ

N∑
i=1

1

2
mi (ṙi · ṙi )
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Fig. 3.3 A varied path
between two fixed endpoints

=
N∑

i=1

mi
d

dt
(ṙi · δri ) − δT . (3.16)

Use has been made of the relation

d

dt
(ṙi · δri ) = r̈i · δri + ṙi · δṙi = r̈i · δri + δ(

1

2
ṙi · ṙi ).

Substitute Eq.3.16, and
∑N

i=1 Fi · δri = δW into d’Alembert’s principle, and find

δT + δW =
N∑

i=1

mi
d

dt
(ṙi · δri ).

Consider a varied path, as shown in Fig. 3.3, where the paths coincide at the initial
and final times, and integrate between t1 and t2,

∫ t2

t1

(δT + δW )dt =
∫ t2

t1

N∑
i=1

mi
d

dt
(ṙi · δri )dt

=
N∑

i=1

∫ t2

t1

mi
d

dt
(ṙi · δri )dt

=
N∑

i=1

mi ṙi · δri

∣∣∣∣∣
t2

t1

= 0,
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where based on previous discussion, δri = 0 at t1 and t2. Therefore,

∫ t2

t1

(δT + δW )dt = 0. (3.17)

This is called the extended Hamilton’s principle. δW includes both conservative and
nonconservative work. If the forces are only conservative, then δW = −δV, and

δ

∫ t2

t1

(T − V )dt = 0,

where the Lagrangian L = T − V . This equation may be physically interpreted as
nature trying to equalize the kinetic and potential energies of a system, in absence
of dissipation.

Lagrange’s equation can be derived from Hamilton’s principle. To do this, in
Eq.3.17, vary T (qi , q̇i ) for each generalized coordinate,

δT =
N∑

i=1

∂T

∂qi
δqi +

N∑
i=1

∂T

∂q̇i
δq̇i . (3.18)

Let

δq̇i = d(δqi )

dt
,

and integrate by parts the i th component of the second term in Eq.3.18:

∫ t2

t1

∂T

∂q̇i

d(δqi )

dt
dt = ∂T

∂q̇i
δqi

∣∣∣∣
t2

t1

−
∫ t2

t1

δqi
d

dt

(
∂T

∂ q̇i

)
dt,

where
∂T

∂ q̇i
δqi

∣∣∣∣
t2

t1

= 0

at the end times. Equation3.17 then becomes

∫ t2

t1

N∑
i=1

[(
∂T

∂qi
− d

dt

(
∂T

∂q̇i

)
+ Qi

)
δqi

]
dt = 0, (3.19)

where δW = −∑
i (∂V/∂qi − Qinc)δqi ≡ ∑

i Qiδqi .
Since all δqi are arbitrary except at the end times, for each i in Eq.3.19, the

expression within the parentheses equals zero. This is again Lagrange’s equation,
one for each generalized coordinate, as in Eq.3.13.



3.5 Discussion 73

3.5 Discussion

Variational methods are powerful and beautiful formulations that relate system ener-
gies to their dynamical behavior. They are worthy of study and application to fields
across the spectrum of the physical and biological sciences.

In the following chapter, we examine the use of variational mechanics concepts
to fluid mechanics, along with an introduction to the work of McIver, as well as our
extension of his work.
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Chapter 4
Variational Models in Fluid Mechanics

Abstract This chapter introduces a novel approach to the use of variational
mechanics in the modeling of fluid mechanics. That is, Hamilton’s principle is used
in conjunction with Reynolds transport theorem by McIver in a control volume
framework for structures containing fluid. We continue by extending McIver’s ideas
to structures that are surrounded by an incompressible fluid. Simple problems are
given as example applications.

4.1 Introduction

One of the great challenges in engineering science also happens to be one of engi-
neering design. This is the modeling, analysis, and design of vibrating structures
driven by fluid motion. Our particular concern here is the vortex-induced oscilla-
tions of a bluff body. While the importance of the subject has long been known,
it is only during the past almost 50 years that there have been concerted efforts to
analytically model the general behavior of the coupling between vortex shedding and
structural vibration. One may view the efforts of Hartlen and Currie [1] as initiating
the flow-oscillator phase of modern research in this discipline.

In parallel, and over a longer period of time, experimentalists have been gathering
data of such interactions in order to help define the various regimes of behavior
as a function, for example, of flow velocity. There are numerous review papers
and journals devoted to this subject. The literature in fluid–structure interaction is
vast, and it can be said to comprise a large fraction of all papers published in the
mechanical sciences. The review of Chap.2 provides the reader with a critical sample
of the various studies.

Hamilton’s principle in analytical dynamics is certainly among the great intel-
lectual achievements since the work of Newton. This variational principle, while
developed as part of the evolution of our understanding of elastic body dynamics,
has been applied in many disciplines, including optics and quantum mechanics. In
Sect. 4.2, for completeness and to establish the notation used here, we will derive the
principle, and then in Sect. 4.3 show how it has been extended in the fundamental

© Springer Nature Switzerland AG 2020
S. Mottaghi et al., An Analytical Mechanics Framework for Flow-Oscillator Modeling
of Vortex-Induced Bluff-Body Oscillations, Solid Mechanics and Its Applications 260,
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work of McIver [2] for systems of changing mass. In particular, the development
by McIver was a successful attempt to model structures with internal moving fluid.
We will build on this idea to extend Hamilton’s principle for structures vibrating in
a fluid. Our purpose, in addition to being fascinated by the variational principles of
mechanics, is to use such an approach to semi-analytically model vortex-induced
vibration. The “semi” implies that part of the model may depend on experimental
data. As the resulting equations will show, there is no way that such a modeling effort
can be accomplished without a close linkage to data derived in physical experiments
and the input of the experimentalist. Experimental data not only helps us verify
the model predictions but also allows us to develop the most advantageous model
framework from the variational mechanics perspective, as we will begin to discuss
in Sect. 4.4.

The basic theory of Sect. 4.4 is applied to simple examples in Sect. 4.5. Section4.6
suggests an extension of the theory for more general formulations. These ideas are
extended in Chaps. 5–7.

4.2 Hamilton’s Principle

4.2.1 The Classical Theory

From d’Alembert’s principle for a system of n particles,

n∑

i=1

(
mi

d2ri
dt2

+ ∂�

∂ri
− Fi

)
· δri = 0, (4.1)

where� = �(r1, r2, ..., rn) is the potential energy of the particles,Fi denotes forces
without potentials acting on the i th particle, ri is the position vector of the particle
of mass mi , and δri is a virtual displacement. The notation δ implies a variation
of a function. It is a possible alternate configuration that complies with the system
constraints. The variation equals zero where the system is prescribed. For example,
at a fixed boundary or support, the variation is zero since there are no alternative
possible configurations and there cannot be any work done in this case. Considering
each term in Eq.4.1, we note that

δ� =
n∑

i=1

(
∂�

∂ri

)
· δri (4.2)

δW =
n∑

i=1

(Fi ) · δri (4.3)
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and (by the product rule of differentiation)

n∑

i=1

(
mi

d2ri
dt2

)
· δri = d

dt

[
n∑

i=1

(
mi

dri
dt

)
· δri

]

−
n∑

i=1

(
mi

dri
dt

)
· δ

dri
dt

(4.4)

= d

dt

[
n∑

i=1

(
mi

dri
dt

)
· δri

]
− δT, (4.5)

where T is called the kinetic energy of the particles. Substitute Eqs. 4.2, 4.3 and 4.5
into Eq.4.1, and d’Alembert’s principle becomes

δL + δW − d

dt

[
n∑

i=1

(
mi

dri
dt

)
· δri

]
= 0, (4.6)

where L = T − � is known as the Lagrangian of the system. Equation4.6 for a
discrete system may be written for a continuous system as

δL + δW − d

dt

[∫

v
(ρU) · δr dv

]
= 0, (4.7)

where ρ denotes the density, U = dr/dt, the velocity field of the system at time t , L
is the Lagrangian of the continuous system, and δW is the virtual work performed
on the system by the generalized (nonconservative) forces undergoing virtual dis-
placements. v denotes a fixed material system enclosed in a volume, over which the
integration is performed.

Hamilton’s principle is obtained by integrating Eq.4.7 (or Eq.4.6) with respect
to time over an interval t1 to t2, yielding

δ

∫ t2

t1

Ldt +
∫ t2

t1

δWdt −
[∫

v
(ρU) · δr dv

]t2

t1

= 0. (4.8)

If one imposes the requirement that at times t1 and t2 the configuration be prescribed,
then it must be that δr =0, and then the last term in the above equation drops out,
leaving only

δ

∫ t2

t1

Ldt +
∫ t2

t1

δWdt = 0. (4.9)

The equations of motion and their respective boundary conditions are a result of
performing the stated variations.

In this case, where the configuration is prescribed at the end times, Hamilton’s
principle states that there is an optimal (minimum) path in time for the configuration
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of the system. This is not generally the case where the end times are not prescribed,
as we will examine in our subsequent discussion. It is important to emphasize the
physical meaning of prescribing the configuration and how this leads to a variational
principle to which there is an optimal configuration in dynamic space. Prescribing
the variation δr at the end times implies that the system configuration is known at
those times, thus leading to δr = 0, and then it is therefore possible to meaningfully
speak of an optimal path between the end times.

4.2.2 A Generalization

If we cannot state that the variation is between definite limits t1 and t2, then there
may be a variation as well at the ends of the time interval. The implication is that the
system is not prescribed at these end times. Equation4.9 was obtained assuming no
such variation. Begin with Eq.4.6 and integrate between t1 and t2. Then,

δ

∫ t2

t1

L dt +
∫ t2

t1

δW dt −
∫ t2

t1

d

dt

[
n∑

i=1

(
mi

dri
dt

)
· δri

]
dt = 0

δ

∫ t2

t1

L dt +
∫ t2

t1

δW dt =
[

n∑

i=1

(
mi

dri
dt

)
· δri

]t2

t1

. (4.10)

Following Lanczos,1 let the virtual displacement δri at each instant of time coin-
cide with the actual displacement dri which takes place during an infinitesimal time
dt ≡ ε. Then δri = dri = εri and

[
n∑

i=1

(
mi

dri
dt

)
· δri

]t2

t1

=
[

n∑

i=1

(miri ) · εri

]t2

t1

=
[

n∑

i=1

εmiṙ
2
i

]t2

t1

,

where, as an aside, it is noted that miṙ2i ≡ pi ṙi and pi is the momentum of particle
i. Furthermore,

δ

∫ t2

t1

L dt =
∫ t2

t1

dL dt =
∫ t2

t1

εL̇ dt = [εL]t2t1
∫ t2

t1

δW dt =
∫ t2

t1

dW dt =
∫ t2

t1

ε Ẇdt = [εW ]t2t1 .

1See: The Variational Principles of Mechanics by C. Lanczos, Dover, Fourth Edition, 1970,
pp. 119–124.
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Eq.4.10 can now be written as

[εL]t2t1 + [εW ]t2t1 =
[

n∑

i=1

εmiṙ
2
i

]t2

t1

,

or, substituting the expression for pi and eliminating ε,

[
n∑

i=1

pi ṙi − L

]t2

t1

= [W ]t2t1 . (4.11)

In Eq.4.11, the right-hand side represents the nonconservative work done on the
system and the left-hand side represents the total energy in the system.We know that
L = T − �, where T is a quadratic in the velocities ṙi ,

T = 1

2

n∑

i,k=1

aikṙi ṙk,

where aik are not functions of ṙi , and � is ordinarily independent of velocity. There-
fore,

pi = ∂T

∂ ṙi
=

n∑

k=1

aikṙk,

and
n∑

i=1

pi ṙi =
n∑

i,k=1

aikṙi ṙk = 2T .

Therefore, Eq. 4.11 can be written as

[2T − (T − �)]t2t1 = [W ]t2t1 .

If there is no nonconservative work done on the system, then [W ]t2t1 = 0, and we
have T + � = constant, which is a statement of the principle of conservation of
energy. In general, however, �(T + �) = �W. Divide both sides by �t and take
the limit as �t → 0, then over the time span t1 to t2,

d (T + �)

dt
= Ẇ ; (4.12)

that is, the total change in systemenergy is equal to the rate atwhich (nonconservative)
work is done on the system. These developments can be extended to an open system,
as shown in the following section, where we summarize some of the key results due
to McIver.



80 4 Variational Models in Fluid Mechanics

4.3 McIver’s Extension of Hamilton’s Principle

In 1973, McIver published a work with broad implications for modeling complex
fluid–structure interactions. The central feature of his work was the broadening of
Hamilton’s principle to include integral control volume concepts from fluid mechan-
ics. In this section, we summarize the key developments by McIver, however, adopt-
ing a notation that is consistent with our own developments that begin in Sect. 4.4.

4.3.1 A Brief Review of Reynolds Transport Theorem

Before proceeding with a discussion of McIver’s extension, it would perhaps be
instructive to briefly review Reynolds transport theorem. We first define a system as
a collection of fluid particles comprising part of a flow of interest. The system bound-
aries are such that the same fluid elements are always contained therein. Necessarily,
the mass of a system is constant, and it is in principle possible to write equations
of motion for the system. For many flows, however, such a formulation would be
intractable or inconvenient at best. For this reason, we define a control volume as a
clearly defined, albeit imaginary, space through which fluid may pass. The external
boundary of the control volume is referred to as the control surface. The advantage
of this approach is that the boundaries of the control volume are prescribed at all
times. Typically, one dictates that the control volume coincides with some physi-
cally meaningful boundary in the flow, e.g., the internal passageways of a jet aircraft
engine. In this context, it may be expedient to allow the control volume to move or
change shape depending on the flow of interest.

Now suppose that at some time, t0, a collection of fluid particles comprising a
system occupies the same space as a control volume. It is possible to write the rate of
change of any property of that system in terms of control volume parameters. This
is the classic Reynolds transport theorem which may be written as

d

dt

∫

system
(Aρ) dv =

∫

control
vol

∂

∂t
(Aρ) dv −

∫

control
sur f ace

(Aρ) U · n ds. (4.13)

In this form,A represents the property of interest per unit mass (intensive property),
ρ is the fluid density, dv and ds are differential volumes and control surface area
elements, respectively, andU = U(x, t) is the fluid velocity at any point on the control
surface.Observing thatρ (U · n) is themass flow rate of fluid across a differential area
element of the control surface, Eq. 4.13 may therefore be physically interpreted as a
balance equation for the propertyA. Specifically, the rate of change ofA contained
within the system (i.e., the left-hand side of Eq.4.13) is equal to the rate of change
of A within the control volume plus the net flux of A across the boundaries of the
control volume. The unit normal n is defined as positive when pointing outward
from a control surface. Therefore, for a flow into the control volume the sign of U · n
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is negative and for a flow out of the control volume the sign of U · n is positive.
The control surface integral above is given a negative sign so that an increase in the
system property Aρ with time occurs with a flow into the control volume.

Finally, it is important to note that U represents the fluid velocity relative to an
inertial reference frame. Thus, if any part of the control surface is moving relative
to that inertial frame, it becomes necessary to subtract the control surface velocity
from the fluid velocity,U − Vcontrol , to obtain the flow rate across the control volume
boundaries. All quantities are defined or measured with respect to an observer at a
fixed, or inertial control volume.

4.3.2 McIver’s Extension

The strength ofMcIver’s work was in identifying an approach for analyzing complex
interactions where the system boundaries are not necessarily well defined or where
the system configuration at two distinct times may not be readily prescribed. In the
classicalHamilton’s principle approach, the systemcontains oneormore solid objects
whose positions may be prescribed at specific times. That is, the system is of fixed
mass containing the same material elements at all times. By introducing Reynolds
transport theorem,McIver generalized the analysis to include control volumes where
the material is permitted to cross the boundaries. Specifically, by applying Reynolds
transport theorem, Eq.4.13, to the last term in Eq.4.7, we obtain

δLsystem + δW −
∫

control
vol

∂

∂t
(ρU) · δr dv +

∫

control
sur f ace

(ρU) · δr (U − Vcontrol ) · n ds = 0,

(4.14)
where, in the Lagrangian of the open control volume, Lsystem, the mass is not fixed.
We have retained the possibility of a moving control surface by including Vcontrol ,

which may have a different value in different regions of the control surface. The
control surface here implies an open region since at closed portions flow velocity
U = Vstructure. Equation4.14 is a statement of the principle of virtual work.

Now integratewith respect to timeover the interval t1 to t2, and,again requiring the
system configurations at t1 and t2 to be prescribed, the extended form of Hamilton’s
principle for a system of changing mass can be expressed as

δ

∫ t2

t1

Lsystemdt +
∫ t2

t1

δW dt +
∫ t2

t1

dt
∫

control
sur f ace

(ρU) · δr (U − Vcontrol) · n ds = 0,

(4.15)
where δW is the virtual work performed by the non-potential forces acting on the
same system. If the control surface (CS) does not move, then Vcontrol = 0. If only
a portion of the control surface moves then the integral will be split into parts that
follow the moving control surface and parts that are static. For the case where the
virtual work arises from the surface tractions over the closed and open boundaries
of the system, we have
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δW = δWclosed CS + δWopen CS

=
∫

closed CS
(σ · n) · δr ds +

∫

open CS
(σ · n) · δr ds, (4.16)

where σ is the general stress tensor. Equation4.15 then becomes

δ

∫ t2

t1

Lsystemdt +
∫ t2

t1

dt
∫

open CS
[(σ · n) · δr + ρU · δr (U − Vcontrol) · n ] ds

+
∫ t2

t1

dt
∫

closed CS
(σ · n) · δr ds = 0. (4.17)

For a system that is comprised of a structure and a fluid, the above terms must
account for both. Term Lsystem includes both structure and fluid, δWopen CS repre-
sents open portions of the control surface through which fluid flows, and δWclosed CS

represents boundaries through which there is no flow, such as a solid boundary or a
streamline.

McIver’s system is composed of one control volume, of which part is open and
the rest is closed. Therefore, both are treated simultaneously, as shown in the two
examples developed in his paper. The first is the derivation of the equation of motion
of a rocket where the open part of the control surface coincides with the exhaust for
combusted fuel. The second example discusses an early controversy regarding the
modeling of the dynamics of a moving beam.

4.3.3 System Configuration Not Prescribed at t1 and t2

If the system configuration is not prescribed at the end times, we must proceed
differently after Eq.4.14. If the system is not prescribed at t1 and t2, the variation
of the displacement δr �=0, rather, we have the following2 relation δr = Udt . From
this, we can see that the variational operator is related to the time differential operator
by δ(·) = dt d(·)/dt. Begin with Eq.4.14, repeated here,

δLsystem + δW −
∫

control
vol

∂

∂t
(ρU) · δr dv +

∫

control
sur f ace

(ρU) · δr (U − Vcontrol ) · n ds = 0,

interchange the partial derivative with the integration over the control volume, and
replace the variation as noted above,

dt
dLsystem

dt
+ dt

dW

dt
−

∫

control
vol

∂

∂t
(ρU) · Udt dv

+
∫

control
sur f ace

(ρU) · Udt (U − Vcontrol) · n ds = 0.

2As before, we replace the arbitrary variation δr by the actual dr = rdt.
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Eliminate the common dt factor to find

dLsystem

dt
+ dW

dt
−

∫

control
vol

∂

∂t
ρU 2dv +

∫

control
sur f ace

ρU 2 (U − Vcontrol) · n ds = 0.

(4.18)
For this system, we have

Lsystem =
∫

system

(
1

2
ρU 2

)
dv −

∫

system
(ρe) dv

=
∫

system

(
1

2
ρU 2 − ρe

)
dv,

where e is the potential energy per unit mass. Now apply Reynolds transport theorem,
Eq.4.13, to Lsystem,

d

dt
Lsystem = d

dt

∫

system

(
1

2
ρU 2 − ρe

)
dv

=
∫

control
vol

∂

∂t

(
1

2
ρU 2 − ρe

)
dv

−
∫

control
sur f ace

(
1

2
ρU 2 − ρe

)
(U − Vcontrol) · n ds.

Substitute this expression into Eq.4.18 to find

∫

control
vol

∂

∂t

(
1

2
ρU 2 − ρe

)
dv + Ẇ − d

dt
(2T )

+
∫

control
sur f ace

ρ

[
U 2 − 1

2
U 2 + e

]
(U − Vcontrol) · n ds = 0,

where ∫

control
vol

ρU 2dv = 2T,

and T represents the kinetic energy of all the fluid within the control volume. Then,

d (−T − �)

dt
+ Ẇ +

∫

control
sur f ace

[
1

2
ρU 2 + ρe

]
(U − Vcontrol) · n ds = 0.

Finally,

d (T + �)control
vol

dt
= Ẇ +

∫

control
sur f ace

ρ

[
1

2
U 2 + e

]
(U − Vcontrol) · n ds. (4.19)



84 4 Variational Models in Fluid Mechanics

This equation states that the change in energy of a system equals the rate at which
nonconservative work is done on the system plus the rate of gain of energy by virtue
of the fluid flowing through the control surface and the advancing control surface
engulfing particles. With the exception of the integral on the right-hand side, this
equation is identical to Eq.4.12.

4.4 The Extension for External Viscous Flows

McIver derived his extension for applications where the fluid is encased in the struc-
ture. The equations derived above assume a steady frictionless flow. Examples he
studied include the rocket, and flow in a pipe. The application of interest here has the
structure within the fluid. In particular, we are interested in generalizing the McIver
extension of Hamilton’s principle so that we can model the vortex-induced oscilla-
tions of a structure. This is a viscous external fluid–structure interaction. McIver’s
extension utilizes the control volume concept to account for fluid mass that enters
and leaves the structure. This same idea can be applied to a control volume around
a fluid that has a structure internally.

Modeling of the internal flow problem has the advantage that, assuming no cavi-
tation, the fluid is bound by the structure. With external flows, the fluid is unbounded
and themodeling becomesmore challenging, requiring additional physical andmath-
ematical considerations.

In this development, it is useful to think of the system, comprising a structure
surrounded by a moving fluid, as one that is defined using two control surfaces. The
first control surface is at the structure surface. It is a closed control volume. The
second control surface is at some distance from the structure. This control surface
may be partially closed and partially open, or all open, depending on the application.
It is important to keep track of the various portions of the control surface so that the
parameters are appropriately prescribed.

For such a control volume,

• there is a time rate change of momentum within the control volume due to the
unsteady character of the flow,

• there is a net momentum flux across the boundaries of the control surface,
• there is an instantaneous pressure p acting on the control surface,
• there is an instantaneous shear stress τ acting on the control surface.

Begin with Eq.4.14, repeated here,

δLsystem + δW −
∫

control
vol

∂

∂t
(ρU) · δr dv +

∫

control
sur f ace

(ρU) · δr (U − Vcontrol ) · n ds = 0.

The integral over the control volume needs to be interpreted to include the inner
(structural) as well as outer (fluid) control volumes.



4.4 The Extension for External Viscous Flows 85

Replace δW as follows:

δW =
∫

closed
CS

(σ · n) · δr ds +
∫

open
CS

(σ · n) · δr ds, (4.20)

where n is an outward normal in the positive sense.
The integral over the closed surface represents the virtual work done by shear

forces at the boundaries of the control volumewhere there is noflowacross the control
surface, for example, at the structural boundary, possibly other solid boundaries, or
at streamlines. The integral over the open surface represents the virtual work done by
normal and shear forces at the boundaries of the control volume where there is a flow
across the control surface, for example, at the upstream and downstream surfaces,
which may be perpendicular to the flow direction. The integrals above can be written
more specifically as

∫

closed
CS

(σ · n) · δr ds =
∫

closed
CS

(−pn + τc) · δr ds (4.21)

∫

open
CS

(σ · n) · δr ds =
∫

open
CS

(−pn + τo) · δr ds, (4.22)

where −pn is the normal pressure (inward) and τc and τo are the shear forces on the
closed (structural) and open (fluid) surfaces of the control volume.

There are two ways to proceed. One can prescribe the configuration, or not pre-
scribe the configuration, at the end times. We begin by not prescribing the configu-
ration at the end times.

4.4.1 Configuration Not Prescribed at t1 and t2

We now follow the procedure of Sect. 4.3 where the configuration is not prescribed
at t1 or t2. We define δr as before, with the variational operator related to the time
differential operator by δ(·) = dt d(·)/ dt. Then,

δW =
∫

closed
CS

(−pn + τc) · δr ds +
∫

open
CS

(−pn + τo) · δr ds

dt
dW

dt
= dt

∫

closed
CS

(−pn + τc) · U ds + dt
∫

open
CS

(−pn + τo) · U ds,

where it is noted that the work done at the structural surface is independent of the
control surface.

The integral over the control volumemust be considered in the following way. For
the inner control volume δr = Ustructuredt and for the outer control volume (annulus)
δr = Udt, where U f luid ≡ U. Therefore,
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∂

∂t

∫

control
vol

(ρU) · δr dv = ∂

∂t

∫

control
vol

[
ρU 2 + ρstructureU

2
structure

]
dv dt.

Then, beginning with Eq.4.18, repeated here, with ρ ≡ ρ f luid ,

dLsystem

dt
+ dW

dt
− ∂

∂t

∫

control
vol

[
ρU 2 + ρstructureU

2
structure

]
dv

+
∫

control
sur f ace

ρU 2 (U − Vcontrol) · n ds = 0,

we find

d

dt
Lsystem +

[∫

closed
CS

(−pn + τc) · U ds +
∫

open
CS

(−pn + τo) · U ds

]

− ∂

∂t

∫

control
vol

[
ρU 2 + ρstructureU

2
structure

]
dv

+
∫

open
CS

ρU 2 (U − Vcontrol) · n ds = 0. (4.23)

We know that the integral over the control volume equals twice the total kinetic
energies of the fluid and the structure 2T , where T = T f luid + Tstructure. Now apply
the control volume Eq.4.13 to the quantity Lsystem ,

Lsystem =
∫

system

(
T̂structure + T̂ f luid − �̂structure − �̂ f luid

)
dv, (4.24)

where the terms under the integral are intensive properties and have units of energy
per unit volume, that is,

∫

system
T̂i dv = Ti

∫

system
�̂i dv = �i .

Then,

d

dt
Lsystem = d

dt

∫

system

(
T̂structure + T̂ f luid − �̂structure − �̂ f luid

)
dv, (4.25)
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where

d

dt

∫

system

(
T̂structure + T̂ f luid − �̂structure − �̂ f luid

)
dv

= ∂

∂t

∫

control
vol

(
T̂structure + T̂ f luid − �̂structure − �̂ f luid

)
dv

−
∫

open
CS

1

2
ρU 2 (U − Vcontrol) · n ds. (4.26)

The integral over the open control surface accounts for the fluid entering the control
volume (no incoming structure), and therefore the term 1

2ρU
2 represents the fluid

kinetic energy flux across the control surface. There is also a possible change in
potential energy of the fluid per unit mass e. If there is no cavitation, an approxi-
mation can be made that, on average, for every part of the fluid crossing the control
surface with an increase in potential, there is an equivalent loss in potential in another
region of the surface. Of course, if the flow as a whole gains or loses potential, this
assumption is invalid. Thus, e is not included if the average flow is perpendicular to
the gravitational vector.

Substitute this expression into Eq.4.23 to find,

d

dt

∫

control
vol

(
T̂structure + T̂ f luid − �̂structure − �̂ f luid

)
dv − 2

d

dt

(
T f luid + Tstructure

)

+
∫

open
CS

[
ρU 2 − 1

2
ρU 2

]
(U − Vcontrol) · n ds

+
∫

closed
CS

(−pn + τc) · Uds +
∫

open
CS

(−pn + τo) · Uds = 0,

and noting that d� f luid/dt = 0, and simplifying,

d
(−Tstructure − T f luid − �structure

)

dt
+

∫

open
CS

1

2
ρU 2 (U − Vcontrol) · n ds

+
∫

closed
CS

(−pn + τc) · U ds +
∫

open
CS

(−pn + τo) · Uds = 0. (4.27)

Note that the factor dt in all terms have been eliminated. Also, each term in the
equation represents a time rate of change of awork term.That is, Ẇ or Ṫ ,meaning that
these are expressions for power. Equation4.27 can be put into the form of Eq.4.19
as follows:
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d
(
Tstructure + T f luid + �structure

)
control
vol

dt
=

∫

open
CS

ρ

2
U 2 (U − Vcontrol) · n ds

+
∫

closed
CS

(−pn + τc) · Uds +
∫

open
CS

(−pn + τo) · U ds. (4.28)

The questions we address later are (i) the possible and optimal control volume
configurations that are suitable for the problems at hand and (ii) whether we can
select a control volume such that the open surfaces are prescribed, thus leading to a
variational principle, rather than Eq.4.28. First, however, we would explore Eq.4.28
in more detail.

Equation4.28 is a scalar equation, and therefore its evaluation and simplification
will result in a single equation of motion for the oscillating structure where all
the fluid energy results in a forcing function on the structure. Such an equation
of motion is in the single degree-of-freedom class of models for vortex-induced
structural oscillations.

The structural terms on the left-hand side of Eq. 4.28,

d (Tstructure + �structure)control
vol

dt
,

are found by expressing Tstructure + �structure in terms of structural displacements
and velocities and then differentiating with respect to time. The remaining fluid term
is related as follows:

d
(
T f luid

)
control
vol

dt
= d

dt

(
1

2
m f luidU

2

)

control
vol

= (
m f luidUU̇

)
control
vol

, (4.29)

wherem f luid within the (open) control volume is constant. In the above, control vol
respectively refers to either the closed one that hugs the structure, or the open one
that is concentric with the closed one. Because of the matched boundary conditions
at the interface, that is, fluid velocity equals structural velocity, the existence of this
term includes the added mass effect that is included when a structure oscillates in
a relatively dense medium. Since this term is evaluated experimentally and fed into
the governing equation, any fluid dynamics that is a result of structural oscillation is
implicitly included.

The terms on the right-hand side of Eq.4.28 are the various components of the
kinetic energy flux across the control surface. Equation4.28 is, furthermore, a state-
ment of the first law of thermodynamics where heat transfer and dissipation has been
omitted.

In summary, the linking of Hamilton’s principle for an unprescribed system with
Reynolds transport theorem results in the first law of thermodynamics. A check of the
dimensions of all expressions, including the rectilinear acceleration, shows that all
the units are rate of work, or power, that is, for example, ft-lb/sec orwatts, depending
on the chosen system of units.
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Equation4.28 can be written as

d (Tstructure + �structure)control
vol

dt
+ (

m f luidUU̇
)
control
vol

=
∫

open
CS

ρ

2
U 2 (U − Vcontrol) · n ds

+
∫

closed
CS

(−pn + τc) · Uds +
∫

open
CS

(−pn + τo) · U ds. (4.30)

We envision the following procedure for workingwith Eq.4.30.Wewill substitute
expressions for the kinetic energies on the left-hand side. On the right-hand side,
we will have experimentally based analytical expressions for the flow velocities,
pressures and stresses. This relation will allow the derivation of an expression for
the acceleration of the structure. This will be integrated twice to find the expression
for the structural displacement as a function of time and the system parameters. This
result will then be compared to the experimentally derived structural displacement
as a function of time. The two functions will be compared, permitting an evaluation
of the analytical framework and its components.

4.4.1.1 Control Volume Definition

Wefirst describe the control volume of interest here. Consider a top view of a circular
cylinder with two control surfaces, one at the surface of the cylinder and the other
some concentric distance out in the surrounding water. One question that arises when
considering various possible control volumes arewhether a particular control volume
has significant advantages either for the analytical formulation or for the experimental
procedures, the results of which are required as input to the analytical model. This
will have to be considered as part of an examination of the proposed methodology.

4.4.2 Coupled Experiments

For the modeling effort in this chapter, there is no possibility of analytically arriving
at expressions for each term and each function in Eq.4.30. Therefore, it is necessary
that an experimental program is run in parallel for particular applications. The power
of this energy-based approach is twofold. The first is that an analytical framework
is created to organize our understanding of a complex nonlinear and interactive
phenomenon. But second and equally important is that the experimental program
provides us with invaluable information about some of the components of these
equations, and this permits us to utilize the variational tools in the derivation of the
equations of motion.
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We expand and generalize on this model in two ways, first in Chap.5 with Hamil-
ton’s formulation, and then in Chaps. 6 and 7 with Jourdain’s formulation.

4.5 Simple Example Problems

Several example problem formulations are presented next. These are, of course,
simple cases meant to initiate us to the application of the general equation. It is
straightforward to add structural and other damping mechanisms.

4.5.1 Annular Control Volumes Moving in Tandem

Specifically, for an idealized oscillation of a rigid cylinder, there will be one general-
ized coordinate, say x(t). Then, the kinetic energy of the structure is related to ẋ2 and
the strain energy in the supporting springs (with net stiffness constant equal to k)will
be related to x2. The speed of the closed and open control volumes are ẋ, since they
are defined to move with the structure. Similarly, the relative rectilinear accelerations
of the closed and open control volumes are ẍ . The expressions required to evalu-
ate the terms (−pn + τc) · U, and (−pn + τo) · U are determined experimentally. It
has been assumed that the cylinder oscillates in the plane perpendicular to the flow
direction, and that the acceleration (of the closed control volume) is rectilinear.

For this rigidly translating cylinder, we have

d (Tstructure + �structure)control
vol

dt
= d

dt

(
1

2
mcylinder ẋ

2 + 1

2
kx2

)

= ẋ
(
mcylinder ẍ + kx

)
.

Equation4.30 can be written as

ẋ
(
mcylinder ẍ + kx

) + m f luidUU̇ =
∫

open
CS

1

2
ρU 2 (U − x) · n ds

+
∫

closed
CS

(−pn + τc) · Uds +
∫

open
CS

(−pn + τo) · U ds,

where, in this simplified problem, Vcontrol = x = ẋ, the last equality due to the fact
that the structural and outer fluid control volumes are stipulated to travel only in the
x direction perpendicular to the flow. The open and closed control surfaces refer to
the outer and inner control surfaces, respectively. The expression m f luidUU̇ refers
to the fluid between the two concentric control surfaces. �structure includes all the
potential stored in the structure. Because themotion of the cylinder is pure translation
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perpendicular to the gravitational field, we don’t see the net force resulting from the
difference between cylinder weight and buoyancy force. This net force acts along
the axis of the cylinder.

Combining like terms yields

ẋ
(
mcylinder ẍ + kx

) + m f luidUU̇ =
∫

closed
CS

(−pn + τc) · U ds

+
∫

open
CS

[
1

2
ρU 2 (U − x) · n + (−pn + τo) · U

]
ds. (4.31)

4.5.1.1 Stationary Outer Control Volume: Translating Cylinder

If the open control surface is stationary, while the inner control surface attached to
the cylinder is still in motion as before, then ẋ = 0 in the integral over the open
control surface, and we have the simplified equation,

ẋ
(
mcylinder ẍ + kx

) + m f luidUU̇ =
∫

closed
CS

(−pn + τc) · U ds

+
∫

open
CS

[ρ

2
U 2U · n + (−pn + τo) · U

]
ds. (4.32)

It is important to note that even in a free vibration in an initially still fluid, the flow
velocity U �= 0 since any motion of the structure from nonzero initial conditions
will result in fluid motion. Therefore, here the equation of motion does not reduce
to mcylinder ẍ + kx = 0, even though U (0) = 0.

4.5.1.2 Stationary Outer Control Volume: Cylinder Oscillating About
Contact at Base

Here we take the cylinder to be connected only at its base via a leaf spring. It behaves
like a column supported only at its base. For purposes of this example, we assume
that the cylinder is rigid, as above, and that three-dimensional effects can be ignored.
The single generalized coordinate that defines the cylinder location is the angle of
rotation θ rad. We have an additional term in the potential of the structure due to the
difference between the buoyancy force and the weight. We assume that the resultants
of these distributed forces act at the center of geometry of the circular cylinder. Then,
for some rotation θ, this additional potential results in the moment (mg − B) L

2 sin θ,

where mg is the weight of the cylinder, B is the total buoyancy force (which equals
the weight of the displaced fluid) and L is the length of the cylinder. Let Io be the
mass moment of inertia for the circular cylinder about its base, kT be the torsional
spring constant at the base, then the governing equation is
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θ̇

(
Ioθ̈ + kT θ − (mg − B)

L

2
sin θ

)
+ m f luidUU̇ =

∫

closed
CS

(−pn + τc) · U ds

+
∫

open
CS

[ρ

2
U 2U · n + (−pn + τo) · U

]
ds. (4.33)

This equation, as well as the other cases above, can also be evaluated numerically
if written in the form

1

2

d

dt

{
Ioθ̇

2 + kT θ2 + (mg − B)L cos θ
} = F (t) , (4.34)

where F(t) is the sum of all the remaining terms,

F (t) = −m f luidUU̇ +
∫

closed
CS

(−pn + τc) · U ds +
∫

open
CS

[ρ

2
U2U · n + (−pn + τo) · U

]
ds.

Then, we solve for θ by integrating both sides of Eq.4.34, and then integrating
again with respect to time. There are numerical issues to be resolved due to the
complexities of the functions on both sides of the equal sign.

4.6 A More General Variational Approach

4.6.1 Configuration Prescribed at t1 and t2

Suppose we prescribe the system at t1 and t2, then a variational formulation becomes
possible. Begin with Eq.4.17, repeated here,

δ

∫ t2

t1

Lsystemdt +
∫ t2

t1

dt
∫

open
CS

[(σ · n) · δr − ρ(U − Vcontrol) · δr(U · n) ] ds

+
∫ t2

t1

dt
∫

closed
CS

(σ · n) · δr ds = 0,

and substitute Eqs. 4.21 and 4.22 to find

δ

∫ t2

t1

Lsystemdt +
∫ t2

t1

dt
∫

open
CS

[(−pn + τo) · δr − ρ(U − Vcontrol) · δr(U · n) ] ds

+
∫ t2

t1

dt
∫

closed
CS

(−pn + τc) · δr ds = 0. (4.35)
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The next step herewould be toworkwith each term in order to arrive at an equation
of the form

∫ t2

t1

{∫

physical
domain

[EOM] δr+ |[...]δr|boundaries
}
dt=0, (4.36)

from which, using the argument that δr is arbitrary everywhere except at the bound-
aries at t1 and t2 leads to the equations of motion EOM. There will be as many
equations of motion as there are generalized coordinates in the system. The condi-
tions |[...]δr|boundaries = 0 lead to the possible boundary conditions. δr is a vector
with dimension equal to the number of generalized coordinates. Our results using
this approach can then be compared with that of the last section. At this time it is not
possible to draw any specific conclusions, but we would like to expand a bit on this
development.

We know that the Lagrangian of the continuous system, structure, and fluid, is
obtainable by standardmethods, resulting in one equation ofmotion for each general-
ized coordinate. Assume, for a rectangular cross section in the open control volume,
that the ordinate is the coordinate y and the abscissa is the coordinate x, then the vari-
ation δr will be±δy or±δx, respectively. Performing the variation of the Lagrangian
yields the respective boundary conditions. Formally, we have

δ

∫ t2

t1

Lsystem dt =
∫ t2

t1

[
(Sx + Fx ) δx + (

Sy + Fy
)
δy

]
dt + BCs. (4.37)

There remains the need to expand the variations within the open and closed control
volumes. Consider first the open control volume. We will find

∫ t2

t1

dt
∫

open
CS

[(−pn + τo) · δr − ρ(U − Vcontrol) · δr(U · n) ] ds

=
∫ t2

t1

dt
{[

(Ox ) δx + (
Oy

)
δy

]}
. (4.38)

For the inner control volume, the cross section is circular. Therefore, the outward
normal δr will be of the form δr = ± cos δx ± sin δy. Then,

∫ t2

t1

dt
∫

closed
CS

(−pn + τc) · δr ds =
∫ t2

t1

dt
{[

(Cx ) δx + (
Cy

)
δy

]}
. (4.39)

Equation4.35 then becomes

∫ t2

t1

[
(Sx + Fx + Ox + Cx ) δx + (

Sy + Fy + Oy + Cy
)
δy

]
dt + BCs = 0.

(4.40)
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Functions S, F, O, and C are those that arise from the surface integration. BCs
are the boundary conditions. Using familiar arguments that since the variations are
arbitrary and independent, the only way that the integral can be identically zero is if
each factor of the variations equals zero, that is

Sx + Fx + Ox + Cx = 0 (4.41)

Sy + Fy + Oy + Cy = 0. (4.42)

These two equations are the two, nonlinear coupled partial differential equations
that are the reduced-order model for the fluid–structure interaction. It is important
to emphasize that we chose two generalized coordinates in order to demonstrate
the procedure. There will be as many coupled partial differential equations as there
are generalized coordinates. For example, if the structural model can bend in two
coordinates as well as extend, then it alone will have three generalized coordinates.

4.7 Discussion

The work of McIver has been extended to model the oscillation of a structure in
a fluid flow. Two variational approaches have been developed. The first approach
assumes that the system configuration is not prescribed at the end times. This led
to a single equation governing the motion of the structure as it is coupled to the
fluid system. This equation has the units of power, and is therefore a power balance
between fluid and structure. The second approach, which is only introduced, will
be examined further in the next chapter. As outlined, this approach will result in a
series of governing equations, one for each degree- of-freedom. This approach holds
promise for more complicated flow patterns and structural behavior.

The above theoretical developments rest heavily in a practical and literal sense
upon experimental input. The derived governing equations are semiempirical, requir-
ing experimentally developed functions. However, this is certainly an explicit trade-
mark of all fluid mechanics, and is implicit in all of science and engineering. We
view it as a positive aspect of the model, that it is inexorably linked to physical data.

In the following chapter, we consider Hamilton’s principle more generally to
derive a general flow-oscillator model, and show how several published flow-
oscillator models can be extracted from the general model.
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Chapter 5
Lagrangian Flow-Oscillator Models

Abstract This chapter extends the development of the previous chapter by applying
Hamilton’s extended principle to a fluid surrounding a rigid structure. The energies
are derived, and the control volume is examined in detail. Boundary conditions are
derived and studied. 2D flows past a circular cylinder that is free to move trans-
versely are formulated, and applied to reduced-order modeling. The derived general
governing equations for the structure and the flow oscillator are compared with cer-
tain published models: Krenk and Nielsen, Hall, Berger, and Tamura and Matsui. It
is concluded that the general formulation of this chapter is a good framework for the
development of flow-oscillator models of vortex-induced oscillations.

5.1 Advanced Coupled Models

We again focus on the flow of a viscous incompressible fluid around a rigid circular
cylinder. A viscous incompressible fluid can be thought of as a real fluid with an
internal constraint manifesting the requirement of incompressibility. In general, real
fluids are holonomic and nonconservative [18]. The no-slip condition at a boundary
(fluid/solid or fluid/fluid), for example, is a holonomic constraint. By holonomic, it is
meant that a constraint on the configuration (position) of the particles in a system of
the form G(x, t) = 0 exists. Time may (rheonomic) or may not (scleronomic) enter
into this constraint equation explicitly.

We begin next by considering the extended Hamilton’s principle and derive the
energies of the system.

5.1.1 The Extended Hamilton’s Principle

Consider the system of particles inhabiting the open control volume Ro(x, t) at time
t . This system of particles is referred to as the open system. Only instantaneously does
it coincide with the closed system of particles which constitute the material system
M . The control volume has a part Bo (x, t) of its bounding surface B(x,t), which

© Springer Nature Switzerland AG 2020
S. Mottaghi et al., An Analytical Mechanics Framework for Flow-Oscillator Modeling
of Vortex-Induced Bluff-Body Oscillations, Solid Mechanics and Its Applications 260,
https://doi.org/10.1007/978-3-030-26133-7_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26133-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-26133-7_5


96 5 Lagrangian Flow-Oscillator Models

is open to the flow particles. The closed part of the bounding surface is Bc (x, t),
and includes any solid boundaries and portions of the surface in which the local
streamline is normal to the surface. The kinetic energy of the open system is denoted
(K)o. The sum of the gravitational potential energy

(E(g)
)
o, the potential energy due

to buoyancy
(E(b)

)
o, the strain energy

(E(s)
)
o, and the internal energy

(E(i)
)
o of the

open system is denoted (E)o. urel(x, t) = u(x, t) − uB is the fluid velocity relative
to the velocity of control surface.

The extended form of Hamilton’s principle for a system of changing mass (e.g.,
the exhaust jet of a rocket) or a system of constant mass which does not always
consist of the same set of particles (e.g., a pipe of constant diameter conveying fluid)
can be written as [3]

δ

t2∫

t1

(L)odt +
t2∫

t1

(δW )o dt +
t2∫

t1

∫∫

Bo(t)

ρ (urel · δr) (u · n) dsdt = 0, (5.1)

where (L)o = (K − E)o is the Lagrangian of the open system, and (δW )o is the
virtual work performed by non-potential forces on the same system. Note that ds =
ds(x, t) is used here to represent a differential surface element. At position x and
time t , the density is ρ and the velocity is u.

Note that Eq.5.1 is related to the Reynolds transport theorem, which allows one to
calculate the time rate of change of any extensive property of systemM fromEulerian
measurements made inside a spatial volume which instantaneously coincides with
that occupied by the mass system at time t . Designating the volume occupied by
system M by RM(x,t), the open control volume instantaneously coinciding with
RM(x,t) by Ro(x,t), and the bounding surface of Ro(x,t) by B(x,t), the Reynolds
transport theorem is given by [19]

D

Dt

∫∫∫

RM (x,t)
ρAdv = −

∫∫

B(x,t)
ρA (urel · dA) ds +

∫∫∫

Ro(x,t)

∂

∂t
(ρA) dv.

(5.2)
In Eq.5.2, A is an arbitrary intensive property of the system reckoned per unit

mass,ρ = ρ(x, t) is the spatial density field, and dA = nds withn a positive outward
normal. In the surface integral,urel(x, t) =u(x, t) − uB is thefluid velocity relative to
the velocity of the control surface, assumed constant in time and spatially independent
if nonzero. urel(x, t) = 0 on any solid boundaries, so B(x,t) in Eq.5.2 is understood
to exclude any such boundaries. Also excluded are any portions of the surface in
which the instantaneous local streamline is normal to the surface, since in that case
urel · dA = 0.

In Eq.5.1, the virtual displacements δri must preserve the mass balance law. This
is in addition to the requirements imposed by any geometric constraints, the balance
laws of internal energy and entropy, and any constitutive relations.
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Suppose the open system is inhabited instantaneously by fluid particles moving
along with the flow and a single solid body in the path of the fluid. The boundary
of this solid body constitutes part of the closed boundary Bc (x, t). The following
assumptions are made:

1. The open part of the control surface is stationary, i.e., uBo = 0. As a result, urel =
u.

2. The flow is considered to be two-dimensional. That is, all flow quantities are
independent of z and u3 (x, t) = 0. The vorticity is then perpendicular to the
plane of motion.

3. The length and time scales are such that the fluid is in local thermodynamic
equilibrium (LTE), even when the fluid is in motion. All macroscopic length and
time scales are considerably larger than the largest molecular length and time
scales.

4. An inertial rectangular Cartesian coordinate system is used, with basis vectors e1,
e2, and e3 in the x , y, and z-directions, respectively.

5. The resultant of all body forces, both conservative and nonconservative, in the
open control volume is assumed small. As a consequence of this assumption the
gravitational and buoyancy effects are neglected, and

(E(g)
)
o = (E(b)

)
o = 0.

6. Changes in the internal energy D
(E(i)

)
o

/
Dt , which are due entirely to themotion

of the fluid, are neglected. As a consequence of the commutative property of the
operators δ (·) and D (·) /Dt , this is equivalent to

δ
(E(i)

)
o = δ

(
E(i)
fluid

)

o
= δ

∫∫∫

Ro(x,t)
ρe(ρ, T )dv = 0, (5.3)

where e is the specific internal energy and T (x, t) is the thermodynamic temper-
ature field. Note that e(ρ, T ) is the so-called caloric equation of state [19].

While the fluid is initially allowed to be compressible, potentially rendering this
last assumption invalid, subsequent application of the incompressibility approxima-
tion vindicates said assumption.

Finally, the dependence of Ro, Bo, and Bc on x is omitted from here on since it is
understood that these variables refer to the spatial description. The dependencies of
ρ and u on x and t are also dropped.

5.1.2 Uniform Viscous Flow Past a Stationary Cylinder

Let the control volume be defined as the rectangular volume of unit depth surrounding
the stationary cylinder. The origin of the coordinate system is at the center of the
cylinder. The part of the control surface that is pervious represents a significant
portion of the outer surface defined by the perimeter of the rectangle shown in Fig. 5.1
multiplied by a unit projection out of the plane of said figure. This part is the open
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Fig. 5.1 The open control surface Bo(t), the closed control surface Bc(t), and the open control
volume Ro(t). Reference is made to the case of uniform flow Uo past a stationary circular cylinder
of radius R

control surface Bo(t). The closed control surface Bc(t), includes the circumference
of the cylinder x2 + y2 = R2, and any portions of the outer surface that are closed
to fluid motion (i.e., those portions where u(x, t) ‖ n).

Note that in this particular problem, the surfaces Bo(t) and Bc(t) are neither
functions of time nor space. This obviouslymeans that the open control volume Ro(t)
is also independent of time and space. The CV and CS definitions are illustrated in
Fig. 5.1. The open control volume, Ro(t), is clearly of constant mass, yet it does not
consist of the same set of particles at any two instances. The uniform, steady free
stream velocity is uo = Uoe1.

The kinetic energy of the open system is given by

(K)o = (Kfluid)o =
∫∫∫

Ro(t)

1

2
ρ (u · u) dv, (5.4)

where dv = dv(x, t) is the differential volume element. For the sake of brevity,
the functional dependencies of dv and ds are dropped. Clearly,

(Kcyl
)
o = 0. Also,(E(s)

)
o = 0 since the cylinder is rigid. From Eq.5.3, and the additional relations(E(g)
)
o = (E(b)

)
o = 0, δ (E)o = 0, it follows that

δ

t2∫

t1

(L)odt = δ

t2∫

t1

(K)odt = δ

∫ t2

t1

∫∫∫

Ro(t)

1

2
ρ (u · u) dvdt. (5.5)



5.1 Advanced Coupled Models 99

The virtual work done by the normal and tangential stresses in the fluid during a
virtual displacement is given by [9]

(δW )o = (δWfluid)o = −
∫∫∫

Ro(t)
σi jδεi j dv, (5.6)

where σi j is the natural or Eulerian stress tensor and

δεi j = 1

2

[
∂

(
δr j

)

∂xi
+ ∂ (δri )

∂x j

]

. (5.7)

It is tempting to regard δεi j as the Lagrangian variation of Cauchy’s infinitesimal
(linear) strain tensor,

εi j = 1

2

[
∂ri
∂x j

+ ∂r j
∂xi

]
.

However,

δεi j = 1

2

[
δ

(
∂ri
∂x j

)
+ δ

(
∂r j
∂xi

)]
�= 1

2

[
∂ (δri )

∂x j
+ ∂

(
δr j

)

∂xi

]

.

The balance of angular momentum applied to a differential fluid volume element
dv = dxdy(dz = 1) leads to the conclusion that the stress tensor is symmetric, σi j =
σ j i . Using this symmetry property, it can be easily shown that

1

2
σi j

[
∂

(
δr j

)

∂xi
+ ∂ (δri )

∂x j

]

= σi j

[
∂ (δri )

∂x j

]
.

As a consequence, Eq.5.6 becomes

(δW )o = −
∫∫∫

Ro(t)
σi j

[
∂ (δri )

∂x j

]
dv. (5.8)

Using Eqs. 5.5, 5.8 and 5.1 can be written as

δ

∫ t2

t1

∫∫∫

Ro(t)

1

2
ρ (u · u) dvdt −

∫ t2

t1

∫∫∫

Ro(t)
σi j

[
∂ (δri )

∂x j

]
dvdt

+
∫ t2

t1

∫∫

Bo(t)
ρ (u · δr) (u · n) dsdt = 0. (5.9)

Before proceeding with the development of Eq.5.9, the components σi j of the stress
tensor σ that appear in Eq.5.9, are defined.
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5.1.3 The Stress Tensor

It can be shown that the constitutive relation relating the stress tensor σ to the density
field ρ(x, t), the thermodynamic pressure field p(x, t), and the velocity gradient
tensor L = [∇u(x, t)]T in a Newtonian fluid is given by [8]

σ = [−p + λ (∇ · u)] I+μ
[
(∇u) + (∇u)T

]
, (5.10)

where I is the identity tensor. The operator ∇ is understood to be a spatial operator.
That is∇ ≡ ∇x. The thermodynamic pressure field is defined by the equation of state

p = p(ρ, T ).

The Cartesian components of Eq.5.10 are

σi j = −pδi j + λδi j
∂uk
∂xk

+ μ

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (5.11)

The parameters μ and λ are usually referred to as the dynamic viscosity coefficient
and the second viscosity coefficient, respectively. From Assumption 3 above, it is
possible tomake an important simplification:μ = μ (ρ, T ) andλ = λ (ρ, T ) depend
only on the equilibrium properties of ρ and T . Here, the additional simplification is
made that μ and λ are effectively constant.

Equation5.10 follows from the general form

σ = −pI + G (∇u) , (5.12)

where G is a linear tensor valued function. ∇u can be written as the sum of a
symmetric tensor D and a skew-symmetric tensor W, which are defined by

D = 1

2

[
(∇u) + (∇u)T

]

W = 1

2

[
(∇u) − (∇u)T

]
.

The tensors D and W are the rate of deformation and spin tensor, respectively.
Using these tensors, Eq. 5.12 can then be written as

σ = −pI + G
(
D + W

)
.

In a rigid body rotation of the fluid, there can be no shear stresses since there is no
shearing action. The shear stresses are represented entirely by the components of
tensor W. Since these components are nonzero for a rigid body rotation, it is clear
that σ must be independent of W. Assuming the fluid is isotropic, then G

(
D

)
can

be written as [19]
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G
(
D

) = λ
(
trD

)
I + 2μD,

where trD is the trace of D.
The stress tensor can now be expressed as

σ = −pI + λ
(
trD

)
I + 2μD. (5.13)

The variation of the first term of Eq.5.9, representing the variation of the total
fluid kinetic energy in the open control volume, is intimately related to variational
form of the integral or global mass balance law, discussed next.

5.1.4 The Global Mass Balance Law

Regarding the mass balance law, McIver [20] states that the necessary condition in
integral form becomes

δ

∫∫∫

Ro(t)
ρ (·) dv =

∫∫∫

Ro(t)
ρδ (·) dv, (5.14)

where (·) is an arbitrary function of x and t . The origin of Eq.5.14 lies in the statement
of global mass balance for mass systemM , which occupies the volume RM(t) at time
t . In variational form, this is given by [28]:

δ

∫∫∫

RM (t)
ρ (·) dv =

∫∫∫

RM (t)
ρδ (·) dv. (5.15)

Recall that system M is closed. That is, it consists always of the same collection
of particles and there is no mass transport through its surface. Its bounding surface,
BM(t) moves with translational velocity N = uini , which is the same as the local
fluid velocity.

McIver [20] argues that as far as the operator δ is concerned, Eqs. 5.14 and 5.15
are equivalent at the instant when RM(t) and Ro(t) coincide. He describes this cor-
respondence:

The control volume, open or closed, is always a closed system as far as the variation is
concerned regardless of whether or not material is transported across its boundaries in the
real motion: there is no virtual material transport out of the system.

The continuity equation

Dρ

Dt
+ ρ

(
∂uk
∂xk

)
= ∂ρ

∂t
+ ∂ (ρuk)

∂xk
= 0, (5.16)

representing the local mass conservation law, is in fact a necessary condition for
Eq.5.15.
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5.1.5 The Kinetic Energy

The third term in Eq.5.5 can be written as

δ

∫ t2

t1

∫∫∫

Ro(t)
ρ (u · u) dvdt =

∫ t2

t1

∫∫∫

Ro(t)
ρ (u · δu) dvdt

=
∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · δ

(
Dr
Dt

)]
dvdt. (5.17)

Using the fact that the variation denoted by the operator δ (·) and the rate of change
denoted by D (·) /Dt are both material variations and are consequently interchange-
able, Eq. 5.17 can be written as

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · δ

(
Dr
Dt

)]
dvdt =

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · D (δr)

Dt

]
dvdt. (5.18)

Consider next the following result from Dost and Tabarrok [9]

∫ t2

t1

D

Dt

[∫∫∫

Ro(t)
ρ (u · δr) dv

]
dt =

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · D (δr)

Dt

]
dvdt

+
∫ t2

t1

∫∫∫

Ro(t)

(
Dρ

Dt
+ ρ∇ · u

)
dvdt

+
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt.

On account of the continuity equation, Eq.5.16, the second integral on the right-hand
side vanishes, and then

∫ t2

t1

D

Dt

[∫∫∫

Ro(t)
ρ (u · δr) dv

]
dt =

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · D (δr)

Dt

]
dvdt

+
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt.

Substituting

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · D (δr)

Dt

]
dvdt =

∫ t2

t1

D

Dt

[∫∫∫

Ro(t)
ρ (u · δr) dv

]
dt

−
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt
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in Eq.5.17 leads to

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · δ

(
Dr
Dt

)]
dvdt =

∫ t2

t1

D

Dt

[∫∫∫

Ro(t)
ρ (u · δr) dv

]
dt

−
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt. (5.19)

Integrating the first term of Eq.5.19 gives

[∫∫∫

Ro(t)
ρ (u · δr) dv

]t2

t1

,

which vanishes on account of the constraint δr(t1) = δr(t2) = 0. Equation5.19 is
then simply

δ

∫ t2

t1

∫∫∫

Ro(t)
ρ (u · u) dvdt =

∫ t2

t1

∫∫∫

Ro(t)
ρ

[
u · δ

(
Dr
Dt

)]
dvdt

= −
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt. (5.20)

Substituting Eq.5.20 in Eq.5.9 yields

−
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt −

∫ t2

t1

∫∫∫

Ro(t)
σi j

[
∂ (δri )

∂x j

]
dvdt

+
∫ t2

t1

∫∫

Bo(t)
ρ (u · δr) (u · n) dsdt = 0. (5.21)

5.1.6 Virtual Work

Having obtained the variation of the kinetic energy of the fluid, which in the present
case represents the Lagrangian of the open system, attention is now focused on the
virtual work. The second term of Eq.5.21 can be expressed in the equivalent form

∫ t2

t1

∫∫∫

Ro(t)
σi j

[
∂ (δri )

∂x j

]
dvdt =

∫ t2

t1

∫∫∫

Ro(t)

[
∂

(
σi jδri

)

∂x j
− ∂σi j

∂x j
δri

]

dvdt.

(5.22)
The divergence theorem is used to transform the first term inside the integral.

The divergence theorem for a (sufficiently well-behaved) vector field w is given
in Cartesian form by
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∫∫

B(t)

winids =
∫∫∫

Ro(t)

∂wi

∂xi
dv, (5.23)

where B(t) is the bounding surface of region Ro(t).
Applying Eq.5.23 with w = σ T δr, i.e., wi = σi jδri , the following form of

Eq.5.22 is obtained:

∫ t2

t1

∫∫∫

Ro(t)

[
∂

(
σi jδri

)

∂x j
− ∂σi j

∂x j
δri

]

dvdt

=
∫ t2

t1

∫∫

B(t)
σi j n jδridsdt −

∫ t2

t1

∫∫∫

Ro(t)

[
∂σi j

∂x j
δri

]
dvdt. (5.24)

Using Eqs. 5.24 and 5.21 becomes

−
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Du
Dt

· δr
)
dvdt

+
∫ t2

t1

∫∫∫

Ro(t)

[
∂σi j

∂x j
δri

]
dvdt

−
∫ t2

t1

∫∫

B(t)
σi j n jδridsdt

+
∫ t2

t1

∫∫

Bo(t)
ρ (u · δr) (u · n) dsdt = 0, (5.25)

where B(t) = Bo(t) ∪Bc(t) and n is the outward normal. Note that n points into the
cylinder on surface Bc(t). It must be emphasized that in using the divergence theorem
to convert Eq.5.22 to Eq.5.24, a subtlety arises. The domain Ro(t) is actually doubly
connected.

5.1.6.1 The Doubly Connected Domain

In fact, the region occupied by the fluid in a 2D flow field due to any moving body
is necessarily doubly connected [2]. A problem arises in the direct application of
the divergence theorem. However, this problem is easily dealt with by defining
the bounding surface of Ro(t) to be B∗(t) = Bo(t) ∪Bc(t) ∪ Bu(t), where Bu(t)
is the surface of the umbilicus (branch cut) which joins the exterior surface Bo(t) to
the body surface Bc(t). This is illustrated in Fig. 5.2. It can be shown that integration
of σn over the umbilicus does not contribute to the total surface integral [21]. Thus,
B∗(t) may be effectively taken as equal to B(t).
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Fig. 5.2 The open control surface Bo(t), closed control surface Bc(t), the umbilicus Bu(t), and
the open control volume Ro(t). Reference is made to the case of uniform flow Uo past a stationary
circular cylinder of radius R

5.1.7 The Euler–Lagrange Equations and the Natural
Boundary Conditions

Collecting like terms in Eq.5.25 gives

∫ t2

t1

∫∫∫

Ro(t)

[
−ρ

Dui
Dt

+ ∂σi j

∂x j

]
δridvdt

−
∫ t2

t1

∫∫

Bc(t)
σi j n jδridsdt

−
∫ t2

t1

∫∫

Bo(t)

[
σi j n j − ρuiu jn j

]
δridvdt = 0.

Arguing in the usual way that the variations δri are arbitrary in Ro(t) × [t1,t2] leads
to the Euler–Lagrange (EL) equation

ρ
Dui
Dt

= ∂
(
σi j

)

∂x j
in Ro(t). (5.26)

A similar argument regarding the variations δri on Bo(t) × [t1,t2] and Bc(t) ×
[t1,t2] leads to the natural boundary conditions

σi j n jδri = 0 on Bc(t) (5.27)
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[
σi j n j − ρuiu jn j

]
δri = 0 on Bo(t). (5.28)

Substituting Eq.5.11 into Eq.5.26 yields the components of the balance of linear
momentum equation for a Newtonian viscous compressible fluid with constant vis-
cosity coefficients:

ρ
Dui
Dt

= − ∂p

∂xi
+ λ

(
∂2u j

∂xi∂x j

)
+ μ

[
∂

∂x j

(
∂ui
∂x j

+ ∂u j

∂xi

)]
in Ro(t). (5.29)

The next step is to use Stokes’ condition, λ = −2μ/3. Stokes’ condition is equivalent
to the assumption that the thermodynamic pressure and the mechanical pressure are
the same for a compressible fluid.

To see this, consider the difference between the thermodynamic pressure p and
the mean mechanical pressure p̄m [19],

p − p̄m = −
(

λ + 2

3
μ

)
∂uk
∂xk

= −
(

λ + 2

3
μ

)
1

ρ

Dρ

Dt
, (5.30)

where the last equality follows from the continuity equation, Eq.5.16. In Eq.5.29,
the mean mechanical pressure is defined as

p̄m = −1

3
σi i .

In a fluid at rest the stress is purely hydrostatic, σi j = − p̄mδi j , and consequently
p̄m = p.

Since Dρ/Dt �= 0 for a compressible fluid, the thermodynamic and mechanical
pressures can only be the same if the coefficient is equal to zero,

(
λ + 2

3μ
) = 0. The

quantity
(
λ + 2

3μ
) = μB is usually referred to as the bulk viscosity. The vanishing

of the bulk viscosity has an interesting interpretation: The dissipation power per unit
volume is due entirely to shape-change rate of deformation. The volume change
or dilatational dissipation is zero [19]. It can be shown that in order to satisfy the
Clausius–Duhem entropy inequality, μ ≥ 0 and (λ + 2μ/3) ≥ 0.

Using Stokes’ condition, Eq.5.29 becomes

ρ
Dui
Dt

= −∂pm
∂xi

− 2μ

3

(
∂2u j

∂xi∂x j

)
+ μ

[
∂

∂x j

(
∂ui
∂x j

+ ∂u j

∂xi

)]
in Ro(t). (5.31)

Expanding the last term of Eq.5.31 and combining with the second gives

ρ
Dui
Dt

= −∂pm
∂xi

+ μ

(
∂2uk
∂x2k

)
+ 1

3
μ

[
∂

∂xi

(
∂uk
∂xk

)]
in Ro(t). (5.32)

In summary, Eq.5.32 gives the components of theNavier–Stokes (N-S) equation for a
compressible fluid with zero bulk viscosity. Similarly, Eq.5.31 gives the components
of the generalized N-S equation for a compressible fluid with nonzero bulk viscosity.
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5.1.8 The Application to an Incompressible Fluid

An incompressible fluid is one in which the density of each material element is unaf-
fected by changes in pressure. This definition holds provided that density changes in
the fluid as a result of molecular conduction of heat are negligible [2]. In an incom-
pressible fluid, themeanmechanical pressure is equal to the thermodynamic pressure
at all times. This result follows directly from Eq.5.30, since the rate of change of ρ

following a material element is zero, Dρ/Dt = 0. The simplified continuity equa-
tion,

∂uk
∂xk

= 0, (5.33)

when used to simplify Eq.5.32, leads to

ρ

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= − ∂p

∂xi
+ μ

∂2ui
∂x2j

in Ro(t). (5.34)

Note that in Eq.5.34, the material derivative Dui/Dt has been expanded. Equa-
tion5.34 represents the components of theNavier–Stokes equation for viscous incom-
pressible flows.

For convenience, let the stress tensor for an incompressible Newtonian fluid be
denoted σ̂ . Using the continuity equation, Eq. 5.33, to simplify the constitutive rela-
tion, Eq.5.11, the components of σ̂ are given by

σ̂i j = −pδi j + μ

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (5.35)

The natural boundary conditionmanifested in Eq.5.27 is interpreted as δri = 0 on
Bc(t) since the displacement ri = 0 is prescribed on the cylinder surface. However,
there is no local equilibrium on the cylinder surface σ̂i j n j �= 0. The natural boundary
condition manifested in Eq.5.28 is interpreted as

[
σ̂i j n j − ρuiu jn j

] = 0 on Bo(t)
since the displacement δri is not prescribed anywhere on this surface. Physically, this
last boundary condition states that convective flux of momentum (per unit area as
ds shrinks to a point) ρuiu jn j at any point on Bo(t) is equal to the resultant contact
force ti = σ̂i j n j exerted at that boundary point by the surrounding matter.

5.1.9 An Examination of the Boundary Condition
Manifested by Eq.5.28

Tobetter understand themeaning of this last boundary condition, consider the balance
of momentum in integral form for an incompressible fluid:
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∫∫∫

Ro(t)

∂ (ρui )

∂t
dv = −

∫∫

B(t)
ρuiu jn jds +

∫∫

B(t)
σ̂i j n j ds. (5.36)

Equation5.28 implies that

∫∫

Bo(t)

[
σ̂i j n j − ρuiu jn j

]
ds = 0.

Consequently, Eq.5.36 becomes

∫∫∫

Ro(t)

∂ (ρui )

∂t
dv = −

∫∫

Bc(t)
ρuiu jn jds +

∫∫

Bc(t)
σ̂i j n j ds. (5.37)

Now for a stationary rigid cylinder, u1 = u2 = 0 and the first integral on the RHS
vanishes. This integral also vanishes for a rigid cylinder in motion since the velocity
components ui on the surface of the cylinder are independent of position along the
circumference cylinder (along each point on this path they must equal the velocity
components Vi of the body) and

∫∫

Bc(t)
nds = 0.

Equation5.37 becomes

∫∫∫

Ro(t)

∂ (ρui )

∂t
dv =

∫∫

Bc(t)
σ̂i j n j ds.

This result can be interpreted as follows: The rate of change of momentum inside the
chosen control volume is due entirely to the resultant force system at the boundary of
the cylinder! The validity of this result is in general only for infinite domains R∞(t)
enclosing all of the vorticity. The surface integrals of the viscous and convective
terms must also vanish at infinity.

Under these conditions, it can be shown [21] that the balance of momentum
equation, Eq. 5.37, reduces to a form that does not include contributions from the
outer boundary at infinity. This is because a boundary term arises upon the conversion
of the left-hand-side (LHS) of Eq. 5.36 to a vorticity impulse-type termwhich cancels
out the nonzero pressure term on the distant boundary, − ∫∫

B∞(t)

pn jds. Since it is

assumed that Bo(t) is sufficiently far away from the cylinder such that the above
conditions are satisfied, the boundary condition on Bo(t) obtained above is valid.

This completes the derivation of the relevant field equations and boundary con-
ditions for the flow of a viscous incompressible fluid past a stationary cylinder.
The starting point of the derivation was Hamilton’s principle for a system of vari-
able mass. In the next section, the cylinder is allowed to move freely in the direc-
tion transverse to the flow. The cylinder responds to the vortex-shedding, which
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generates unsteady forces on the cylinder. When the frequency of the vortex shed-
ding fvs matches the cylinder oscillation frequency fex , synchronization takes place
and the cylinder can undergo large oscillations. Amore detailed discussion on vortex-
induced vibration of circular cylinders can be found in various recent review papers,
including [12, 22, 27].

5.2 Uniform 2D Viscous Flow Past a Cylinder
Free to Move Transversely

Consider an elastically mounted cylinder, with a mechanical restraint preventing
motion in the flow direction (x). Since the cylinder is rigid, its motion in the trans-
verse direction (y) can be described by a single generalized coordinate. Let this
generalized coordinate be represented by χ . Assuming a perfect correlation of the
shedding vortices, the transverse displacement of all points on the cylinder is the
same: χ = χ(t). The horizontal plane passing through the cylinder’s center of mass
is chosen as the reference plane and all dynamic variables (i.e., displacement, veloc-
ity, acceleration) are thus defined at the center of mass. The total stiffness of the
supporting springs is k(χ)

s . The mass of the cylinder is mc.
The goal here is to obtain the equations of motion for both the cylinder and the

fluid in theCV. It is obvious that the equations ofmotionmust be coupled. Themotion
of the cylinder must have an effect on the fluid flowing around it and vice versa.

Again, let the CV be defined as the rectangular volume surrounding the nonsta-
tionary cylinder. The origin of the coordinate system is at the center of the cylinder
when the cylinder is at rest. The coordinate system does not move with the cylinder
and is considered to be at rest relative to the free stream. As in Sect. 5.1.2, the open
part of the CS, Bo(t), is the perimeter of the rectangle shown in Fig. 5.3 multiplied
by a unit projection out of the plane of the paper.

While Bo(t) is again independent of time, the closed part Bc(t), defined as the
circumference of the cylinder x2 + (y ± χ(t))2 = R2, is clearly a function of time.
The open control volume Ro(t) is also a function of time since its shape, though not its
volume, is changing as the cylinder moves. The CV and CS definitions are illustrated
in Fig. 5.3. The uniform free stream velocity is again denoted Uo. The presentation
in this section highlights the derivation of the structural equation of motion and
the corresponding boundary conditions on Bc(t). Derivations involving the fluid
field, which are identical to those presented of Sect. 5.1.2, are simply presented
in final form.

In this problem, (K)o = (Kfluid + Kcyl
)
o and (E)o =

(
E(s)
cyl

)

o
, with (Kfluid)o given

by Eq.5.4,
(Kcyl

)
o = 1

2
mcχ̇

2,

and (
E(s)
cyl

)

o
= 1

2
k(χ)
s χ2.
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Fig. 5.3 The open control surface Bo(t), closed control surface Bc(t) (at two different instances),
and the open control volume Ro(t) for the case of a rigid circular cylinder of radius R with 1
DOF. The cylinder is free to move transversely to the uniform incoming flow of velocity Uo. The
transverse generalized coordinate is χ(t). The restraining springs are not shown

It follows that

(L)o =
∫∫∫

Ro(t)

1

2
ρ (u · u) dv + 1

2
mcχ̇

2 − 1

2
k(χ)
s χ2. (5.38)

Using Eqs. 5.38, 5.1 becomes

δ

∫ t2

t1

∫∫∫

Ro(t)

1

2
ρ (u · u) dvdt + δ

∫ t2

t1

1

2
mcχ̇

2dt − δ

∫ t2

t1

1

2
k(y)
s χ2dt

−
∫ t2

t1

∫∫∫

Ro(t)
σi jδεi j dvdt +

∫ t2

t1

∫∫

Bo(t)
ρ (u · δr) (u · n) dsdt = 0. (5.39)

The variation of the first term of Eq.5.39 is obtained directly from Eq.5.20. The
variation of the second and third terms are

δ
(Kcyl

)
o = mcχ̇δχ̇

δ
(
E(s)
cyl

)

o
= k(χ)

s χδχ,

respectively. Integration byparts,with δr(t1) = δr(t2) = 0 and δχ(t1) = δχ(t2) = 0,
yields
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−
∫ t2

t1

∫∫∫

Ro(t)
ρ

(
Dui
Dt

δri

)
dvdt −

∫ t2

t1

mcχ̈δχdt

−
∫ t2

t1

k(y)
s χδχdt +

∫ t2

t1

∫∫∫

Ro(t)

[
∂σi j

∂x j
δri

]
dvdt

−
∫ t2

t1

∫∫

Bo(t)
σi j n jδridsdt −

∫ t2

t1

∫∫

Bc(t)
σi j n jδridsdt

+
∫ t2

t1

∫∫

Bo(t)
ρuiδriu jn jdsdt = 0. (5.40)

In arriving at Eqs. 5.40, 5.20 and 5.24 are used.
Collecting like terms yields

−
∫ t2

t1

∫∫∫

Ro(t)

[
ρ
Dui
Dt

− ∂σi j

∂x j

]
δridvdt −

∫ t2

t1

(
mcχ̈ + k(χ)

s χ
)
δχdt

+
∫ t2

t1

∫∫

Bo(t)

[
ρuiu jn j − σi j n j

]
δridsdt −

∫ t2

t1

∫∫

Bc(t)
σi j n jδridsdt = 0. (5.41)

The no-slip condition on the surface of the cylinder, together with the kinematic
boundary condition ensuring that the normal components of the velocity are con-
served across the fluid–structure interface, which is the no-through flow condition in
the case of a solid boundary, require that u = V · V = (0, χ̇) is the velocity vector
of the cylinder. This condition implies that δr1 = 0 and δr2 = χ on Bc(t) at all times
t . Furthermore, these virtual displacements hold on all points on the cylinder. The
last term in Eq.5.41 can then be written as

∫ t2

t1

∫∫

Bc(t)
σi j n jδridsdt =

∫ t2

t1

δχ

(∫∫

Bc(t)
σ2 j n j ds

)
dt.

It follows that Eq.5.41 can be rewritten as

−
∫ t2

t1

∫∫∫

Ro(t)

[
ρ
Dui
Dt

− ∂σi j

∂x j

]
δridvdt

−
∫ t2

t1

(
mcχ̈ + k(y)

s χ +
∫∫

Bc(t)
σ2 j n j ds

)
δχdt

+
∫ t2

t1

∫∫

Bo(t)

[
ρuiu jn j − σi j n j

]
δridsdt = 0.

The arbitrariness of the variations δri in Ro(t) × [t1,t2] leads to the Euler–Lagrange
equations for the fluid,

ρ
Dui
Dt

= ∂σi j

∂x j
in Ro(t). (5.42)
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Likewise, the variations δχ are arbitrary ∀ x ∈ x2 + (y ± χ)2 ≤ R2 and for all times
[t1,t2], and this argument leads to the equation of motion of the cylinder,

mcχ̈ + k(χ)
s χ = −

∫∫

Bc(t)
σ2 j n j ds. (5.43)

A similar argument regarding the variations δri on Bo(t) × [t1,t2] leads to the natural
boundary condition

[
σi j n j − ρuiu jn j

]
δri = 0 on Bo(t). (5.44)

The assumption of incompressibility and the corresponding constitutive relation,
Eq.5.35, lead to the following form of Eq.5.42:

ρ

(
∂ui
∂t

+ u j
∂ui
∂x j

)
= − ∂p

∂xi
+ μ

∂2ui
∂x j x j

in Ro(t). (5.45)

Equation5.45 must be solved in conjunction with Eq.5.43, the continuity equa-
tion, and the boundary conditionmanifested inEq.5.44 (withσi j → σ̂i j ). This bound-
ary condition is interpreted as

[
σ̂i j n j − ρuiu jn j

] = 0 since the fluid displacements
are not prescribed on Bo(t). The fluid drives the cylinder with a force

F2(t) = −
∫∫

Bc(t)
σ̂2 j n j ds.

5.3 Applications to Reduced-Order Modeling

ConsiderEq.5.39with an additional term representing theworkdoneby the structural
damping force (i.e., that which changes vibrational energy into heat):

1
︷ ︸︸ ︷

δ

∫ t2

t1

∫∫∫

Ro(t)

1

2
ρ (u · u) dvdt + δ

∫ t2

t1

1

2
mcχ̇

2dt − δ

∫ t2

t1

1

2
k(y)
s χ2dt −

∫ t2

t1
c(vac)χ̇δχdt

−

2
︷ ︸︸ ︷∫ t2

t1

∫∫∫

Ro(t)
σ̂i j

[
∂ (δri )

∂x j

]
dvdt +

3
︷ ︸︸ ︷∫ t2

t1

∫∫

Bo(t)
ρ (u · δr) (u · n) dsdt = 0. (5.46)

c(vac) > 0 is the linearmaterial damping coefficientmeasured in vacuo. The structural
damping force is always opposed to the velocity, such that the nonconservative virtual
work,

(
δWcyl

)
o = c(vac)χ̇δχ , is always negative for positive χ̇ .

In order to reduce the complexity of Eq.5.46, the control volume Ro(t) is first
reduced to a small rectangular region R∗∗ incorporating the formation region. The
negative damping condition initiating the cylinder motion, as well as the periodic
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wake feeding the growing amplitudes of the cylinder, are generated in the formation
region. The existence of a temporal global wake instability in the formation region
allows a second, more crucial simplification to be made: The flow in R∗∗ is assumed
to be represented by the representative mass m f l whose transverse displacement is
w(t). All spatial dependencies are lost.

It emphasized that while ẇ(t) and χ̇ (t) (ẅ(t) and χ̈(t)) are both transverse veloc-
ities (accelerations), they need not always have the same sign at any one instant. It
is therefore important to address relative velocities (accelerations).

Term “1” of Eq.5.46 is reduced to

δ

∫ t2

t1

∫∫∫

Ro(t)

1

2
ρ (u · u) dvdt =⇒

∫ t2

t1

â0m f l ẇδẇdt, (5.47)

where â0 is a dimensionless constant. Term “2” can likewise be reduced. Term “3”
is eliminated because the energy fed through the vertical face fore (upstream) of the
cylinder only indirectly contributes to near-wake dynamics by providing the energy
for the development of the wake flow. The face aft (downstream) of the cylinder is
no longer involved in the near-wake mechanics.

Suppose the following separation is made:

−
∫ t2

t1
σ̂i j

[
∂ (δri )

∂x j

]
dvdt =⇒ −

∫ t2

t1
δW (w, ẇ, ẅ, χ, χ̇, χ̈ , t)dt −

∫ t2

t1
F(w, t)δwdt.

(5.48)

The functional F(w, t) = â1m f l fstUow(t)/D represents the “fluid stiffness”
term, where â1 is a dimensionless constant and fst = SU/D is the vortex shed-
ding or Strouhal frequency of the cylinder when it is stationary (S ∼ 0.2 is the
Strouhal number). The coefficient â1m f l fstUo/D represents the natural frequency
of the undamped wake-oscillator for small w(t) (no motion of the cylinder), and is
consistent with the observation that the damped (and hence the undamped) natural
frequency of the wake-oscillator must change as the flow velocity Uo changes [6].

The fundamental character of a wake-oscillator model is that when it is uncoupled
from the cylinder motion, it has a definite natural frequency,

(
â1m f l fstUo/D

)0.5
,

which changes when Uo changes.
Using Eqs. 5.47, 5.48 and 5.46 becomes

∫ t2

t1

â0m f l ẇδẇdt + δ

∫ t2

t1

1

2
mcχ̇

2dt − δ

∫ t2

t1

1

2
k(y)
s χ2dt −

∫ t2

t1

c(vac)χ̇δχdt

−
∫ t2

t1

δW (w, ẇ, ẅ, χ, χ̇, χ̈ , t)dt −
∫ t2

t1

F(w, t)δwdt = 0.

(5.49)
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Next, consider dividing the functional δW (w, ẇ, ẅ, χ, χ̇, χ̈ , t) as follows:

δW (w, ẇ, ẅ, χ, χ̇, χ̈ , t) = −F(y)
f l/st (w, ẇ, ẅ, χ, χ̇, χ̈ , t)δχ + F(y)

μ/p(w, ẇ, ẅ, χ, χ̇, χ̈ , t)δw. (5.50)

F (y)
f l/st (w, ẇ, ẅ, χ, χ̇, χ̈ , t)δχ is the instantaneous virtual work done by total trans-

verse hydrodynamic force acting on the cylinder, while F (y)
μ/p(w, ẇ, ẅ, χ, χ̇, χ̈ , t)δw

represents virtual work done by the vertical components of the viscous and pressure
forces within R∗∗, excluding the boundary of the cylinder. The negative sign on the
F (y)

f l/st (w, ẇ, ẅ, χ, χ̇, χ̈ , t)δχ term is due to the fact that on the surface of the cylinder
δχ = −δw because of the no-slip condition.

Suppose the following form is assumed for F (y)
f l/st :

F (y)
f l/st (w, ẇ, ẅ, χ, χ̇, χ̈ , t) = −1

4
ρπD2LCaχ̈(t)

+1

2
ρDLCd [ẇ(t) − χ̇ (t)] |ẇ(t) − χ̇ (t)| + 1

4
πρD2L(1 + Ca)ẅ(t). (5.51)

Ca represents the time-dependent-added mass coefficient for a moving cylinder in a
crossflow. It is not the same as the potential flow-added mass CA = 1. Cd represents
the component of the instantaneous vortex lift coefficient CL(t) that is out of phase
with the cylinder displacement.

Note that the form of Eq.5.51 is equivalent to the Morison–O’Brien–Johnson–
Schaff (MOJS) equation for the fluid force on a cylinder moving parallel to a time-
dependent fluid stream [22]. In principle, geometric considerations require that the
MOJS equation be modified when the cylinder is moving transversely to the free
stream. Here, however, Eq. 5.51 is retained unaltered with the understanding that
said equation can then be only referred to as “MOJS-like” .

The following form is assumed for Fμ/p (ẇ, ẅ, χ, χ̇, χ̈ , t):

Fμ/p(ẇ, ẅ, χ, χ̇, χ̈ , t) = â2m f l fst [ẇ(t) − χ̇ (t)] + â3m f l fst
U 2

o

[ẇ(t) − χ̇ (t)]3 .

(5.52)
The âi ’s are again dimensionless constants.

The functional Fμ/p(w, ẇ, ẅ, χ, χ̇, χ̈ , t) has two distinct roles. In the first place,
it is intended to capture the nonlinear damping effects in the wake-oscillator, much
like the ε fst (q̇2(t) − 1)q̇(t) term in the Rayleigh equation, or the ε fst (q2(t) − 1)q̇(t)
term in the van der Pol equation. This damping term must be such that the wake-
oscillator is self-excited and self-limiting.

Self-excitation of the wake is due to amplification by the shear layers of initial
instabilities generated at the separation points, and an upstream influence caused by
a region of absolute instability in the near wake. This region of absolute instability,
whose downstream boundary is the point in the wake where traveling waves can be
reflected, is associated with causing the propagation of an upstream traveling wave
disturbance which amounts to a “feedback” to the separation points.
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In addition, Fμ/p(ẇ, ẅ, χ, χ̇, χ̈ , t) must represent the nonlinear interaction (i.e.,
the right-hand-side) between the wake-oscillator and the motion of the cylinder.

First, Eqs. 5.51 and 5.52 are substituted into Eq.5.50. The result is then substi-
tuted into Eq.5.49, and the indicated variations performed. The conditions δw|t2t1 =
δχ |t2t1 = 0 are imposed and similar terms collected. The independence of the varia-
tions δχ and δw leads to the following set of coupled differential equations:

(
mc + 1

4
πρD2LCa

)
χ̈ (t) + c(vac)χ̇ (t) + k(χ)

s χ(t)

= 1

2
ρDLCd |ẇ(t) − χ̇(t)| [ẇ(t) − χ̇(t)] + 1

4
πρD2L(Ca + 1)ẅ(t), (5.53)

and

â0m f l ẅ(t) + â1m f l
Uo fst
D

w(t) + m f l fst
U 2

o

[
â3ẇ

2(t) + â2U
2
o

]
ẇ(t)

= â2m f l fst χ̇(t) + â3m f l fst
U 2

o

χ̇3(t) + 3â3m f l fst
U 2

o

[
ẇ2(t)χ̇(t) − ẇ(t)χ̇2(t)

]
.

(5.54)

5.4 Comparison with Other Wake-Oscillator Models

Equations5.53 and 5.54 are obtained as a reduced-order model for the self-excited
transverse motion of an elastically mounted rigid circular cylinder in a smooth flow.
The displacement of the cylinder from equilibrium, χ (t), is governed by Eq.5.53.
The fluctuating lift force resulting from vortex shedding acts as the primary driv-
ing force. Again, the fluctuating lift force is assumed to be correlated along the
entire span.

The forcing function onRHSofEq.5.53 is a function of both the relative transverse
velocity and the acceleration of the representative fluid mass m f l . Recall that the
transverse displacement of this fluid mass from the cylinder’s horizontal (x) line of
symmetry is denoted w (t). For a stationary cylinder, the displacement is denoted
wo (t). The fluid DOF w (t) represents the mean transverse displacement of the
collection of fluid particles having a total mass m f l at each time t .

First, define the dimensionless displacement variables


 (t) = χ (t)

D
,

W (t) = w (t)

D
,
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and the dimensionless time variable

T = tωst ,

where ωst = 2π fst is the circular Strouhal frequency.

5.4.1 The Structural Oscillator

Using the above transformed variables, Eq. 5.53 becomes

(mc + mdCa) 
′′ (T ) + c(vac)

ωst

′ (T ) + k(y)

s

ω2
st


 (T )

= 1

2
ρD2LCd

∣
∣W ′ (T ) − 
′ (T )

∣
∣ [W ′ (T ) − 
′ (T )

] + md (1 + Ca)W
′′ (T ) ,

(5.55)

where md = ρπD2L/4.
Next, define the in vacuo natural frequency,

ω(vac)
n =

√
k(y)
s

mc
� ω(air)

n , (5.56)

and the in situ [24] or true [26] natural frequency of the cylinder in crossflow,

ω(true)
n =

√
k(y)
s

(mc + mdCa)
, (5.57)

where mdCa = ρπD2LCa/4 ≡ �m is the added mass.
The identity

�m = mdCa = mc

[(
ω(vac)
n

ω
(true)
n

)2

− 1

]

(5.58)

is readily verified via Eqs. 5.56 and 5.57. Using this identity, the virtual mass can be
expressed as

(mc + �m) = (mc + mdCa) = mc

(
ω(vac)
n

ω
(true)
n

)2

. (5.59)

Substituting Eq.5.59 in Eq.5.55 yields
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′′ (T ) + 1

ωst

(
ω(true)
n

ω
(vac)
n

)2
c(vac)

mc

′ (T ) + 1

ω2
st

(
ω(true)
n

ω
(vac)
n

)2
k(y)
s

mc

 (T )

= 1

2mc

(
ω(true)
n

ω
(vac)
n

)2

ρD2LCd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

]

+ md

mc

(
ω(true)
n

ω
(vac)
n

)2

(1 + Ca)W
′′ (T ) . (5.60)

Introducing the reduced mass,

m̂∗ = ρπD2L

4mc
= md

mc
, (5.61)

and the in vacuo structural damping ratio,

ζ (vac) = c(vac)

2mcω
(vac)
n

, (5.62)

into Eq.5.60, and using Eq.5.56, yields


′′ (T ) + 2

ωst

(
ω(true)
n

ω
(vac)
n

)2

ζ (vac)ω(vac)
n 
′ (T ) + 1

ω2
st

(
ω(true)
n

ω
(vac)
n

)2

ω(vac)2
n 
 (T )

= 2

π

(
ω(true)
n

ω
(vac)
n

)2

m̂∗Cd

∣
∣W ′ (T ) − 
′ (T )

∣
∣ [W ′ (T ) − 
′ (T )

]

+ m̂∗
(

ω(true)
n

ω
(vac)
n

)2

(1 + Ca)W
′′ (T ) . (5.63)

By rearranging Eq.5.58, and using Eq.5.61, the useful identity

(
ω(true)
n

ω
(vac)
n

)2

= 1
(
1 + m̂∗Ca

) , (5.64)

is obtained.
Suppose the mass ratio

μ = ρπD2L

4 (mc + �m)
= ρπD2L

4 (mc + mdCa)

= md

(mc + mdCa)
(5.65)

is now introduced. Note that there exists the following relationship between m̂∗,
defined by Eq.5.61, and μ:
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μ = md

(mc + mdCa)
= md

mc

[
1

(
1 + m̂∗Ca

)

]

= m̂∗
(
1 + m̂∗Ca

) . (5.66)

The corrected structural damping [24] is defined as

ζ (true) = ζ (vac)

√
1

(
1 + m̂∗Ca

) . (5.67)

See [11] for additional possibilities and alternatives for the structural oscillator. From
Eqs. 5.64 and 5.67, the identity

(
ω(true)
n

ω
(vac)
n

)2

ζ (vac) =
(

ω(true)
n

ω
(vac)
n

) (
ω(true)
n

ω
(vac)
n

)
ζ (vac)

=
(√

1

1 + m̂∗Ca
ζ (vac)

)(
ω(true)
n

ω
(vac)
n

)

=
(

ω(true)
n

ω
(vac)
n

)
ζ (true) (5.68)

is established.
Using Eqs. 5.67 and 5.68 in Eq.5.63 leads to


′′ (T ) + 2ζ (true)

(
ω(true)
n

ωst

)

′ (T ) +

(
ω(true)
n

ωst

)2


 (T )

= 2

π

m̂∗
(
1 + m̂∗Ca

)Cd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

]

+ m̂∗
(
1 + m̂∗Ca

) (1 + Ca)W
′′ (T ) . (5.69)

Finally, using Eqs. 5.66 and 5.69 can be rewritten as


′′ (T ) + 2ζ (true)

(
ω(true)
n

ωst

)

′ (T ) +

(
ω(true)
n

ωst

)2


 (T )

= 2

π
μCd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

] + μ (1 + Ca)W
′′ (T ) . (5.70)
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5.4.2 The Wake Oscillator

Introducing the dimensionless variables
(

,
′, 
′′,W,W ′,W ′′, T

)
into Eq.5.54

and rearranging gives

â0ω
2
st DW ′′ (T ) + ωst

U 2
o

[
â3D

2ω2
stW

′2 (T ) + â2U
2
o

]
DωstW

′ (T ) + â1ωstUo

D
DW (T )

= −3â4ωst

U 2
o

D3ω3
st

[
W ′ (t)
′2 (T ) − 
′ (T )W ′2 (T )

]

+ â3ω4
st D

3

U 2
o


′3 (T ) + â2Dω2
st


′ (T ) . (5.71)

Dividing both sides of Eq.5.71 by â0ω2
st D yields1

W ′′ (T ) +ωst

U 2
o

[
D2ωst

â3
â0

W ′2 (T ) + U 2
o

ωst

â2
â0

]
W ′ (T ) + Uo

Dωst

â1
â0

W (T )

= −3D2ω2
st

U 2
o

â4
â0

[
W ′ (t)
′2 (T ) − 
′ (T )W ′2 (T )

]

+ D2ω2
st

U 2
o

â3
â0


′3 (T ) + â2
â0


′ (T ) . (5.72)

Noting that from the definition of the Strouhal frequency,

Uo

Dωst
= Uo

D
( 2π SUo

D

) = 1

(2π S)
,

Equation5.72 can be rewritten as

W ′′ (T ) +
[
(2π S)2

â3
â0

W ′2 (T ) + â2
â0

]
W ′ (T ) + 1

(2π S)

â1
â0

W (T )

= −3 (2π S)2
â4
â0

[
W ′ (T ) 
′2 (T ) − 
′ (T )W ′2 (T )

]

+ (2π S)2
â3
â0


′3 (T ) + â2
â0


′ (T ) . (5.73)

Consider for the moment the case of a stationary cylinder. In this case, 
(T ) and
its derivatives are all identically zero, and Eq.5.73 reduces to

W ′′
o (T ) +

[
(2π S)2

â3
â0

W ′2
o (T ) + â2

â0

]
W ′

o (T ) + 1

(2π S)

â1
â0

Wo (T ) = 0, (5.74)

1The model constant â0 is assumed to be nonzero at all times.
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where

Wo (T ) = wo (T )

D
.

The van der Pol and Rayleigh equations are the nonlinear oscillators most com-
monly used to model the fluctuating nature of the vortex shedding. For a stationary
cylinder, they adequately model the self-sustained, quasi-harmonic oscillations seen
experimentally in the lift coefficient, for example. The reader is referred to Facchinetti
et al. [10] for a more comprehensive discussion. Here, the focus is on constructing a
Rayleigh-type equation from Eq.5.74.

The dimensionless Rayleigh equation,

Q′′(T ) + ε
(
Q′2 (T ) − 1

)
Q′ (T ) + Q (T ) = 0,

with 0 < ε � 1, is known to provide a stable quasi-harmonic oscillation of finite
amplitude at the frequency

� = 1.

Equation5.74 is then of the Rayleigh type provided that the conditions

1

(2π S)

â1
â0

= 1

â2
â0

< 0
∣∣∣∣
â2
â0

∣∣∣∣ � 1

â3
â0

< 0,

and

(2π S)2
∣∣∣∣
â3
â0

∣∣∣∣ � 1

are satisfied. It is evident from the above conditions that if â0 < 0, then â2 > 0 and
â1,3 < 0. On the other hand, if â0 > 0, then â2 < 0 and â1,3 > 0.

Next, define

b̂i =
∣∣∣
∣
âi
â0

∣∣∣
∣ ,

where i = 2, 3. The sign of themodel constant â4 is not known a priori, and, therefore,
there are no constraints to determine the sign of the ratio â4/â0. As a result, said ratio
is represented as b4, where b4 � 0.
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Equation5.73 can now be written as

W ′′ (T ) +
[
(2π S)2 b̂3W

′2 (T ) − b̂2
]
W ′ (T ) + W (T )

= −3 (2π S)2 b4
[
W ′ (T )
′2 (T ) − 
′ (T )W ′2 (T )

]

+ (2π S)2 b̂3

′3 (T ) − b̂2


′ (T ) . (5.75)

Upon examining Eqs. 5.70 and 5.75, it is apparent that there are fivemodel param-

eters,
(
b̂2, b̂3, b4,Ca,Cd

)
. However, since b̂2, b̂3, and b4 are not all independent, the

true number of independentmodel parameters is actually six,
(
â0, â2, â3, â4,Ca,Cd

)
.

5.4.3 Comparison with the Model of Krenk and Nielsen
(1999)

In dimensionless form, the model equations derived by Krenk and Nielsen (KN) [17]
are given by


̈ (t) + ζ (true)ω(true)
n 
̇ (t) + [

ω(true)
n

]2

 (t) = μ f coωst Ṗ (t) , (5.76)

and

P̈ (t) + 2ζ f ωst

[

P2 (t) +
(
Ṗ (t)

ωst

)2

− 1

]

Ṗ (t) + ω2
st P (t) = − 1

v2o
coωst 
̇ (t) ,

(5.77)
where

μ f = ρD2L

(mc + �m)
, (5.78)

and ζ f ≡ equivalent fluid damping ratio.
It is not clear from Ref. [17] how the added fluid mass,�m in Eq.5.78, is defined.

Since KN test the validity of their model using data from experiments conducted
in air, the added fluid mass is small. That is, for m̂∗ � 1, �mpotential = CAm̂∗mc �
�m = Cam̂∗mc � 0. Thus, the distinction between�mpotential and�m matters little
in this case. This is not the case if the fluid medium is water.

The physical meaning of fluid variable2 W ∗ (t) in the KNmodel is also not clearly
defined. It is conjectured here that this fluid variable represents the relative transverse
displacement of the fluid mass m f l . Designating this conjectured KN wake variable
as W ∗

conj. (t), it follows that

W ∗
conj. (t) = w (t) − χ (t) .

2The actual fluid variable that is used in the formulation of their model.



122 5 Lagrangian Flow-Oscillator Models

Krenk and Nielsen nondimensionalize their fluid variable as follows:

P (t) = W ∗(t)
wo

.

As before, the scale wo is a parameter that “...controls the amplitude of self-induced
vibrations of the wake oscillator in the case of a stationary cylinder...” [17].

The parameters co and vo of Eqs. 5.76 and 5.77 are defined as

co = woγ

4π SD
, (5.79)

and
vo = wo

D
, (5.80)

where γ is a dimensionless coupling parameter.
The dimensionless time variable T = ωst t is now introduced. Effecting the change

of variables t → T in Eqs. 5.76 and 5.77 results in


′′ (T ) + ζ (true)

(
ω(true)
n

ωst

)

′ (T ) +

(
ω(true)
n

ωst

)2


 (T ) = μ f co P
′ (T ) , (5.81)

and

P ′′ (T ) + 2ζ f
[
P2 (T ) + P ′2 (T ) − 1

] + P (T ) = − 1

v2o
co


′ (T ) , (5.82)

respectively.
Comparing Eqs. 5.65 and 5.78, it is seen that

μ f = ρD2L

(mc + �m)
= 4

π
μ.

Using this result and Eqs. 5.79, 5.80, 5.81 and 5.82 can then be rewritten, respec-
tively, as


′′ (T ) + ζ (true)

(
ω(true)
n

ωst

)

′ (T ) +

(
ω(true)
n

ωst

)2


 (T ) = 4woγ

π2SD
μP ′ (T ) , (5.83)

and

P ′′ (T ) + 2ζ f
[
P2 (T ) + P ′2 (T ) − 1

]
P ′ (T ) + P (T ) = − Dγ

4π Swo

′ (T ) .

(5.84)
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Using the definition of W ∗
conj. (t), it is possible to define the new dimensionless

variable

Pconj. (T ) = W ∗
conj. (T )

wo
.

Its derivative is

P ′
conj. (T ) = W ∗′

conj. (T )

voD

= 1

vo

(
DW ′ (T ) − D
′ (T )

D

)

= 1

νo

[
W ′ (T ) − 
′ (T )

]
.

Making the substitution P ′ (T ) → P ′
conj. (T ) on the RHS of Eq.5.83 yields


′′ (T ) + ζ (true)

(
ω

(true)
n

ωst

)


′ (T ) +
(

ω
(true)
n

ωst

)2


 (T ) = 4woγ

π2SD
μP ′

conj. (T )

= 4woγ

π2SD
μ

[
W ′ (T ) − 
′ (T )

]
.

(5.85)

Comparing Eqs. 5.70 and 5.85, it is clear that the LHS of each equation is the same.
The RHS, on the other hand, differs. Equation5.85 has a RHS that represents a
linearized form of the drag term in Eq.5.70. Also absent from the RHS of Eq.5.85
is a term proportional to the acceleration of the representative fluid mass, P ′′ (T ).

Now, suppose that W ∗
conj. (t) = W ∗ (t). This implies that there is no distinction

between Pconj. (T ) = P (T ). In this case, Eq.5.81 reveals that in this case there is
no per se fluid-added damping. The structural oscillator is fed energy directly from
the wake oscillator via the μ f co P ′ (T ) term on the RHS, but it is not possible to
explicitly express the dependence of this energy transfer on the cylinder velocity

′ (T ).

Prima facie, Eqs. 5.75 and 5.84 seem nothing alike. In the first place, Eq.5.75
lacks a term of the form W 2 (T )W ′ (T ), which is present in Eq.5.84. Also, the
RHS of Eq.5.84 is linearly proportional to cylinder velocity 
′ (T ), while Eq.5.75
possesses an additional nonlinear forcing function.

However, if Pconj. (T ) and its derivatives,

Pconj. (T ) = 1

vo
[W (T ) − 
 (T )]

P ′
conj. (T ) = 1

vo

[
W ′ (T ) − 
′ (T )

]
,
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and

P ′′
conj. (T ) = 1

vo

[
W ′′ (T ) − 
′′ (T )

]
,

are substituted into Eq.5.84 in place of P (T ) and its derivatives, a complex forcing
function is obtained. In fact, this expression will include all the terms on the RHS of
Eq.5.75 plus additional nonlinear terms originating from the product

2ζ f

[{
1

vo
[W (T ) − 
 (T )]

}2
]

[
W ′ (T ) − 
′ (T )

]
.

Note that the forcing function will also involve terms that are linear in the cylinder
displacement
 (T ), velocity
′ (T ), and acceleration
′′ (T ) . The
 (T ) and
′′ (T )

terms are absent from Eq.5.75.
It is fair to say that comparison with the KN model is complicated by uncertainty

with respect to the definition of the fluid variable W ∗(t); very different conclusions
are reached depending on how W ∗(t) is interpreted.

5.4.4 Hall (1981)

As part of his doctoral dissertation, Hall [14] considers a modified Blevins model for
the transverse VIV of a spring-mounted rigid cylinder in uniform fluid flow. When
said fluid is water, the model equations are given in dimensionless form3


′′ (T ) + 1

(1 + ηa3)

[
2ζ (st. water) ω

(st. water)
n

ωst
+ a4η

2π S

]

′ (T )

+
(

1√
(1 + ηa3)

ω(st. water)
n

ωst

)2


 (T )

=
[

a4η

2π S (1 + ηa3)

]
Z ′ (T ) +

[
(a3 + a5) η

(1 + ηa3)

]
Z ′′ (T ) , (5.86)

and

Z ′′ (T ) −
[

(a1 − a4)

2π S (a0 + a3 + a5)

]
Z ′ (T ) +

[
2π Sa2

(a0 + a3 + a5)

]
Z ′3 (T ) + Z (T )

=
[

a4
2π S (a0 + a3 + a5)

]

′ (T ) +

[
a3

(a0 + a3 + a5)

]

′′ (T ) .

(5.87)

3Hall defines his mechanical parameters per unit length. The necessary invariance of the equations
to scaling, however, means they can simply be rewritten using the relevant parameters in Table 5.2
of [12] without compromising their validity.
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In the above equations, the ai ’s are independent model constants and

η = ρD2L

(mc + md)

is a mass ratio based on the potential flow-added mass.4

Note that there exists the following relationship between η and m̂∗:

η = ρD2L

(mc + md)
= ρD2L

mc
(
1 + m̂∗) = 4

π

m̂∗
(
1 + m̂∗) . (5.88)

Equation5.86 can now be written as


′′ (T ) + 1

(1 + ηa3)

[
2ζ (st. water) ω

(st. water)
n

ωst
+ a4η

2π S

]

′ (T )

+
(

1√
(1 + ηa3)

ω(st. water)
n

ωst

)2


 (T )

=
[

a4η

2π S (1 + ηa3)

]
Z ′ (T ) +

[
(a3 + a5) η

(1 + ηa3)

]
Z ′′ (T ) . (5.89)

T and 
 have the same meaning in Eqs. 5.87 and 5.89 as they do in Eqs. 5.55 and
5.75. In principle, however, Z (T ) has a slightly different interpretation than does
W (T ). Z ′ (T ) is in fact related to the dimensionless form of the Blevins’ [7] “hidden
fluid variable,” ż (t).

It is crucial to point out that Hall derives his model for a horizontal cylinder. The
“Hall hidden fluid variable” is then defined as

żHall(t) = Dωst Z
′ (T ) = 1

a0ρD2

∫∫

Ao

ρu2(y, z, t)dydz,

where Ao is the cross-sectional area of the rectangular control volume of unit axial
(x) dimension that surrounds the cylinder.

The distinction between Hall’s żHall(t) and Blevins’ ż (t) vanishes when Hall’s
model is formulated for a vertical cylinder. This is accomplished by rotating Hall’s
coordinate system about the y-axis by an angleα =−π/2 radians (i.e., counterclock-
wise), and then setting a5 equal to zero. The order of these operations is immaterial.

Is Z ′ (T ) related toW ′ (T )? To find the answer to this question, suppose u2(y, z, t)
is approximately constant over some subset A∗

o of Ao. As a result,

4Hall does not directly define his mass in this way. He merely refers to the “mass per unit length.”
The same ambiguity exists in the Blevins model: In [16] reference is also made to the “mass per
unit length m,” while in [7] the same mass m includes “the entrained mass of fluid.”
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ż (t) � 1

a0ρD2
u2(t)

∫∫

A∗
o

ρdx2dx3 = 1

a0ρD2
u2(t)β,

where β is simply a constant as ρ is assumed constant (the flow is incompressible).
From the assumption of fully correlated shedding in the synchronization regime, A∗

o
is the same at each axial station. As a result,

βL = m̃ f l,

where m̃ f l is the total mass of fluid contained in the volume A∗
oL . It is then possible

to write

ż (t) � 1

a0ρD2L
u2(t)m̃ f l .

If A∗
o coincides with the x-y projection of the region R∗∗, then m̃ f l = m f l and

u2(t) coincides with the wake degree-of-freedom ẇ(t). It follows that

ż (t) � 1

a0ρD2L
ẇ(t)m f l .

In addition, if m f l = ρD2L , as in Ref. [17], then

ż (t) � 1

a0
ẇ (t) .

It is clear that Z ′ (T ) is indeed related to W ′ (T ), at least in a limiting sense.
This supports the notion that the model represented by Eqs. 5.53 and 5.75 can be
meaningfully compared with Hall’s model equations.

To that end, consider first rewriting Eq.5.75 as


′′ (T ) + 2

λ
ζ (st. water) ω

(st. water)
n

ωst

′ (T ) +

(
1√
λ

ω(st. water)
n

ωst

)2


 (T )

= 2

π

m̂∗

λ
(
1 + m̂∗)Cd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

]

+ m̂∗

λ
(
1 + m̂∗)

(
C∗
a + 2

)
W ′′ (T ) , (5.90)

where the parameters ω(st. water)
n and ζ (st. water) are defined in Table5.1, and λ =[

1 + m̂∗

(1+m̂∗)
C∗
a

]
. C∗

a represents the deviation of the added mass coefficient from

its potential flow value of CA = 1.
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Table 5.1 A list of key parameters

Parameter Defined by Description

S � 0.2 Strouhal number

mc · · · Cylinder dry mass

L · · · Cylinder length

D · · · Cylinder diameter

m f l · · · Mass of near-wake fluid oscillator

c(vac) · · · In vacuo material damping of the cylinder + supports

k(y)
s · · · Total stiffness of the supporting springs

Uo · · · Magnitude of the uniform free stream velocity

ρ · · · Fluid density

CA 1.0 Potential flow-added mass coefficient

Ca · · · Added mass coefficient for a cylinder in crossflow

md
ρπLD2

4
Mass of fluid displaced by the cylinder

χ(t) · · · Transverse displacement of the cylinder from equilibrium

m̂∗ md

mc
Reduced mass

ωst
2π SUo

D
Circular Strouhal vortex shedding frequency

Setting a5 = 0 in Eq.5.89 gives


′′ (T ) + 1

(1 + ηa3)

[
2ζ (st. water) ω

(st. water)
n

ωst
+ a4η

2π S

]

′ (T )

+
(

1√
(1 + ηa3)

ω(st. water)
n

ωst

)2


 (T )

=
(

a4η

2π S (1 + ηa3)

)
Z ′ (T ) +

[
a3η

(1 + ηa3)

]
Z ′′ (T ) . (5.91)

Suppose now that the model parameters a3 and a4 are related to Ca and Cd ,
respectively, in the following way:

a3 = π

4

(
m̂∗Ca − m̂∗)

m̂∗ = π

4
(Ca − 1) = π

4
C∗
a ,

and
a4 = π

4
Cd .

Using Eq.5.88, the following additional relations are obtained:

a3η = m̂∗
(
1 + m̂∗)C

∗
a ,
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and

a4η = m̂∗
(
1 + m̂∗)Cd .

Defining

1 + a3η =
[

1 + m̂∗
(
1 + m̂∗)C

∗
a

]

= λ,

it follows that

a3η

(1 + a3η)
= m̂∗

λ
(
1 + m̂∗)C

∗
a

a4η

(1 + a3η)
= m̂∗

λ
(
1 + m̂∗)Cd .

Substituting the above relations into Eq.5.91 yields


′′ (T ) + 1

λ

[

2ζ (st. water) ω
(st. water)
n

ωst
+ 1

2π S

m̂∗
(
1 + m̂∗)Cd

]


′ (T )

+
(

1√
λ

ω(st. water)
n

ωst

)2


 (T ) = 1

2π S

m̂∗

λ
(
1 + m̂∗)Cd Z

′ (T )

+ m̂∗

λ
(
1 + m̂∗)C

∗
a Z

′′ (T ) . (5.92)

When Eq.5.90 is rewritten as


′′ (T ) + 2

λ
ζ (st. water) ω

(st. water)
n

ωst

′ (T ) +

(
1√
λ

ω(st. water)
n

ωst

)2


 (T )

= 2

π

m̂∗

λ
(
1 + m̂∗)Cd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

]

+ m̂∗

λ
(
1 + m̂∗)C

∗
aW

′′ (T ) + 2m̂∗

λ
(
1 + m̂∗)W

′′ (T ) , (5.93)

its similarity with Eq.5.92 becomes apparent.
Equations5.92 and 5.93 differ primarily with respect to the drag term. This dif-

ference is attributable to the fact that Hall’s formulation is based on a linear drag
term, proportional to Cd

[
Z ′ (T ) − 
′ (T )

]
. The presence of this linear drag term

is manifested in both the fluid-added damping term on the left-hand side (LHS) of
Eq.5.92,

1

2π S

m̂∗

λ
(
1 + m̂∗)Cd


′ (T ) ,
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and in the forcing term proportional to Z ′ (T ) on the right-hand-side (RHS) of said
equation. Such a separation is not possible in Eq.5.93.

In addition to the aforementioned difference, Eq.5.93 possesses the additional
term

2m̂∗

λ
(
1 + m̂∗)W

′′ (T ) = 2m̂∗
[
1 + m̂∗

(1+m̂∗)
C∗
a

] (
1 + m̂∗)

W ′′ (T )

= 2m̂∗
(
1 + m̂∗Ca

)W ′′ (T ) . (5.94)

The absence of this term in Eq.5.92 can be attributed to the fact that the Z ′′ (T ) and
the 
′′ (T ) terms have the same coefficient, a3η = m̂∗C∗

a/
(
1 + m̂∗), in the forcing

function5 Hall assumes for his structural oscillator. On the other hand, the coefficients
of theW ′′ (T ) and
′′ (T ) terms in Eq.5.90 differ, the difference between them being
precisely equal to this extra term.

It is of interest to point out that Iwan and Blevins [16] set a3 = 0. They argue that
doing so “... does not imply that there is no added mass effect since the flow forward
of the separation point remains attached to the cylinder, effectively increasing the
oscillating mass of the cylinder.” Furthermore, “ ... the best agreement between
model predictions and experimental response data ... is obtained when a3 = 0.” If
the added mass effect is not represented by the a3 term, then this suggests that it is
already captured in the effective mass which is computed using the potential flow-
added mass.

The assumption a3 = 0 is suitable when the fluid medium is air, in which case m̂∗
is small. The additional term of Eq.5.93 can then be neglected. In a water medium,
for which m̂∗ may no longer be small, added mass effects are important. Indeed,
the potential flow-added mass becomes an increasingly inexact representation of
the actual added mass as m̂∗ decreases. Under these circumstances, the assumption
a3 = 0 no longer seems reasonable, and the term represented by Eq.5.94 cannot be
neglected.

It is difficult to make a comparison between Eqs. 5.75 and 5.87 without reinter-
preting the model constants ai (i = 1, ..., 5). This is because in Hall’s model, the ai ’s
appear directly in both equations. This is not a feature of the present model. With
a5 = 0, Eq.5.87 becomes

Z ′′ (T ) + 2π S

(a0 + a3)

[
a2Z

′2 (T ) − (a1 − a4)

(2π S)2

]
Z ′ (T ) + Z (T )

= a4
2π S (a0 + a3)


′ (T ) + a3
(a0 + a3)


′′ (T ) . (5.95)

5See Eqs. 2.2.7 and 3.2.16 of Ref. [14].



130 5 Lagrangian Flow-Oscillator Models

Noting that a 
′′ (T ) term is absent from the RHS of Eq.5.75, one can also set

a3 = 0.

Next, suppose
a2

(a0 + a3)
= a2

a0
= 2π Sb̂3,

and (
a1 − a4
a0 + a3

)
= (a1 − a4)

a0
= 2π Sb̂2. (5.96)

Equation5.95 then becomes

Z ′′ (T ) +
[
(2π S)2 b̂3Z

′2 (T ) − b̂2
]
Z ′ (T ) + Z (T ) = a4

2π Sa0

′ (T ) .

Solving for a4 from Eq.5.96 and then substituting the result in the above equation
yields

Z ′′ (T ) +
[
(2π S)2 b̂3Z

′2 (T ) − b̂2
]
Z ′ (T ) + Z (T ) = 1

2π S

[
a1
a0

− (2π S) b̂2

]

′ (T ) .

(5.97)
A comparison of Eqs. 5.75 and 5.97 reveals that themain difference lies in the forcing
function on the RHS of each equation. The forcing function in Eq.5.75 is the sum
of the nonlinear function,

fN L
(
W ′ (T ) ,
′ (T )

) = (2π S)2
2∑

i=0

αi

′3−i

(T )W ′i (T ) (α0 = b̂3, α1 = α2 = b̂4),

(5.98)
and the linear function

fL
(

′ (T )

) = −b̂2

′ (T ) .

The nonlinear function fN L
(
W ′ (T ) ,
′ (T )

)
represents the autoparametric excita-

tion.
In contrast, the forcing function in Eq.5.97 is purely a linear function of the cylin-

der velocity, and fN L
(
W ′ (T ) ,
′ (T )

) = 0. This type of forcing has been exten-
sively used in wake oscillator models (e.g., [17, 24]).

In summary, it is apparent that the model represented by Eqs. 5.90 and 5.75 com-
pares well with the model equations derived by Hall [14]. The major discrepancy
between each of the model equations and their counterparts in Hall’s formulation is
in the form of the forcing function. Hall’s forcing functions are in each case linear;
the forcing functions in the model derived here include additional nonlinear terms.
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5.4.5 Berger (1988)

Berger’s [4] model represents a departure from the previous comparison model in
that it uses the lift coefficient as the fluid internal degree-of-freedom. Nonetheless,
Berger’s model serves a useful comparison because it is generally believed to be one
of the most successful improvements on the original Hartlen–Currie model [15]. Its
touted success lies primarily in its ability to correctly predict, both quantitatively and
qualitatively, oscillation hysteresis for certain values of ζ (vac).

Berger derives the following pair of dimensionless coupled equations as a model
for the transverse VIV of an elastically mounted rigid circular cylinder lying in a
uniform stream of air:


′′ (τ ) + δ
(

′ (τ )

)

′ (τ ) + 
 (τ) = 1

2π3L
m̂∗V (vac)2

r Cy (τ ) = a�2Cy (τ ) ,

(5.99)
and

C ′′
y (τ ) + f ∗ (

C ′
y (τ )

)
C ′

y (τ ) + �2Cy (τ ) = b
(

′ (τ )

)

′ (τ ) . (5.100)

Cy (τ ) is the lift coefficient,6 δ
(

′ (τ )

)
is the nonlinear structural damping function,

a is a coupling constant, f ∗ (
C ′

y (τ )
)
is the nonlinear damping function for the wake

oscillator, and b
(

′ (τ )

)
is a nonlinear feedback parameter. According to Berger, the

δ
(

′ (τ )

)
term is used to model the effects of viscous forces. The reduced velocity

V (vac)
r is defined in Table5.2.
The model parameters are defined as

δ
(

′ (τ )

) =
m∑

k=0

δ2k

′2k (τ ) ,

f ∗ (
C ′

y (τ )
) =

m∑

k=0

α2kC
′2k
y (τ ) , with α0 < 0 and α2m > 0,

b
(

′ (τ )

) =
m∑

k=0

b2k

′2k (τ ) ,

and

� = fst

f (vac)
n

= 2π SV (vac)
r . (5.101)

The coefficient set (δ2k, α2k, b2k) represents the model constants that are to be deter-
mined from experimental data. Note that the expansions for δ

(

′ (τ )

)
, f ∗ (

C ′
y (τ )

)

and b
(

′ (τ )

)
are all necessarily symmetric with respect to the neutral position of

6The fluid force term Cy (τ ) implicitly contains the added mass effects.
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Table 5.2 A number of possible characterizations of the cylinder natural frequency, and damping
and mass ratios

Parameter Value Description

ω(vac)
n

√
k(y)
s

mc
Cylinder natural frequency in
vacuo

ω(true)
n

√
k(y)
s

(mc + Camd )
Cylinder true (or in-situ)
natural frequency

ω(st. water)
n

√
k(y)
s

(mc + CAmd )
Cylinder natural frequency in
still water

ζ (vac) c(vac)

2ω(vac)
n mc

Damping ratio
(material/critical) in vacuo

ζ (true) ζ (vac)

√
1

m̂∗Ca
True (or in-situ) damping ratio

ζ (st. water) ζ (vac)

√
1

m̂∗CA
Damping ratio in still water

μ
m∗

1 + m∗Ca
Mass ratio including added
mass

V (vac)
r

2πUo

ω
(vac)
n D

Reduced velocity defined using
the in vacuo natural frequency

the cylinder, 
 (τ) = 0. This guarantees a system of equations, Eqs. 5.99 and 5.100,
that is invariant to the sign changes y := −y and Cy := −Cy .

Berger defines the dimensionless cylinder displacement as 
(t) = y (t) /D and
the dimensionless time as τ = ω(vac)

n t . His equations are now modified so that they
are in terms of the dimensionless time T .

To that end, the following relationship between the time derivatives is used:

dn (·)
dτ n

=
(

ωst

ω
(vac)
n

)n dn (·)
dT n

.

In order to distinguish the parenthesis indicating a functional relationship,
f ∗ (

C ′
y (τ )

)
for example, from those used solely for grouping purposes, it is conve-

nient to introduce the variable

κ = ω(vac)
n

ωst
. (5.102)

Using the above relationships and the definition ofκ, the dimensionless structural
equation of motion, Eq.5.99, can be written as


′′ (T ) + κδ
(
κ

−1
′ (T )
)

′ (T ) + κ

2
 (T ) = a�2
κ

2Cy(T ). (5.103)
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Effecting the change of variables τ → T in the wake oscillator, Eq. 5.100, and
again using the definition of κ yields

C ′′
y (T ) + κ f ∗ (

κ
−1C ′

y (T )
)
C ′

y (T ) + �2
κ

2Cy (T )

= κb
(
κ

−1
′ (T )
)

′ (T ) . (5.104)

Following Berger and Plaschko [5], only the first two terms are retained in
each of the power series representations for δ

(

′ (τ )

)
, f ∗ (

C ′
y (τ )

)
, and b

(

′ (τ )

)
.

Accordingly,

δ
(

′ (τ )

) = δ0 + δ2

′2 (τ ) ,

f ∗ (
C ′

y (τ )
) = α0 + α2C

′2
y (τ ) , with α0 < 0 and α2 > 0,

b
(

′ (τ )

) = b0 + b2

′2 (τ ) .

In terms of T , these become

δ
(
κ

−1
′ (T )
) = δ0 + δ2κ

−2
′2 (T ) ,

f ∗ (
κ

−1C ′
y (T )

) = α0 + α2κ
−2C ′2

y (T ) , with α0 < 0 and α2 > 0,

and
b

(
κ

−1
′ (T )
) = b0 + b2κ

−2
′2 (T ) .

Substitution of the truncated expansions into Eqs. 5.103 and 5.104 yields


′′ (T ) + κ

[
δ0 + δ2κ

−2
′2 (T )
]

′ (T ) + κ

2
 (T ) = a�2
κ

2Cy(T )

and

C ′′
y (T ) + κ

[
α0 + α2κ

−2C ′2
y (T )

]
C ′

y (T ) + �2
κ

2Cy (T )

= κ

[
b0 + b2κ

−2
′2 (T )
]

′ (T ) ,

respectively. After rearrangement, one finds


′′ (T ) +
[
δ0κ + δ2κ

−1
′2 (T )
]

′ (T ) + κ

2
 (T ) = a�2
κ

2Cy(T ), (5.105)

and

C ′′
y (T )+

[
α0κ + α2κ

−1C ′2
y (T )

]
C ′

y (T ) + �2
κ

2Cy (T )

= b0κ
′ (T ) + b2κ
−1
′3 (T ) , (5.106)

respectively.
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Noting that

a�2
κ

2 = a

(
fst

f (vac)
n

)2 (
2π f (vac)

n

2π fst

)2

= a, (5.107)

Equation5.105 can be rewritten as


′′ (T ) + δ0κ
′ (T ) + κ
2
 (T ) + δ2κ

−1
′3 (T ) = aCy (T ) . (5.108)

Returning to Eq.5.55, consider rewriting it in the form

mcχ̈ (t) + c(vac)χ̇ (t) + k(y)
s χ (t)

= 1

2
ρDLCd |ẇ (t) − χ̇ (t)| [ẇ (t) − χ̇ (t)] + md (1 + Ca) ẅ (t) − mdCaχ̈ (t) .

(5.109)
The RHS of Eq.5.109 simply manifests the assumed form for

F (y)
f l/st (t) = 1

2
ρU 2

o DLCy (t)

(see Eq.5.51). Thus, Eq.5.109 is equivalent to

mcχ̈ (t) + c(vac)χ̇ (t) + k(y)
s χ (t) = 1

2
ρU 2

o DLCy (t) .

Nondimensionalization of this equation yields


′′ (T ) + 2ζ (vac)

(
ω(vac)
n

ωst

)

′ (T ) +

(
ω(vac)
n

ωst

)2


 (T ) = 1

2

ρU 2
o L

mcω
2
st
Cy (T ) .

(5.110)
Upon using the definitions of m̂∗ and V (vac)

r , Eq. 5.110 can be written as


′′ (T ) + 2ζ (vac)

(
ω

(vac)
n

ωst

)


′ (T ) +
(

ω
(vac)
n

ωst

)2


(T ) = 1

2π3 m̂
∗V (vac)2

r

(
ω

(vac)
n

ωst

)2

Cy (T ) .

(5.111)
Finally, upon introducing� from Eq.5.101 andκ from Eq.5.102 into Eq.5.111, one
obtains


′′ (T ) + 2ζ (vac)
κ
′ (T ) + κ

2
 (T ) = a�2
κ

2Cy (T ) = aCy (T ) , (5.112)

where the final equality follows from Eq.5.107.
Comparing Eqs. 5.108 and 5.112, it is evident that the right-hand sides are the

same. That the RHS of each equation lacks terms proportional to C ′′
y (T ) and/or

C ′
y (T ) is of little surprise. The lift coefficient is, after all, a dimensionless force. If its

time derivatives were included, then the LHS of Eq.5.109 would necessarily involve
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terms proportional to
iv (T ) and/or
′′′ (T )when nondimensionalized. These terms
are not physically reasonable.

The cubic damping term of Eq.5.108 is not reproduced in Eq.5.109. As was
previously mentioned, the form of the drag term in Eq.5.109 must be such that it
guarantees the invariance of said equation to a rotation of the coordinate system
about the axis of symmetry x . Acceptable modifications to the current form of the
drag term are then: (i) a linearization of the drag term, resulting in a term pro-
portional to

[
W ′ (T ) − 
′ (T )

]
, (ii) a representation in higher order odd powers of[

W ′ (T ) − 
′ (T )
]
, and (iii) a superposition of (i) and (ii).

Additionally, a term consisting of the superposition of the existing drag term
and (i) or (ii), or the existing drag term and both (i) and (ii), can be constructed.
The addition of a term that is proportional to 
′3 (T ) would therefore constitute an
acceptable modification to the RHS of Eq.5.109. This term might be introduced
by assuming that the lift coefficient is represented by Ĉy (t) = Cy (t) − κ
′3 (T ),
where Cy (t) is determined from Eq.5.51. The κ
′3 (T ) term would then appear in
Eq.5.112, thus cementing its correspondence with Eq.5.108. Given the complexity
of the existing drag term in Eq.5.109, such a modification is not carried out here.

Turning to the wake oscillators, a comparison of Eq.5.75,

W ′′ (T ) +
[
(2π S)2 b̂3W

′2 (T ) − b̂2
]
W ′ (T ) + W (T )

= −3 (2π S)2 b4
[
W ′ (T )
′2 (T ) − 
′ (T )W ′2 (T )

]

+ (2π S)2 b̂3

′3 (T ) − b̂2


′ (T ) , (5.113)

and Eq.5.106 reveals many similarities. Noting again that

�2

(
ω(vac)
n

ωst

)2

= �2
κ

2 =
(

2πωst

2πω
(vac)
n

)2 (
ω(vac)
n

ωst

)2

= 1,

Equation5.106 can be rewritten as

C ′′
y (T )+

[
α0κ + α2κ

−1C ′2
y (T )

]
C ′

y (T ) + Cy (T )

= b0κ
′ (T ) + b2κ
−1
′3 (T ) . (5.114)

Suppose that

α0
ω(vac)
n

ωst
= α0κ = −B0,

and
α2

ωst

ω
(vac)
n

= α2κ
−1 = (2π S)2 B2,
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where B0, B2 > 0. Note that the signs are preserved since α0 < 0 and α2 > 0. Upon
substituting these definitions into Eq.5.114, one obtains

C ′′
y (T )+

[
(2π S)2 B2C

′2
y (T ) − B0

]
C ′

y (T ) + Cy (T )

= b0κ
′ (T ) + b2κ
−1
′3 (T ) . (5.115)

The LHS of this equation now has the same form as the LHS of Eq.5.113.
Consider the case in which

α0 = b0,

and
α2 = b2.

It follows, then, that
α0κ = b0κ = −B0,

and
α2κ

−1 = b2κ
−1 = (2π S)2 B2.

Under this special set of conditions, Eq. 5.115 becomes

C ′′
y (T ) +

[
(2π S)2 B2C

′2
y (T ) − B0

]
C ′

y (T ) + Cy (T )

= −B0

′ (T ) + (2π S)2 B2


′3 (T ) .

This equation is identical in form to Eq.5.113 when fN L
(
W ′ (T ) ,
′ (T )

) = 0.
Thus, the general form of Berger’s equations can be obtained as a special

case of the model equations presented here. It is again found, however, that
fN L

(
W ′ (T ) ,
′ (T )

)
must equal zero for the best agreement.

5.4.6 Tamura and Matsui (1979)

In Ref. [25], Tamura and Matsui present a modified Birkhoff wake-oscillator and the
equation of motion for an elastically mounted cylinder as a system of simultaneous
equations. The length Lw.o. of the wake-oscillator is variable7 and this translates into
the presence of a parametric damping term in the fluid-oscillator equation.

Letting α denote the angular displacement of the fluid-oscillator (see Fig. 5.4),
the time evolution equation in α is given by

7However, the time rate of change of the length, L̇w.o., is neglected for simplicity.
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Fig. 5.4 The relevant
physical parameters of the
Tamura–Matsui model

(vac)
2c

mc

x
Uo

2L

y

(y)

s

α

2k

ρ

Ī α̈ − C̄
(
1 − Pα2

)
α̇ + K̄

(
α + χ̇

Uo

)
= − Ī

(
0.5D + L̄w.o.

) χ̈ . (5.116)

Ī is themeanmoment of inertia of thewake-oscillator about the center of the cylinder,
C̄ is the mean damping coefficient representing the effects of discharged vortices, K̄
is the mean coefficient of the fluid dynamic restoring force, P is the coefficient of the
nonlinear damping mechanism, and L̄w.o. is the mean length of the wake-oscillator.

The rationale behind the K̄
(
α + χ̇

Uo

)
term is that horizontal motion of the cylinder

changes the relative angle over which the fluid dynamic restoring force must act.
The equation of motion for the elastically mounted cylinder is given as

mcχ̈ + c(vac)χ̇ + k(y)
s χ (t) = −1

2
fρU 2

o DL

(
α + χ̇

Uo

)
− 1

2
ρ

√
U 2

o + χ̇2DLCd χ̇ ,

(5.117)
where f � 1.16 is a proportionality constant related to the experimentally observed
relationship8 between the Magnus effect lift and wake angular displacement for a
rotating cylinder, and Cd = 1.2 is the drag coefficient. For a stationary cylinder, the
lift coefficient Cy is assumed to be Cy = − f α, while for the self-excited cylinder
Cy = − f (α + χ

Uo
).

Physically, the first term on the RHS of Eq.5.117 represents the lift force, while
the second term represents the transverse (y) component of the drag force.

Tamura and Matsui apply the simplification

−1

2
ρ

√
U 2

o + χ̇2DLCd χ̇ � −1

2
ρUoDLCd χ̇ ,

8The reader may wish to peruse Ref. [13]. Curiously, the authors find that f = 1.15 (Cs in their
notation) for the case of a spinning football whose trajectory is tracked in three dimensions.
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which is based on the assumption Uo � χ̇ . Implementing this approximation in
Eq.5.117 yields

mcχ̈ + c(vac)χ̇ + k(y)
s χ (t) = −1

2
fρU 2

o DL

(
α + χ̇

Uo

)
− 1

2
ρUoDLCd χ̇ . (5.118)

Nondimensionalizing Eqs. 5.116 and 5.118 yields
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and

mcDω2
st


′′ (T ) + c(vac)Dωst
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2
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)
− 1

2
ρUoDLCdDωst


′ (T ) ,

respectively. Upon simplifying the above equations, one obtains
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)D
′′ (T ) , (5.119)

and


′′ (T )+
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ωst
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Dπωst
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respectively.
Defining

ωst =
√

K̄

Ī

ζw.o. = C̄

2ωst Ī
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and

υ = 1
(
0.5D + L̄w.o.

)D,

Equation5.119 can be rewritten as

α′′ (T ) − 2ζw.o.
[
1 − Pα2 (T )

]
α′ (T ) + α (T ) = −Dωst

Uo

′ (T ) − υ
′′ (T ) .

(5.121)
However,

−Dωst

Uo
= −2π S,

and Eq.5.121 can also be written as

α′′ (T ) − 2ζw.o.
[
1 − Pα2 (T )

]
α′ (T ) + α (T ) = −2π S
′ (T ) − υ
′′ (T ) .

(5.122)
Turning to Eq.5.118, one finds that it can be expressed in the form


′′ (T ) + [
2ζ (vac)

κ + 4m̂∗ ( f + Cd) S
]

′ (T ) + κ

2
 (T ) = − f m̂∗

2π2S2
α, (5.123)

where κ of Eq.5.102 has been used.
In order to compare Eqs. 5.123 and 5.55, the latter is first rewritten in the following

way by using the corresponding parameters from Table5.29
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′′ (T ) . (5.124)

Next, let m̂∗Ca � 0 (i.e., assume the experiments are conducted in air). In this
case, Eq. 5.124 reduces to


′′ (T ) + 2ζ (vac)
κ
′ (T ) + κ

2
 (T )

= 2

π
m̂∗Cd

∣∣W ′ (T ) − 
′ (T )
∣∣ [W ′ (T ) − 
′ (T )

] + m̂∗W ′′ (T ) . (5.125)

It is apparent that (i) a linearization of the drag term in Eq.5.125 would lead to
a LHS that closely resembles the LHS of Eq.5.123, (ii) the displacement coupling

9Use the relation ω
(true)
n

ω
(vac)
n

=
√

1
1+m̂∗Ca

, which can be easily derived.
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present in Eq.5.123 is not a feature of Eq.5.125, and the acceleration coupling present
in Eq.5.125 is not a feature of Eq.5.123.

Comparing Eqs. 5.122 and 5.75, it is evident that if only the linear term on the
RHS of the latter is retained, the expressions are rendered quite similar. Indeed,

W ′′ (T ) +
[
(2π S)2 b̂3W

′2 (T ) − b̂2
]
W ′ (T ) + W (T ) = −b̂2


′ (T ) , (5.126)

is qualitatively similar to Eq.5.122. However, that acceleration coupling of Eq.5.123
is not a feature that is reproduced by Eq.5.126.

5.5 Discussion

Nonlinear wake-oscillator models have been shown to be leading order approxima-
tions for the vortex shedding instability from a fixed cylinder in uniform flow [1],
while wake-body models have been shown to represent the same type of leading
order approximation for forced oscillations of circular cylinders in uniform flows
[23]. These findings imply that these models have, at least to some degree, fluid
dynamical origins. It is precisely because of these fluid dynamical origins that wake-
bodymodels have been successful.However, by the very nature of being leading order
approximations to a very complex interaction, they have limitations. The method-
ology presented in this chapter serves to address both of these aspects. The fluid
dynamical origins can be accounted for since the starting variational principle is rig-
orous. The limitations are accounted for because any assumptions made in reducing
the variational principle are explicitly stated.

Section5.1.2 has shown that the wake-body model derived from the proposed
methodology shares many qualitative features with the three comparison models
chosen from the literature. One can argue that the comparison models are special
cases of the derivedmodels. This follows from the fact that the derivedmodel is found
to involve terms that do not appear in the comparison models. These additional terms
are, for themost part, the autoparametric terms. It is not the aim of this paper to weigh
in on the issue of whether or not these terms should be retained. Suffice it to say that
many authors have previously addressed the inadequacy of linear coupling terms in
wake-body models (e.g., Refs. [6, 17]).

There are terms in the comparison models that are not captured in the derived
model. This is simply a manifestationof the assumed forms in Eqs. 5.51 and 5.52.
Subject to a different set of assumptions, these equations could conceivably be mod-
ified such that the “missing” terms appear in the derived model. It cannot be stressed
enough that these modifications would need to be justified. This is, in essence, the
embodiment of the advantage of the method presented in this chapter, and this book
generally: That while the wake-body models still contain arbitrary coefficients, their
forms are arrived at by a line of reasoning, rather than a “hit or miss” approach.
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The authors believe that this approach can be implemented in other fluid–structure
interaction problems. The possibility of applying it to derive wake-body models for
elastic structures in uniform and shear flows is something that is possible with much
work. The current chapter was based on variational methods where the variation was
a virtual displacement. Based on these derivations, a flow-oscillator set of equations
was formulated. In the next two chapters, a variational approach based on virtual
velocities is formulated, where we first relate Lagrangian variables to Eulerian vari-
ables.
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Chapter 6
Eulerian and Lagrangian Descriptions

Abstract This chapter derives the relations between Eulerian and Lagrangian
descriptions of displacement and velocity fields, relations between the time deriva-
tives of system properties, variations, and introduces Jourdain’s variational principle.
Jourdain’s principle is then applied to viscous incompressible fluids, and the deriva-
tion of the energy rate equation. These equations will be utilized in the subsequent
chapter for the derivation of the flow-oscillator model for vortex-induced vibration.

6.1 Introduction

Our goal in this chapter and the next is the same as it was in the last chapter. Except
here, we wish to operate in the domain of the fluid. That is, we intend to operate in the
Eulerian frame of reference. Given that the flow is more complex than the structural
oscillations, an Eulerian framework makes sense, but requires that our Lagrangian
variational principles be transformed into the Eulerian frame. This challenge is met
in this chapter, and then utilized for VIV in the next chapter.

In classical mechanics, one has two alternative descriptions to observe and ana-
lyze dynamic systems: the Lagrangian description and the Eulerian description. The
Lagrangian reference frame has long been used in solid mechanics, while the Eule-
rian reference frame has been preferred in fluid mechanics. The fact that the first
principles of mechanics are defined in the Lagrangian reference frame is the main
advantage of this description. Then again, it has been shown that the equations of
motion (EOM) of fluid systems become less complicated in the Eulerian reference
frame.

In the Lagrangian frame, also called the particle description or material coordi-
nate, one observes the trajectories of specific particles during some interval of time.
Consequently, a set of coordinates, which are usually the initial positions, are tagged
to a set of particles and the resulting EOMare differential equations of the trajectories
(paths) of those particles. The Lagrangian trajectories, r , can be expressed as

r = r (A, t) , (6.1)
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where A is the vector of initial positions and t is time. The elements of A are constant
coordinates and therefore r has coordinates that depend on t .

The Eulerian frame of reference, also called the space-fixed coordinate or configu-
ration frame, describes a system at some fixed points in space. Unlike the Lagrangian
coordinates, the Eulerian coordinates are not carried by the particles, and they remain
unaltered by the physics of the problem. Therefore, the EOM represent the dynam-
ics of the particles that occupy the spatial frame as functions of time. The Eulerian
coordinates, x, are independent of time, t .

Generally, the transformation of the first principles of mechanics from the
Lagrangian frame to the Eulerian description is based on three conditions [19]:

1. The velocity obtained from both frames must be equal to each other at a given
time and a given spatial position. This is very clear since an actual flow particle
has a unique velocity at any instant.

2. Similar to velocities, the time derivatives of the fluid properties obtained from
either one of the representations must match the other one at a given time and
spatial position.

3. The time derivative of an integral of a function over a moving material volume
can be related to an integral of that function over an arbitrary control volume
using Reynolds transport theorem.

Themajority of the challenges in applying the first principles ofmechanics to systems
of fluids are due to the difficulties in satisfying the above conditions. These difficulties
are explored in more detail in the following sections.

6.2 Relating the Displacement Fields

The displacement field in the Lagrangian frame is defined by the particle trajectories,
Eq. 6.1. In fluid mechanics, they are referred to as pathlines. The trajectories of the
particles, as they are treated in the Lagrangian frame of reference, do not have an
exact equivalent Eulerian concept, as the Eulerian coordinates are independent of
time. The closest concept to pathlines is the existence of a function that maps the
current state of the particles to an earlier configuration. For convenience, the earlier
state can be chosen to be the initial configuration. Therefore, the Eulerian mapping
function can be expressed as

A = A (x, t) . (6.2)

In order to relate this mapping function to particle trajectories, assumptions must
bemade that themapping from A to r is continuous and unique such that two adjacent
particles will never be separated and neither particle will coexist at the same position
at the same time. These assumptions are the basis of continuum mechanics, and they
require the field to be a smooth continuum down to an arbitrarily small spatial scale.
If these assumptions hold, then the relation between A and r can be expressed by [19]

r = r (A, t) ⇔ A = A (r, t) , (6.3)
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where A(r, t) is the inverse of r(A, t). The importance of Eq.6.3 will become clearer
when considering the velocity transformation example of the next section.

6.3 Relating the Velocity Fields

As mentioned earlier, the velocities obtained by using any observation frame must
match the real velocity field. Denoting the velocity field in the Lagrangian frame by

v (A, t) = d r (A, t)

dt
, (6.4)

and in the Eulerian frame by u (x, t), then it must be true that

v (A, t) = u (x, t)|x=r , (6.5)

or, alternatively that
u (x, t) = v [A (r, t) , t]|r=x . (6.6)

In order to make these relations more clear, we consider the following simple exam-
ple.

Example 1 We assume that the Eulerian velocity field of a one-dimensional flow is
known to be

u (x, t) = −αx + βt , (6.7)

where α and β are known constants, and the equation is expressed by scalar variables
since the flow is one dimensional.

We wish to obtain the Lagrangian velocity field. Using Eq.6.5, we can write

v (A, t) = u (r, t) ⇒ v (A, t) = −αr + βt . (6.8)

Lagrangian coordinates r = r (A, t) are functions of only time, since the initial
positions are fixed. Therefore, the velocity v (A, t) is obtained by differentiating r
with respect to time, resulting in

v (A, t) = dr (A, t)

dt
= −αr (A, t) + βt (6.9a)

r (A, t = 0) = A, (6.9b)

which is an ordinary differential equation (ODE). Solving this ODE for r and differ-
entiating it with respect to time, the Lagrangian velocity field is found to be

v (A, t) = −α

[
β

α2
+ A

]
exp (−αt) + β

α
. (6.10)
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Now, we obtain the Eulerian velocity, Eq. 6.7, from Eq.6.10. In order to utilize
Eq.6.6, the mapping function, A, is required. Considering Eq.6.3, the particle tra-
jectories must be obtained first. This is done by integrating Eq.6.10 with respect to
time and obtaining the constants of integration by imposing the initial conditions.
The result is

r (A, t) =
(

β

α2
+ A

)
exp (−αt) + β

α2
(αt − 1) . (6.11)

The mapping function, A, is the inverse function of Eq.6.11, found to be

A (r, t) =
[
− β

α2
(αt − 1) + r

]
exp (αt) − β

α2
. (6.12)

By substituting the mapping function from Eq.6.12 into the Lagrangian velocity
field Eq.6.10 and replacing r with x , the Eulerian velocity field Eq.6.7 is obtained.

In general, for two- or three-dimensional flow, these transformations are not as
easy as the one-dimensional example here, as the differential equations are generally
coupled. Moreover, the velocity field must be known in, at least, one of these con-
figurations, that is, a problem must be first solved. Additionally, the initial positions
are not observable for a fluid system, unlike for solids (for instance in theory of
elasticity) [19].

6.4 Relating the Time Derivatives of the System Properties

The following notation for derivatives with respect to time has been adopted: d/dt
represents the total derivative of a Lagrangian function, D/Dt denotes the material
derivative of an Eulerian function, and ∂/∂t is the partial derivative with respect to
time.

The Lagrangian trajectories, r (A, t), and velocities, v (A, t), are functions of
initial positions and time. Therefore, their time derivatives are a simple differentiation
with respect to time, holding the initial conditions fixed

v (A, t) = d r (A, t)

dt
, aL (A, t) = dv (A, t)

dt
= d2r (A, t)

dt2
, (6.13)

where aL (A, t) are the Lagrangian accelerations.
For the Eulerian description, functions are space-time dependent on the Eulerian

velocity field. As these functions are essentially the system properties observed at
fixed points in space, the advection of the propertiesmust also be included. Therefore,
the total derivative is considered to be the material derivative, defined as

D ( )

Dt
= ∂ ( )

∂t
+ u · ∇ ( ) . (6.14)
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The term material derivative is used since this derivation is aimed to match the
total derivative of a Lagrangian function, that is the material-fixed frame. As an
example, the Eulerian acceleration, a, can be obtained as

a (x, t) = Du (x, t)

Dt
= ∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t) . (6.15)

Since a fluid property obtained from any observational frame must match the
unique real property of the system, the derivatives of a property function, say �, is

d�L (A, t)

dt
= D�E (x, t)

Dt

∣∣∣∣
x=r

, (6.16)

where�E (x, t) is the Eulerian representation of the Lagrangian function�L (A, t).

6.5 Reynolds Transport Theorem

The Reynolds Transport Theorem (RTT) is an effective tool to relate an integral over
a system volume (SV ), ormaterial volume, to an integral over a control volume (CV).
It can be thought of as the three-dimensional form of the Leibniz integral. The RTT
can be applied to a scalar-valued spatial function, say b (x, t), which is a quantity
with units (1/mass). For a fixed control volume, the RTT is expressed as [3]

d

dt

∫
SV (t)

ρb (x, t) dV (t) =
∫
CV

{
D [ρb (x, t)]

Dt
+ ρb (x, t) [∇ · u]

}
dV , (6.17)

where ρ is the fluid density.
TheRTT can be applied to a generalmoving and deforming control volumeCV (t)

that contains a solid as well as a fluid. The general form of the RTT is given by

d

dt

∫
SV (t)

ρb (x, t) dV (t) =
∫
CV (t)

∂ [ρb (x, t)]

∂t
dV (t) +

∫
CS(t)

ρb (x, t) [u · n] d A (t) ,

(6.18)
where CS(t) is a moving control surface. When using the RTT, the equations can
often be simplified by utilizing the Gauss (divergence) theorem, that is,

∫
CV

∇ · FdV =
∫
CS

F · nd A, (6.19)

where F is a vector-valued spatial function. If including a scalar-valued function,
say h(x, t), it can be shown that Gauss’ theorem will become

∫
CV

(F · ∇h + h∇ · F) dV =
∫
CS

hF · nd A. (6.20)
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Alternatively, the RTT can be used for evaluating the rate of change of a real-
valued spatial function, say b(x, t), of a control volume (not a control system) [3]:

D

Dt

∫
CV

b(x, t)dV =
∫
CV

∂

∂t
[b(x, t)] dV +

∫
CS

[b(x, t)] (vCS · n) d A, (6.21)

where vCS is the velocity of the control surface element, d A, and where we have
simplified the notation by removing the time arguments on the domains of integration.

The RTT can also be expressed in terms of the relative velocity, ur , defined as

ur = u − vCS ⇒ vCS = u − ur , (6.22)

where u is the fluid velocity. Substituting vCS from Eq.6.22 into Eq.6.21, we obtain

D

Dt

∫
CV

bdV =
∫
CV

∂b

∂t
dV +

∫
CS

b ((u − ur ) · n) d A, (6.23)

which, by applying the divergence theorem, becomes

D

Dt

∫
CV

bdV =
∫
CV

[
∂b

∂t
+ ∇ · (bu)

]
dV −

∫
CV

b (ur · n) d A

=
∫
CV

[
∂b

∂t
+ ∇b · u + b(∇ · u)

]
dV −

∫
CS

b (ur · n) d A. (6.24)

For incompressible fluids, imposing the incompressibility condition, ∇ · u = 0, on
Eq.6.24, yields the RTT for a general control volume,

D

Dt

∫
CV

bdV =
∫
CV

∂b

∂t
dV −

∫
CS

b (ur · n) d A. (6.25)

Moreover, if b(x, t) is a function of velocity u, the RTT can be expressed in terms
of ur and vCS as well.

Considering our discussions in this section, our goal is the derivation of a well-
defined relation between theLagrangian andEulerian variational operators.However,
relating the Lagrangian variation to the Eulerian variation faces challenges that are
discussed next.

6.6 Lagrangian and Eulerian Variations

Gelfand and Fomin [5, p. 168] used a family of surface transformations and utilized
an interim surface to obtain the relation between the Lagrangian variational operator,
δ, and the Eulerian one, δ̄, as
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Fig. 6.1 Relating the Lagrangian and the Eulerian variational operators

δ ( ) = δ̄ ( ) + δxi
∂ ( )

∂xi
. (6.26)

While the reader is encouraged to view the mathematically rigorous derivations
of Gelfand and Fomin, we will obtain this relation from a graphical point of view so
as to clarify the physics of this transformation.

We start by considering a particle i with its known Lagrangian trajectory r =
r (Ai , t), where Ai is the initial position of particle i . The Lagrangian path r =
r (Ai , t) represents the position of particle i at time t , which was at the position Ai

at time t = 0. Therefore, r represents the time-varying position of the particle in the
same frame in which Ai was originally observed. Consequently, if Ai is Eulerian, r
is the Eulerian position at time t .

By applying the virtual displacement δr , the particle will be transferred to an
imaginary path that differs from the actual path by δr for all time. Since δr are arbi-
trary infinitesimal vectors that are compliant with system constraints, the resulting
new paths can be thought of as an alternative possible trajectories.

Asmentioned earlier, theLagrangian coordinates are time dependent,whereas, the
Eulerian ones are time independent. Moreover, even though the virtual displacement,
δr , is imposed by holding timefixed (δt = 0), it gets carried away by the particle. This
is due to the fact that it is imposed in a material frame. Therefore, one must include
the advection effect in acquiring the Lagrangian–Eulerian variational relation.
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Considering the particle i and its real path r , let r∗ be a possible alternative path
that results by imposing the virtual displacement δr , as shown in Fig. 6.1. We are
interested in obtaining the resulting variation of a spatial function, say�(x, t), due to
an imposed δr . In order to consider advection, we assume that the particle will move
on path r∗ during an infinitesimal virtual time, say ε. Denoting the difference in value
of � between the virtual position, r∗ (Ai , t + ε), and actual position, r = r (Ai , t),
by ��, we have

�� = �(x, t)|r∗(Ai ,t+ε) − �(x, t)|r=r(Ai ,t) . (6.27)

Using an Eulerian position vector, x, we denote the actual position of the particle by
xi , and the virtual position by x∗

i . Therefore, the displacement vector, �xi , is

�xi = x∗
i − xi . (6.28)

Consequently, Eq.6.27 can be modified using Eq.6.28,

�� = �(xi+�xi , t + ε) − �(xi , t). (6.29)

Applying the Taylor expansion about xi and t to the first term on the right-hand
side of Eq.6.29, we obtain

�� = �(xi , t) + ε

[
∂�(x′, t ′)

∂t ′
]
{
x′ = xi
t ′ = t

} + �xi

[
∂�(x′, t ′)

∂x′
]
{
x′ = xi
t ′ = t

} − �(xi , t) + HOT ,

(6.30)
where HOT stands for higher order terms. By definition of the variational operator,
we have

δ� = lim
ε→0

��

ε
, (6.31)

and therefore,

δ� = lim
ε→0

⎧⎪⎨
⎪⎩

ε

ε

[
∂�(x′, t ′)

∂t ′

]
{
x′ = xi
t ′ = t

} + �xi
ε

[
∂�(x′, t ′)

∂x′

]
{
x′ = xi
t ′ = t

} + HOT

ε

⎫⎪⎬
⎪⎭ .

(6.32)
By definition

δxi = lim
ε→0

�xi
ε

, (6.33)

and

δ̄� = ∂�(x, t)

∂t
, (6.34)
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since δ̄� is the local variation of function � for which δxi acts as if it is a velocity.
Therefore, by taking the limit of Eq. 6.32, δ� is obtained as

δ�(x, t) = δ̄�(x, t) + δxi
∂�(x, t)

∂xi
, (6.35)

which is the same as Eq.6.26.
As is apparent in Eq.6.35, the Lagrangian variation in the Eulerian frame becomes

a mixed Lagrangian–Eulerian variation. This is because in the Eulerian description
the coordinates are fixed in space, and thus no variation is permitted on the dis-
placement field. Therefore, δxi is an Eulerian representation of a Lagrangian virtual
displacement. This introduces major difficulties when modeling fluid systems, as is
explained in the next section where some other challenges are also discussed.

6.7 Challenges Faced Using Virtual Displacement

In relating the equations of the solid to the fluid, requiring the relation of the
Lagrangian descriptions to the Eulerian ones has its own challenges. Initially, these
difficulties manifest themselves in relating the Eulerian and the Lagrangian varia-
tional operators, since the Lagrangian concept of virtual displacement does not have
an Eulerian counterpart. Some of the main challenges are discussed in this section.

As mentioned in Sect. 6.3, the existence of backtracking steps is required in these
types of problems. The reason is clear from the simple velocity transformation exam-
ple in Sect. 6.3. As evident from our analysis (Eqs. 6.5–6.12), in order to transform
the Lagrangian velocity to the Eulerian one, the mapping function (Eq.6.2) must be
known. The mapping function is also required for virtual displacements, which are
in many ways similar to velocities. However, the initial conditions are not observable
in the Eulerian description, nor are they in most fluid dynamics problems. Therefore,
one possibility is to guess an ad hoc mapping function, as explored by Leech [12].

Alternatively, some have chosen to keep the Lagrangian virtual displacements in
the variational formulation and obtain the necessary conditions on the control surface
by which the action function assumes stationary values inside the control volume.
This approachwill impose additional constraints on the choice of control volume that
generally cannot be made, or at least are not easily distinguished, as was encountered
by McIver [13].

Another challenge encountered by keeping the virtual displacement δr is when
the boundary conditions are expressed in the velocity format, as is generally true
for fluid systems. For many problems in solid mechanics, this difficulty has been
overcome by utilizing generalized coordinates, q,

δr =
n∑

i=1

∂ r
∂qi

δqi , (6.36)
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and then, by using the relation
∂ ṙ
∂q̇i

= ∂ r
∂qi

. (6.37)

While Eq.6.37 is true for holonomic systems, requiring the velocity field to be inte-
grable, it is not valid for nonholonomic systems [15]. Thus, it cannot be used for
ideal fluids and it has limited applicability for viscous incompressible fluids. Leech
discussed the fact that ideal fluids (inviscid and incompressible) are nonholonomic;
while viscous incompressible fluids can be considered holonomic, the boundary
conditions might not be so [12].

Moreover, the existence of nonconservative forces (that do perform virtual work)
can reduce the generality of stationary principles as variational methods. This is
due to the fact that generally the contribution of the nonconservative forces in the
equations of motion is not a consequence of the variational operations, but rather it
is by the appropriate choice of the equations representing nonconservative forces. In
order to keep the generality of the variational approach, Bateman [2] proposed that
there must exist a secondary system that absorbs the energy dissipated by the original
system, resulting in a set of complimentary equations. This secondary set must not
add any additional restriction to the system. Thus, the solution of the complimentary
equations must be a function of the solutions of the original system. However, he
showed that the complimentary equations do not generally meet this requirement for
nonlinear systems, that is, the number of variables required in Lagrange’s function
cannot be reduced. Concluding his paper, Bateman stated:

The researches of ClarkMillikan showed, indeed, that there was no prospect of the discovery
of a function L depending only on the quantities occurring in the equations of motion and
the equation of continuity.

Although this statement leaves very little promise for using stationary principles for
fluid systems, Hamilton’s principle of varying action, in the form

∫ t2

t1

(δT + δW ) dt −
N∑
i=1

∂Ti
∂ ṙ

· δr i

∣∣∣∣∣
t2

t1

= 0, (6.38)

is not a stationary principle if

N∑
i=1

∂Ti
∂ ṙ

· δr i

∣∣∣∣∣
t2

t1

	= 0. (6.39)

It requires that the configuration be known at two instances of time, that is, δr i = 0
at the end times. When modeling fluid systems, the boundary conditions for particle
trajectories are generally nonexistent. In the absence of these conditions, Hamilton’s
principle is not a variational principle, as was shown in Sect. 4.3.3. In this chapter,
Jourdain’s variational principle, introduced in the next section, is proposed as a
possible basis for overcoming some of these difficulties.
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6.8 Alternate Variational Perspective—Jourdain’s
Principle

One of the challenges in using d’Alembert’s principle, Lagrange’s equations, and
Hamilton’s principle for fluid mechanics, which is based on an Eulerian frame of ref-
erence, is that the virtual displacement used in these methods, which is a Lagrangian
concept, does not have a well-defined Eulerian counterpart. In principle, this chal-
lenge can be overcome by utilizing Jourdain’s variational principle, which assumes
the displacement field to be frozen and instead imposes a set of virtual velocities.
However, a review of the literature suggests that this principle has not been used
in modeling fluid dynamic systems or fluid–structure interaction systems. For the
dynamics of solid systems, Jourdain’s principle has attracted a very limited number
of researchers when compared with other mentioned methods. Mainly, it has been
preferred in the modeling of nonholonomic systems because the velocities are not
integrable.

For this reason, the following sections introduce Jourdain’s principle within the
context of analyticalmechanics. There is a body of literature on Jourdain’s variational
principle and its connection to the literature on variational mechanics. Examples
include Vujanovic and Atanackovic [22] and Wang and Pao [23]. We do not review
this literature and only refer to it as needed for the purposes of this work.

6.8.1 Jourdain’s Principle

In 1909, Jourdain published his variational principle to explain the gap between
d’Alembert’s principle and Gauss’ principle of least constraint (Gibbs–Appell equa-
tions) and the differences in the variational constraints imposed [7]. He considered
the variational constraints to be

δr = 0 δt = 0. (6.40)

The variational principles based on d’Alembert’s principle are based on the axiom
that the virtual displacement embodies all physically possible displacements and is
in this sense arbitrary but not zero.

Analogous to the other mentioned variational methods, Jourdain’s principle is
based on the dynamic equilibrium relation, and for a system of N particles is given
by the relation

N∑
i=1

(
mi r̈ i − Fi

) · δ ṙ i = 0, where δr = 0, δt = 0, (6.41)
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mi is the mass of particle i , and Fi is the component of the vector force acting on
particle i in the direction of δ ṙ i , which is the variation of the velocity of particle i ,
called virtual velocity.

Jourdain showed that his method demands less derivations for nonholonomic sys-
tems when compared with d’Alembert’s and Gauss’ principles. Jourdain concluded
that his constraints lead to a new principle and method. However, he did not explain
the physical meaning of his virtual velocities, which do not correspond to any virtual
displacements.

Since the terms in Eq.6.41 are power relations, the equation has also been referred
to as the principle of virtual power and Kane’s equations. We will use the term
Jourdain’s principle (JP).

6.9 Jourdain’s Variational Operator

Jourdain’s variational principle assumes an alternative possible velocity field for the
system, while time and displacements are considered to be frozen. Therefore, the
variation of a real-valued function of vectors is defined as the resulting change in the
function value due to the imposed virtual velocities, while neglecting the terms of
orders higher than one with respect to the velocity. Thus, Jourdain’s variation of a
function ψ , say δψ , is defined as

δψ = lim
ε→0

1

ε
[ψ(u + εδu) − ψ(u)], (6.42)

where u is the velocity field and δu is the variation of the velocity field. From the
vector calculus, the derivative (∂ψ/∂u, also referred to as an abstract derivative) of
a real-valued function ψ of vectors u is defined [4] by the relation

∂ψ(u + εw)

∂ε

∣∣∣∣
ε=0

≡ ∂ψ

∂u
· w (6.43)

for all w. For a specific set of vectors w, Eq. 6.43 results in the directional derivative,
that is, the derivative of ψ in the direction of w. Therefore, by setting w = δu on the
right-hand side of Eq.6.43, we have

∂ψ

∂u
· δu = ∂ψ(u + εδu)

∂ε

∣∣∣∣
ε=0

≡ lim
ε→0

1

ε
[ψ(u + εδu) − ψ(u)]. (6.44)

Comparing Eqs. 6.42 and 6.44, we obtain
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δψ = ∂ψ

∂u
· δu. (6.45)

Therefore, Jourdain’s variation of a function is equal to its derivative with respect to
velocity in the direction of the virtual velocity. Since δu is a set of arbitrary vectors
that are compatible with the system constraints, the existence of any constraint on
the velocity field limits the direction of the variational operator. Thus, the kinematic
constraints do not necessarily impose limitations on the magnitude of δu. However,
the magnitude of δu at a point, say x
, must be small enough so that the function ψ

be smooth in the neighborhood of radius |δu| about x .
Next, Jourdain’s principle is derived from d’Alembert’s principle.

6.10 Deriving Jourdain’s Principle from D’Alembert’s
Principle

Jourdain’s principle can be derived from d’Alembert’s principle by direct differenti-
ation [18] or by means of a Taylor series expansion [1]. We choose direct differentia-
tion as this approach provides the format requiredwhen applying Reynolds Transport
Theorem to a fluid system.

D’Alembert’s principle can be stated as

N∑
i=1

(
mi r̈ i − Fi

) · δr i = 0,where δt = 0, (6.46)

and the variation δr i is arbitrary. Differentiation of Eq.6.46 with respect to time
yields

N∑
i=1

{
d

dt

(
mi r̈ i − Fi

) · δr i + (
mi r̈ i − Fi

) · d

dt
(δr i )

}
= 0,where δt = 0.

(6.47)
Using the commutation rule,

d

dt
(δr) − δ

(
d

dt
r
)

= 0, (6.48)

we have

N∑
i=1

{
d

dt

(
mi r̈ i − Fi

) · δr i + (
mi r̈ i − Fi

) · δ ṙ i

}
= 0,where δt = 0. (6.49)

Now, we can impose Jourdain’s constraints,
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δt = 0, δr i = 0, and δ ṙ i = d

dt
(δr i ) 	= 0, (6.50)

and obtain Jourdain’s principle,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
i=1

(
mi r̈ i − Fi

) · δ ṙ i = 0

δt = 0
δr i = 0
δ ṙ i = d

dt (δr i ) 	= 0,

(6.51)

where δ ṙ i is the virtual velocity. Jourdain’s constraints, expressed by Eq.6.50,
assume that a system can have an alternative possible velocity field at a time instant
with the same corresponding displacement field.

In order to distinguish between Jourdain’s and d’Alembert’s variational operators,
many authors have used the notation δ1 to denote Jourdain’s variation. We generally
prefer to retain the same notation (δ) with Jourdain’s constraints in the remainder of
this work, except as noted otherwise, where the type of variation will be understood
from the context.

Wang and Pao [23] discuss the validity of taking the time derivative of the virtual
displacement as was done above and elsewhere in the literature. They state that
“one cannot take the time derivative of a quantity that is not a function of time.
Therefore, [Jourdain’s principle] should be treated as an independent variational
equation of motion in mechanics ... and regard it as a mathematical representation
of the principle of virtual power because the product of force with virtual velocity
is virtual power.” They postulate Jourdain’s principle as a fundamental principle in
mechanics independent of all other principles. A number of questions arise: (i) Since
the displacement is a function of time, is the virtual displacement also a function of
time? (ii) Is the virtual displacement directly applicable to a fluid as it is to a solid?
and (iii) Is the end result—Jourdain’s principle—any less a principle in its own
right regardless of how we interpret the variations of displacement and velocity? We
address these questions as a part of our developments in the following sections.

6.11 Characteristics of Jourdain’s Principle

As emphasized by Jourdain, his constraints lead to a different variation principle.
Substantively, JP is different than the other virtual principles. These differences are
noted next.

Kövecses and Cleghorn [8] investigated Jourdain’s principle. They proposed that
the position vector, r , can be represented by using its trajectories in both Lagrangian
and Eulerian frames. Based on their hybrid parameterization, they show that unlike
the virtual displacements and velocities utilized in Lagrange’s equation, d’Alembert
principle, and Hamilton’s principle, the virtual velocities in JP are not necessarily
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infinitesimal quantities. Also, they pointed out that JP always results in an alternative
possible state,whereas this canonlybe accomplishedby theother variationalmethods
for holonomic systems.

While the majority of the limited literature on JP is focused on its application
to nonholonomic systems, an important feature of this principle was revealed by
Papastavridis [18]. While examining the principle and comparing it with Lagrange’s
equations, he showed that Jourdain’s principle is independent of the commutation
rule Eq.6.48. He showed that, for the case where δ∗r 	= 0 in

δ∗r = d

dt
(δr) − δ

(
d

dt
r
)
, (6.52)

the application of Jourdain’s principle results in the correct EOM.While the reader is
urged to consider the discussion by Papastavridis, we proceed with an interpretation
suited for our purposes that results in a simplified proof of this feature.

Let us consider the relation between Lagrangian variations (δ) and Eulerian vari-
ations

(
δ̄
)
as defined by Eq.6.35, and impose the Jourdain constraints (δxi = 0). The

result is
δ�(x, t) = δ̄�(x, t). (6.53)

This is a very important property, as it states that Jourdain’s variation of a spatial func-
tion is the same in both Lagrangian and Eulerian descriptions. Using this property,
some of the problems that have been encountered in extending variational principles
for fluid systems can be avoided by using JP.

In order to prove that JP commutes with D/Dt , we apply Jourdain’s variational
operator to the total derivative of a function. Using Eq.6.53, except replacing � by
D�/Dt , we can write

δ

[
D

Dt
�(x, t)

]
= δ̄

[
D

Dt
�(x, t)

]
. (6.54)

It has been shown that the Lagrangian variation commutes with time differentiation
while the Eulerian one does not [24]; that is,

δ

[
D

Dt
�(x, t)

]
= D

Dt
[δ�(x, t)] (6.55)

δ̄

[
D

Dt
�(x, t)

]
	= D

Dt

[
δ̄�(x, t)

]
. (6.56)

Using Eq.6.54, then Eq.6.55, and finally Eq.6.53, we have

δ̄

[
D

Dt
�(x, t)

]
= δ

[
D

Dt
�(x, t)

]
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= D

Dt
[δ�(x, t)]

= D

Dt

[
δ̄�(x, t)

]
. (6.57)

We arrive at Eq.6.57 rather than Eq.6.56, thus proving that for JP, the variation does
commute with the time derivative D/Dt .

6.12 Eulerian–Lagrangian Description of Jourdain’s
Principle

As shown earlier, JP can be obtained by differentiating d’Alembert’s principle, and
then imposing Jourdain’s constraints. Similarly, in the following, we start by manip-
ulating d’Alembert’s principle, and then apply Jourdain’s constraints. Therefore,
Jourdain’s constraints are kept beside d’Alembert’s principle as shown in Eq.6.58,
where the brace on the left is to remind us that the same mathematical manipulations
must be applied to all those terms. As shown in Sect. 6.10, all the terms that are
embraced are equivalent to Jourdain’s principle.

D’Alembert’s principle for a system of N particles can be stated as

N∑
i=1

d

dt

(
mi ṙ i

) · δr i =
N∑
i=1

Fi · δr i ,

and by differentiating this with respect to time and imposing Jourdain’s constraints,
JP can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt

[
N∑
i=1

d
dt

(
mi ṙ i

) · δr i

]
= d

dt

[
N∑
i=1

Fi · δr i

]

δt = 0
δr i = 0
d
dt (δr i ) 	= 0.

(6.58)

In the above, both sides of the equation are differentiated using the product rule and
use is made of the δr i = 0 constraint.

As discussed in the beginning of this chapter, the velocity and resultant force
observed at a point in Eulerian space must be the same as the velocity and forces
obtained from the Lagrangian frame for a particle that occupies that Eulerian point,
that is,

v (Ai , t) = u (r i , t) (6.59)

F(Ai , t) = FE (r i , t), (6.60)
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where v
(= ṙ

)
is the Lagrangian velocity and u is the Eulerian velocity (the same

as before), FE is the Eulerian representation of the force F(Ai , t). Note that r i and
r (Ai , t) are two alternative ways to denote the same parameter.

In continuum mechanics, a set of particles is assumed to be continuous in such a
way that two particles do not occupy the same position, and there exist no gaps unless
at isolated points. By the assumption that there exists a unique function that maps
the Lagrangian reference frame to the Eulerian one, the continuum assumptions are
applied to the Eulerian frame. Consequently, the change in the system properties,
as viewed from a fixed position in space, is assumed to be smooth, continuous and
differentiable, meaning that two consecutive particles occupying a point in space,
say x, are allowed to possess infinitesimally different properties.

Also, as discussed in Sect. 6.2, for each particle trajectory there exists an inverse
mapping function to the initial position of that particle (Eq.6.3). While the initial
position is a fixed variable in the Lagrangian frame, it can be selected to be any
position on the path, differing only by the reference times. Let us call any of these
points a possible initial position. Alternatively, by mapping these different time ref-
erences into a specific one, there must exist an instantaneous spatial function whose
outcome is the path history of the particle occupying that space. As a result, these
possible initial positions can be considered to be a spatial function. Therefore, in the
realm of continuummechanics, we assume that there must exist an Eulerian smooth,
continuous, differentiable function � (x, t) where

r = � (x, t) , (6.61)

and
d

dt
r = d

dt
� (x, t) = D

Dt
� (x, t)

∣∣∣∣
x=r

. (6.62)

Note that Eq.6.61 becomes Eq.6.2 for a fixed initial position, and thus it can then
no longer be differentiated. Also, from Eqs. 6.59 and 6.62 we have

u (x, t) = D

Dt
� (x, t) , (6.63)

since v (A, t) = d r/dt .
By substituting Eqs. 6.59–6.62 into Eq.6.58, Jourdain’s principle for N particles

becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt

{
N∑
i=1

d
dt [miu (r i , t)] · δ� (r i , t)

}
= d

dt

{
N∑
i=1

FE (r i , t) · δ� (r i , t)
}

δt = 0
δ� (r i , t) = 0
d
dt [δ� (r i , t)] 	= 0.

(6.64)
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Note that u, FE , and � are all Eulerian functions. However, Eq.6.64 is a
Lagrangian equation due to the presence of r i (since we are following the parti-
cles). Also, the variational operator δ is Lagrangian.

If the set of particles remains continuous for all time, the summation can be
replaced with integration over the material domain. In that case, Eq. 6.64 becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt

{∫
Vm

d
dt [ρu (r, t)] · δ� (r, t) dVm

}
= d

dt

{∫
Vm

f (r, t) · δ� (r, t) dVm
}

δt = 0
δ� (r, t) = 0
d
dt (δ� (r, t)) 	= 0,

(6.65)

where Vm is the material volume, ρ is the density, and f is the force density. Since all
the functions are Eulerian, only the bounds of the integrations are required in order to
evaluate those integrals. If the material volume is known in the Eulerian description
for all time, then the effects of the Lagrangian paths r inside the domain become
irrelevant to the integration and it can be replaced by the Eulerian coordinate x.

By mapping the system from the Lagrangian frame of reference to the Eule-
rian representation, the material volume, Vm , will be mapped to an Eulerian system
(material) volume, VE (t), so that

dVm (r, t) = det

[
∂ r
∂x

]
dVE (x, t) , (6.66)

where we used the determinant of the Jacobian for the mapping.
Thus far, the derivations have been kept general, that is, we did not specify the

compressibility property of the material. We next limit our derivation to incompress-
ible flows, where the incompressibility condition implies that

det

[
∂ r
∂x

]
= 1, (6.67)

for all time. Therefore, by substituting Eqs. 6.66 and 6.67 into Eq.6.65, utilizing
Eq.6.16, and then, replacing r for the reason explained after Eq.6.65, Jourdain’s
principle for an incompressible set of continuous particles becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
dt

{∫
VE (t)

D
Dt [ρu (x, t)] · δ� (x, t) dVE (t)

}
= d

dt

{∫
VE (t) f (x, t) · δ� (x, t) dVE (t)

}
δt = 0
δ� (x, t) = 0
D
Dt (δ� (x, t)) 	= 0,

(6.68)
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where by Eq.6.63, u (x, t) = D
Dt � (x, t), where d/dt is used to emphasize that it is

a differentiation of a material volume, and D/Dt is used inside the integrand since
the associated function is Eulerian.

Equation6.68 is stillmixedEulerian–Lagrangian.Thevariations δ areLagrangian,
and the same set of particles is being followed. In the following section, we impose
Jourdain’s constraints and convert Eq. 6.68 into an equation for a system of changing
mass with the Eulerian variational operator.

6.13 Extended JP for General Control Volume

Jourdain’s principle for a system of particles was obtained in Eq. 6.68, which must
be considered together with Eq.6.63. In relating the integrals over the system vol-
ume to those over a control volume, an effective tool is Reynolds transport theorem
(Sect. 6.5). In the following, each side of Eq.6.68 is considered separately for sim-
plicity, and is manipulated so as to become applicable to the cases where general
control volumes are considered. The resulting equation is completely Eulerian.

6.13.1 Left-Hand Side of Eq. 6.68

We start by considering the left-hand side of Eq.6.68, and apply the RTT for a general
control volume as per Eq.6.18,

d

dt

{∫
VE

D

Dt
[ρu (x, t)] · δ� (x, t) dVE

}

=
∫
CV

∂

∂t

{
D

Dt
[ρu (x, t)] · δ� (x, t)

}
dV

+
∫
CS

{
D

Dt
[ρu (x, t)] · δ� (x, t)

}
[u (x, t) · n] d A, (6.69)

where the time dependence of the domains of integration is implied. Nowby applying
Gauss’ divergence theorem (Eq.6.20) to the right-hand side of Eq.6.69, we can
combine the two terms on the right-hand side, as follows,

d

dt

{∫
VE

D (ρu)

Dt
· δ�dVE

}

=
∫
CV

[
∂

∂t

(
ρ
Du
Dt

· δ�

)
+ u · ∇

(
ρ
Du
Dt

· δ�

)
+

(
ρ
Du
Dt

· δ�

)
(∇ · u)

]
dV
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=
∫
CV

[
D

Dt

(
ρ
Du
Dt

· δ�

)
+

(
ρ
Du
Dt

· δ�

)
(∇ · u)

]
dV ,

(6.70)

where the argument (x, t) is omitted since we recognize that all the functions are
expressed in the Eulerian frame. Moreover, the density ρ has been pulled out of the
differentiation since the density is constant for incompressible flows.

By imposing the incompressibility constraint, ∇ · u = 0, and then differentiating
the remaining terms, Eq.6.70 becomes

d

dt

{∫
VE

D (ρu)

Dt
· δ�dVE

}
=

∫
CV

D

Dt

(
ρ
Du
Dt

· δ�

)
dV

=
∫
CV

[
ρ
D2u
Dt2

· δ �+ ρ
Du
Dt

· D

Dt
(δ�)

]
dV . (6.71)

In deriving Eq.6.71, we have not yet imposed Eq.6.50, Jourdain’s constraints. Since
δ is the Lagrangian variational operator, the commutation rule still holds,

D [δ (�)]

Dt
= δ

[
D (�)

Dt

]
. (6.72)

Substituting Eq.6.63 in Eq.6.72, we have

D [δ (�)]

Dt
= δu. (6.73)

Finally, by applying Jourdain’s constraints as expressed in Eq.6.68, in particular
δ� = 0, and using Eq.6.73, the left-hand side of Eq.6.68 becomes

d

dt

{∫
VE

D (ρu)

Dt
· δ�dVE

}
=

∫
CV

ρ
Du
Dt

· δudV , (6.74)

where we realize that δu is an Eulerian variation of the Eulerian velocity. This is
because Jourdain’s variation of a spatial function is the same in both Lagrangian and
Eulerian descriptions, as was expressed by Eq.6.53. We will not use the notation δ̄,
suggested earlier, in the remainder of this derivation due to the understanding that
the Lagrangian variational operator becomes the Eulerian operator after imposing
Jourdain’s constraints, δ� = 0.

6.13.2 Right-Hand Side of Eq. 6.68

For the right-hand side of Eq.6.68, the steps are similar to those above, and result in
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d

dt

{∫
VE

f · δ�dVE

}
=

∫
CV

[
∂

∂t
( f · δ�) + u · ∇ ( f · δ�) + ( f · δ�) (∇ · u)

]
dV

=
∫
CV

D

Dt
( f · δ�) dV

=
∫
CV

f · δudV . (6.75)

6.13.3 New Version of Eq. 6.68

By substituting Eqs. 6.74 and 6.75 into Eq.6.68, and by considering Eq.6.53, the
extended Jourdain’s principle for a system of changing mass in a control volume
becomes

∫
CV

ρ
Du (x, t)

Dt
· δu (x, t) dV =

∫
CV

f (x, t) · δu (x, t) dV , (6.76)

where all the variations and functions are represented in the Eulerian frame.
We have derived a variational formulation that is expressed purely in the Eulerian

frame. We are not aware of a similar formulation in the literature. In order to verify
our mathematical manipulations, we utilize Eq.6.76 to derive the Navier–Stokes
equations in the following section.

6.14 Extended Jourdain’s Principle for Viscous
Incompressible Fluids

In fluid mechanics, forces acting on a fluid particle are generally divided into three
categories: line forces, body forces, and surface forces [9]. Line forces, also called
surface tension, do not appear directly in the EOM as they are considered boundary
conditions. Thus, they are not considered in this work. Therefore, the total active
force, f (x, t), in a control volume is obtained by integrating the force density over
that control volume,

∫
CV

f (x, t) dV =
∫
CV

f bdV +
∫
CS

f sd A, (6.77)

where f b denotes the body force per unit volume (body force density) and f s is the
surface force per unit surface area. Considering the definition of the stress tensor, σ̄ ,
f s can be obtained as

f s = nT · σ̄ = σ̄ · n, (6.78)
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where T denotes transpose and n is the normal vector to the surface of interest.
Therefore, the total active force is defined as,

∫
CV

f (x, t) dV =
∫
CV

(
f b + ∇ · σ̄

)
dV , (6.79)

where we have used Gauss’ theorem (Eq.6.19).
Therefore, the extended Jourdain’s principle can be modified by substituting

Eq.6.79 into Eq.6.76, resulting in the equation

∫
CV

(
ρ
Du (x, t)

Dt
− f b − ∇ · σ̄

)
· δu (x, t) dV = 0. (6.80)

In order to expand Eq.6.80 further, we consider the constitutive relation for New-
tonian incompressible fluids,

σ̄ = −p Ī + 2μS̄, (6.81)

where p is the thermodynamic pressure, Ī is the identity tensor, μ is the coefficient
of dynamic viscosity, and S̄ is a symmetric tensor, defined as

S̄ = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (6.82)

Therefore, Eq. 6.80 becomes

∫
CV

(
ρ
Du (x, t)

Dt
− f b (x, t) + ∇ p (x, t) − μ∇2u (x, t)

)
· δu (x, t) dV = 0.

(6.83)
Since δu is an arbitrary nonzero vector, the terms of the integrand inside the parenthe-
sesmust add to zero. These are theNavier–Stokes equations. Therefore, the governing
EOMof an incompressible viscous flow can be obtained from our derived variational
formulation.

Next, we explore the derivation of the energy equations utilizing Jourdain’s vari-
ational principle.

6.15 Energy Equation from the Extended Jourdain’s
Principle

In this section, we look to derive the energy equation for a fluid via Jourdain’s princi-
ple. Since Jourdain’s principle and the Lagrangian equations of motion are related to
each other via d’Alembert’s principle, we expect that the energy rate equations can be
obtained from Jourdain’s principle. We begin by deriving the conservation of energy
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in the Lagrangian reference frame, and then explore the modifications required in
order to obtain this equation in the Eulerian reference frame.

Note that in utilizing d’Alembert’s principle we use virtual displacement, whereas
for Jourdain’s principle we use virtual velocity. It is the Jourdain framework and its
stipulation of arbitrary virtual (possible) velocities that appeals to its application to
problems that involve fluids.

6.15.1 Obtaining the Energy Rate Equation in the
Lagrangian Reference Frame

In Sect. 6.10, it was shown that Jourdain’s principle can be derived from d’Alembert’s
principle. Hamilton’s principle can be also derived from d’Alembert’s principle. For
a general system, Hamilton’s principle leads to a system of simultaneous differential
equations of second order called the Lagrangian equations of motion [11, pp.111–
119]. In order to demonstrate ourmethodology for obtaining the energy rate equations
from Jourdain’s principle, a short review of the derivation of the Lagrangian EOM
is provided.

Consider a Lagrangian function L , defined as

L = L
(
ṙ i , r i , t

)
, f or i = 1, 2, . . . , N ,

where N is the number of particles and r i denote the Lagrangian coordinates of
particle i . The function L is defined for a conservative system as

L = T − �, (6.84)

where T is commonly called the kinetic energy, and � is the potential energy. The
function L defines the entire dynamics of the system. Therefore, the action integral
in the absence of nonconservative forces is defined as

∫ t2

t1

δd L
(
ṙ i , r i , t

)
dt = 0, (6.85)

where δd L is the variation of function L , and the subscript d refers to the d’Alembert
variation, in distinction to Jourdain’s variation. They are both variations in the same
sense, but what is taken to be arbitrary and nonzero is different. That is, d’Alembert’s
variation assumes that the virtual displacement is arbitrary and nonzero, with the vir-
tual velocity terms integrated so that only virtual displacements remain. Jourdain’s
variation takes the virtual velocity as arbitrary and nonzero, with the virtual displace-
ment equal to zero. In both instances, the variation on time equals zero, since the
respective virtual (possible) displacements and velocities represent alternate states
at the same time.
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Therefore, in the derivation below, we begin with d’Alembert’s variation δd since
we begin with the function L . Later, when we are working with L̇,we eventually use
Jourdain’s constraint, setting the virtual displacement to zero, resulting in expression
Eq.6.93, which is in terms of Jourdain’s variation.

The variation of a Lagrangian function is, by definition, the resulting difference
found by imposing d’Alembert’s virtual displacements δd r i on L

(
ṙ i , r i , t

)
and elim-

inating the terms with order higher than one with respect to δd r i , while holding time
frozen, as follows,

∫ t2

t1

δd L dt = lim
ε→0

1

ε

∫ t2

t1

[
L

(
d

dt
(r i + ε δd r i ) , r i + ε δd r i , t

)
− L

(
ṙ i , r i , t

)]
dt .

(6.86)
In the Lagrangian frame of reference, the variational operator and the time differ-

entiation commute. Thus, Eq.6.86 can be written as

∫ t2

t1

δd L dt = lim
ε→0

1

ε

∫ t2

t1

[
L
(
ṙ i + ε δd ṙ i , r i + ε δd r i , t

) − L
(
ṙ i , r i , t

)]
dt .

(6.87)
Applying the Taylor expansion to L

(
ṙ i + ε δd ṙ i , r i + ε δd r i , t

)
and neglecting the

terms of order higher than one with respect to δd r i , Eq. 6.87 becomes

∫ t2

t1
δd L dt = lim

ε→0

1

ε

∫ t2

t1

[
L
(
ṙ i , r i , t

) + ε δd ṙ i · ∂L

∂ ṙ i
+ ε δd r i · ∂L

∂ r i
− L

(
ṙ i , r i , t

)]
dt

=
∫ t2

t1

[
δd ṙ i · ∂L

∂ ṙ i
+ δd r i · ∂L

∂ r i

]
dt = 0. (6.88)

Since the algebraic relation between δd ṙ i and δd r i is not known (unless the problem is
solved), Eq. 6.88 is not accessible for further analysis. This difficulty can be overcome
if the displacements are known at t1 and t2. Integrating Eq.6.88 by parts and, as
customary, assume that the virtual displacements equal zero at t1 and t2 (since the
displacements are assumed to be known at t1 and t2), Eq. 6.85 then becomes

∫ t2

t1

δd L dt =
∫ t2

t1

δd r i ·
[

∂L

∂ r i
− d

dt

(
∂L

∂ ṙ i

)]
dt = 0. (6.89)

Since δd r i are arbitrary nonzero vectors, the Lagrangian equations of motion are
obtained by necessarily setting the terms inside square brackets equal to zero [11],

d

dt

(
∂L

∂ ṙ i

)
− ∂L

∂ r i
= 0. (6.90)

In Sect. 6.10, Jourdain’s principle was obtained by differentiating d’Alembert’s
principle with respect to time, and then, setting the virtual displacement equal to
zero. Similarly, we start by considering the rate of a Lagrangian function,
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d

dt
L = L̇

(
ṙ i , r i , t

)
,

and define the respective action integral as

∫ t2

t1

δd L̇
(
ṙ i , r i , t

)
dt = 0. (6.91)

Substituting δd L̇ instead of δd L into Eq.6.86, we obtain

∫ t2

t1

δd L̇
(
ṙ i , r i , t

)
dt = lim

ε→0

1

ε

∫ t2

t1

[
L̇

(
d

dt
(r i + ε δd r i ) , r i + ε δd r i , t

)

−L̇
(
ṙ i , r i , t

)]
dt

= lim
ε→0

1

ε

∫ t2

t1

[
L̇
(
ṙ i , r i , t

) + ε δd ṙ i · ∂ L̇

∂ ṙ i
+ ε δd r i · ∂ L̇

∂ r i
−L̇

(
ṙ i , r i , t

) ]
dt

=
∫ t2

t1

[
∂ L̇

∂ ṙ i
· δd ṙ i + ∂ L̇

∂ r i
· δd r i

]
dt

= 0. (6.92)

Similar to our approach in Sect. 6.10, Jourdain’s variational principle can be obtained
in terms of the Lagrangian function L by imposing Jourdain’s variational constraint
δd r i = 0 to Eq.6.92, resulting in

∫ t2

t1

δ L̇
(
ṙ i , r i , t

)
dt =

∫ t2

t1

∂ L̇

∂ ṙ i
· δ ṙ i dt = 0,

or,

δ L̇
(
ṙ i , r i , t

) = ∂ L̇

∂ ṙ i
· δ ṙ i . (6.93)

Therefore, the energy rate equation L̇
(
ṙ i , r i , t

)
can be obtained from Jourdain’s

principle using Eq.6.93. It is important to note that the variation of acceleration is
not considered in the derivation of Eq.6.93 since the acceleration is second order
with respect to δd r i . It is emphasized that the only requirement for using Eq.6.93
is that Jourdain’s variational operator must commute with the differential operator
d/dt .

Next, we consider two simple examples to clarify the procedure.

Example 2 Consider a single degree of freedom mass–spring system, where x (t) is
theLagrangian position of a boxofmassm and k is the stiffness of themassless spring.
We wish to obtain the energy rate equation by integration and by using Eq.6.93.

Using Newton’s second law, the equation of motion is
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mẍ (t) + kx (t) = 0. (6.94)

The acceleration ẍ (t) can be rewritten as follows,

ẍ (t) = dẋ (t)

dt

= dẋ (t)

dx

dx (t)

dt

= d

dx

(
1

2
ẋ2 (t)

)
. (6.95)

Substituting Eq.6.95 into Eq.6.94, we have

m
d

dx

(
1

2
ẋ2 (t)

)
+ kx (t) = 0, (6.96)

and by integrating this equation with respect to x , the energy equation is obtained,

1

2
mẋ2 (t) + 1

2
kx2 (t) = C , (6.97)

where C is a constant. Finally, the energy rate equation is obtained by differentiating
Eq.6.97 with respect to time, to find

mẍ ẋ + kx ẋ = 0. (6.98)

Now, we wish to obtain the energy rate equation using Jourdain’s principle. Mul-
tiplying Eq.6.94 by δ ẋ (t), Jourdain’s principle is expressed by

(mẍ + kx) δ ẋ = 0. (6.99)

Expanding Eq.6.99 and using Eq.6.93, we obtain

(mẍ + kx) δ ẋ = mẍδ ẋ + kxδ ẋ

= ∂

∂ ẋ
(mẍ ẋ) δ ẋ + ∂

∂ ẋ
(kx ẋ) δ ẋ

= ∂

∂ ẋ
(mẍ ẋ + kx ẋ) δ ẋ

= δ (mẍ ẋ + kx ẋ)

= δ L̇ (ẋ, x, t) .

Therefore, in the absence of nonconservative forces, the energy rate equation is

L̇
(
ṙ i , r i , t

) = mẍ ẋ + kx ẋ = 0, (6.100)
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which is the same as the energy rate equation obtained by integration.

The next example considers a simple nonlinear problem.

Example 3 Consider a simple pendulum where the mass m is supported by the
massless rod of the length L , oscillating with angle θ . The angle of oscillation is
large enough that the small angle approximation no longer holds. We wish to obtain
the energy rate equation by integrating the EOM as well as by using Jourdain’s
principle.

The equation of motion is obtained from Newton’s second law (Euler’s equation)
to be

mL2θ̈ + mgL sin θ = 0, (6.101)

where g is the gravitational acceleration. Converting the acceleration as follows,

θ̈ = d θ̇

dt

= d θ̇

dθ

dθ

dt

= d

dθ

(
1

2
θ̇2

)
, (6.102)

and substituting it back into Eq.6.101, we obtain

d

dθ

(
1

2
mL2θ̇2

)
+ mgL sin θ = 0. (6.103)

Integration of this equation with respect to θ yields to the energy equation

1

2
mL2θ̇2 − mgL cos θ = C , (6.104)

and by differentiating it with respect to time, the energy rate equation is obtained,

mL2θ̈ θ̇ + mgL θ̇ sin θ = 0. (6.105)

Jourdain’s variational formulation of the simple pendulum problem is obtained
by multiplying the EOM by δθ̇ to find,

(
mL2θ̈ + mgL sin θ

)
δθ̇ = 0. (6.106)

The energy rate equation is obtained by utilizing Eq.6.93,

(
mL2θ̈ + mgL sin θ

)
δθ̇ = mL2θ̈ δθ̇ + mgL sin θδθ̇

= ∂

∂θ̇

(
mL2θ̈ θ̇

)
δθ̇ + ∂

∂θ̇

(
mgL θ̇ sin θ

)
δθ̇
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= δ
(
mL2θ̈ θ̇ + mgL θ̇ sin θ

)
= δ L̇

(
θ̇ , θ, t

)
.

Therefore,
L̇
(
ṙ i , r i , t

) = mL2θ̈ θ̇ + mgL θ̇ sin θ = 0 (6.107)

is the same result as that obtained by integrating the EOM.

As evident from the two examples, the energy rate equation can be straightfor-
wardly obtained from Jourdain’s principle by using Eq.6.93. From the variational
point of view, the only requirement is that the commutation rule must hold (note that
we used the commutation rules in our derivation in Eq.6.92).

While the commutation rule holds for a system described in the Lagrangian ref-
erence frame, it does not hold if it is described in the Eulerian reference frame. This
is shown in the following section.

6.15.2 Obtaining the Energy Rate Equation in the Eulerian
Reference Frame

Asmentioned in theprevious section,Lagrange’s equation is a functionof generalized
displacements, generalized velocities, and time, as is the rate of Lagrange’s equation,
which contains acceleration terms as shown in the two prior examples. We saw that
the energy rate equations can be obtained from Jourdain’s principle by using Eq.6.93
if the commutation rule holds.

For the rate of Lagrange’s equation described in the Eulerian frame of reference,
we show next that Jourdain’s variational operator δ and the material derivative do not
commute, first by considering the acceleration Du/Dt and obtaining D (δu) /Dt ,
and then by finding δ (Du/Dt) . We then propose a way to separate our function into
a commutable part and a non-commutable part as a way to move forward.

We start with D (δu) /Dt . Since the variation is imposed prior to differentiation,
the velocity is u + δu, and we have

D (δu)

Dt
= ∂ (δu)

∂t
+ (u + δu) · ∇ (δu)

= ∂ (δu)

∂t
+ u · ∇ (δu) + δu · ∇ (δu) . (6.108)

The last termon the right ofEq.6.108 is second-orderwith respect to δu, and so itmust
be neglected according to Jourdain’s principle. Therefore, the material derivative of
the virtual velocity is found to be

D (δu)

Dt
= ∂ (δu)

∂t
+ u · ∇ (δu) . (6.109)
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For the variation of the acceleration δ (Du/Dt), for velocity u, we consider the
definition of Jourdain’s variational operator, Eq. 6.42,

δ

(
Du
Dt

)
= lim

ε→0

1

ε

[
D

Dt
(u + ε δu) − D

Dt
(u)

]

= lim
ε→0

1

ε

[
∂

∂t
(u + ε δu) + (u + ε δu) · ∇ (u + ε δu) − D

Dt
(u)

]

= lim
ε→0

1

ε

[
∂u
∂t

+ ε
∂ (δu)

∂t
+ u · ∇u + ε δu · ∇u + u · ∇ (ε δu)

+ε2δu · ∇ (δu) − D

Dt
(u)

]
. (6.110)

Taking the limit, the above expression becomes

δ

(
Du
Dt

)
= ∂ (δu)

∂t
+ u · ∇ (δu) + δu · ∇u. (6.111)

Comparing Eqs. 6.109 and 6.111 yields

δ

(
Du
Dt

)
= D (δu)

Dt
+ δu · ∇u, (6.112)

where δu · ∇u is the “non-commuting part” of the acceleration in the Eulerian refer-
ence frame. That is, Jourdain’s variational operator and the material derivative do not
generally commute due to the expression δu · ∇u on the right-hand side of Eq.6.112.
If δu · ∇u = 0, then they do commute in the way d’Alembert’s variation does.

Since the commutation rule does not generally hold in the Eulerian reference
frame, Eq.6.93 cannot be used. This difficulty can be overcome if the non-commuting
part is extracted from the rate of Lagrange’s function L̇

(
ṙ i , r i , t

)
. The following

discussion motivates and stipulates a way to separate out the non-commuting part.
In order to demonstrate how the non-commuting part can be separated in the

Eulerian reference frame, we consider Newton’s second law as described in the
Eulerian reference frame,

Du (x, t)

Dt
= f (x, t) , (6.113)

where f is the resultant of external loads per unit mass acting at the spatial point x.
Multiplication of Eq.6.113 by the virtual velocity, δu, results in Jourdain’s principle,

Du
Dt

· δu = f · δu. (6.114)

For the acceleration term, Du/Dt , the commutation rule does not hold due to
the existence of δu · ∇u in Eq.6.112. However, the acceleration term of a system
is reversible (conservative) in the Eulerian reference frame if δu · ∇u = 0. Du/Dt
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contains both the conservative (reversible) and nonconservative (irreversible, non-
commuting) terms. The question, then, is how tomodifyEq.6.114 so that the commu-
tation rule can be applied. We recall that for the application of variational principles
to systemswith nonconservative terms, such as damping, we can group these with the
external forces, while the conservative terms are grouped together on the left-hand
side of the EOM.

In the following derivation, we look to separate out the nonconservative compo-
nent of the left-hand side of Eq.6.114 and place it on the right-hand side with the
external forces. Therefore, the left-hand side will only contain conservative terms,
and we show the material derivative as DC/Dt to signify this.

Expanding the left-hand side of Eq.6.114 as

Du
Dt

· δu = D

Dt
(u · δu) − D

Dt
(δu) · u,

and applying Eq.6.112 to the last term on the right, we obtain

Du
Dt

· δu = D

Dt
(u · δu) −

[
δ

(
Du
Dt

)
− δu · ∇u

]
· u

= D

Dt
(u · δu) − δ

(
Du
Dt

)
· u + δu · ∇u · u.

Substituting back into Eq.6.114, we obtain

D

Dt
(u · δu) − δ

(
Du
Dt

)
· u + δu · ∇u · u = f · δu. (6.115)

Considering Eq.6.115, if the commutation rule holds, then δu · ∇u · u would not
be present (δu · ∇u = 0). Thus, the remainder of the terms on the left-hand side are
those that are reversible with respect to δu (the terms for which the commutation
rule holds). Therefore, by moving the term δu · ∇u · u to the right-hand side of the
equation, the left-hand side becomes purely conservative,

conservative terms︷ ︸︸ ︷
DC

Dt
(u · δu) − δ

(
DCu
Dt

)
· u =

nonconservative terms︷ ︸︸ ︷
f · δu − δu · ∇u · u , (6.116)

where we have added the superscript C on the material derivative in order to empha-
size and distinguish that these are reversible, or conservative, operations and, there-
fore, the commutation rule holds. Using the commutation rule for the conservative
terms and rearranging the nonconservative terms, Jourdain’s variational principle is
obtained alternatively as

DCu
Dt

· δu = ( f − ∇u · u) · δu. (6.117)
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Therefore, the energy rate can be obtained for the left-hand side of Eq.6.117 by using
Eq.6.93, having considered the non-commuting part as a nonconservative force.

The nonconservative terms reduce the generality of variational methods. A com-
monly used tool to overcome this challenge is Rayleigh’s dissipation function (RDF),
which is reviewed in the following section. RDF together with the discussion pre-
sented in this section will be used in our manipulations, in Sects. 6.16 and 6.17, of
the extended Jourdain’s principle obtained in Sect. 6.14.

6.15.3 Rayleigh’s Dissipation Function

Generally, variational methods are powerful tools for reversible processes (conserva-
tive systems). For nonconservative systems, especially frictional dissipative systems
(viscous fluids), variational methods lose their generality. Frictional (viscous) forces
originate from a transfer of macroscopic into microscopic motions. Therefore, the
number of degrees of freedom needed to describe the motion must be increased to
include the dissipation process in variational formulations requiring statistical prin-
ciples [11, p. 359].

Alternatively, the effects of nonconservative forces can be added to a variational
formulation in the same manner that external forces are considered, as we did in the
last section. This approach, which is justified by the law of conservation of energy,
reduces the generality of the variational methods depending on the dynamics and
properties of the system. Having added the terms representing the irreversible pro-
cesses, we choose dissipation functions the variations of which represent dissipative
forces.

Rayleigh’s dissipation function is widely utilized in the literature. It has been
applied to important types of forces, for instance, forces due to linear dampers and
electromagnetic forces. While our discussion in this section is focused on Rayleigh’s
dissipation function, it is worth noting that there have been many attempts to develop
variational methods for nonconservative systems. A good representative work is
the paper by Riewe [20], where he proposed the use of fractional derivatives for
Lagrangian and Hamiltonian mechanics.

Considering the viscous terms of the Navier–Stokes equations (Eq.6.83), the
symmetric part of ∇u is only included (Eq.6.82) assuming that the rotating flow
has no effect on the shear stress (assuming rigid body rotation). Since the virtual
velocities must be compatible with the system’s constraints, the directions of the
virtual velocities are constrained to be the same as those of the actual velocities,
otherwise, the rotation caused by δu will perform work on the system. This is the
assumption upon which Rayleigh’s dissipation function is based. In vector notation,
Rayleigh’s dissipation function can be expressed in relation to the generalized force
FR ,

FR = ∇uφR ,
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where ∇uφR denotes the differentiation of Rayleigh’s dissipation function, φR , with
respect to u in direction of u [6, pp. 22–24], that is,

∇uφR = ∂φR

∂u

∣∣∣∣
u-direction

.

The directional differential of any function φ can be obtained using Eq.6.43 by
setting w = u,

∇uφR · u = ∂φ (u + εu)

∂ε

∣∣∣∣
ε=0

. (6.118)

Therefore, defining φR such that ∇uφR = FR , the term FR · δu in the variational
formulation can be replaced by δφR since

δφR = ∇uφR · δu, (6.119)

where this is Rayleigh’s dissipation function in vector notation for a system.
Comparing Eqs. 6.119 with 6.45, Rayleigh’s dissipation function constrains δu

to be in the same direction as u for the nonconservative terms at any point in the
domain. However, this constraint was already imposed by the assumptions that were
made in obtaining the constitutive relation for Newtonian fluids (see Sect. 6.14 and
[9, pp. 100–103]). The reason is that the proportionality of the viscous force and ∇u
was the result of observing laminar flows in the first place.

An important note regarding Rayleigh’s dissipation function is that the work
(power) of Rayleigh’s dissipation function in the variational energy (power) formu-
lation is half of that in the corresponding energy (power) equation [14, Eqs. 5 and
6]. In one dimension, the viscous damping force is given by FR = −cu, where c
is the viscous damping constant. Rayleigh’s dissipation function is then given by
φR = cu2/2. The power is then cu2 or 2φR .

In general, we consider the variational energy formulation of a system with fric-
tional dissipative forces as

δd (T + � − φR − Wext ) = 0, (6.120)

where δd is d’Alembert’s variational operator, T is the kinetic energy, � denotes the
potential energy, andWext is the work due to external loads. Assuming that Eq.6.120
is obtained from the variational manipulation, the corresponding energy equation is
obtained by multiplying Rayleigh’s dissipation function by a factor of two,

T + � − 2φR − Wext = 0.

The reason is that the frictional dissipation only depends on the velocity and is
unaffected by the displacement. Using Jourdain’s variational operator, we have

δ
(
Ṫ + �̇ − φ̇R − Ẇext

) = 0, (6.121)
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where the overdot denotes that the terms have dimensions of power and not work.
Here, the frictional dissipation remains unaffected by the acceleration and the power
equation becomes

Ṫ + �̇ − 2φ̇R − Ẇext = 0. (6.122)

Next, based on the discussions so far, we modify the previously derived extended
Jourdain’s principle. Both Eqs. 6.121 and 6.122 will be referred to as the energy
rate equation, where the reader can distinguish them by the presence of Jourdain’s
variation δ.

6.16 Energy Rate Equation for Incompressible Viscous
Fluids

In Sect. 6.13, the extended Jourdain’s principle was expressed in Eq.6.76. If we
substitute the forces from the constitutive relations for a Newtonian incompressible
viscid fluid (Eqs. 6.78–6.82), the extended JP for a general control volume becomes

∫
CV

ρ
Du
Dt

· δu dV =
∫
CV

{∇ · [−p Ī + μ
(∇u + ∇T u

)]} · δu dV , (6.123)

where∇T u = (∇u)T and body forces are neglected. If the only body force present is
due to gravity, its potential function can easily be obtained, since gravitational forces
are conservative and independent of the fluid velocity field.

In Sect. 6.15.1, it was shown that the energy rate equation can be obtained using
Eq.6.93 for systems described in the Lagrangian reference frame. In Sect. 6.15.2,
it was shown that the commutation rule does not hold in the Eulerian reference
frame. However, this difficulty was overcome by extracting the non-commuting term
from the acceleration as explained in deriving Eq.6.117. Using the same procedure,
Eq. 6.123 becomes

∫
CV

ρ
DCu
Dt

· δu dV =
∫
CV

{∇ · [−p Ī + μ
(∇u + ∇T u

)]} · δu dV −
∫
CV

ρ (∇u · u) · δu dV ,

(6.124)

where the left-hand side of the equation now represents only the conservative terms
and the right-hand side represents the nonconservative terms. Therefore, we continue
our derivation by considering each side of Eq.6.124 separately, using Eq.6.93 for
the conservative terms, and Eq.6.119 for the dissipative terms, to obtain the energy
rate equation, as follows.
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6.16.1 The Left-Hand Side of Eq. 6.124

The termon the left-hand side ofEq.6.124 is reversible and conservative and therefore
Jourdain’s variation δ and D/Dt commute. In the following derivation we use the
same steps as we did in the derivation of Eq.6.93, and as in Examples 2 and 3. Begin
with the left- hand side,

∫
CV

ρ
DCu
Dt

· δu dV =
∫
CV

δ

(
ρ
DCu
Dt

· u
)
dV

= δ

∫
CV

(
ρ
DCu
Dt

· u
)
dV

= δ

∫
CV

DC

Dt

(
1

2
ρu · u

)
dV , (6.125)

where Jourdain’s variational operator commutes with integration over the volume
since it assumes zero virtual displacements. That is, the same particles occupy a
control volume before and after imposing the virtual velocities. Note that the same
statement is not true for d’Alembert’s variational operator since the virtual displace-
ments result in a virtual flux across the control surfaces.

Equation6.125 can be modified further as follows. The total kinetic energy of a
control volume, T , is defined as

T =
∫
CV

1

2
ρ u · u dV . (6.126)

The rate of kinetic energy of a control volume can be obtained by using the Reynolds
transport theorem in the form of Eq.6.25,

DT

Dt
= D

Dt

∫
CV

1

2
ρ u · u dV

=
∫
CV

D

Dt

(
1

2
ρ u · u

)
dV −

∫
CS

(
1

2
ρ u · u

)
(u − vCS) · n d A. (6.127)

Rearranging Eq.6.127 yields

∫
CV

D

Dt

(
1

2
ρ u · u

)
dV = D

Dt

∫
CV

1

2
ρ u · u dV +

∫
CS

(
1

2
ρ u · u

)
(u − vCS) · n d A.

(6.128)
Finally, by substituting Eq.6.128 into Eq.6.125, the left-hand side of Eq.6.124
becomes
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∫
CV

ρ
DCu
Dt

· δu dV = δ

⎡
⎣ DC

Dt

∫
CV

1

2
ρ u · u dV +

∫
CS

(
1

2
ρ u · u

)
(u − vCS) · n d A

⎤
⎦ ,

(6.129)
where we have introduced DC/Dt in the last step. Equation6.129 represents the
energy rate of the conservative terms of the extended Jourdain’s principle. The varia-
tions are Jourdain’s variation since we used the property that the virtual displacement
equals zero above.

The energy rate of the nonconservative terms are obtained in the following section.

6.16.2 The Right-Hand Side of Eq. 6.124

In this section,wewish to obtain a functionφ so that its variation equals the right-hand
side of Eq.6.124, that is,

δφ =
∫
CV

{∇ · [−p Ī + μ
(∇u + ∇T u

)]} · δu dV −
∫
CV

ρ (∇u · u) · δu dV ,

(6.130)
where φ is a scalar-valued potential function, the variation of which yields the terms
on the right-hand side of the energy rate equation.

For simplicity, since the manipulations are lengthy, we separate the terms on the
right-hand side of Eq.6.130 according to their physical meanings and manipulate
each of them separately, as follows.

6.16.2.1 Power Due to Pressure

Considering the term containing pressure, p, since∇ p is assumed to be independent
of u, it does not vary due to δu, that is, δ (∇ p) = 0. Therefore, for an incompressible
fluid, we have ∫

CV

[∇ · (−p Ī
)] · δu dV =

∫
CV

−∇ p · δu dV . (6.131)

Using the divergence theorem, the right-hand side becomes

−δ

∫
CS

pu · n d A.

6.16.2.2 Power Lost Due to Viscous Dissipation

The function
[∇ · (∇u + ∇T u

)] · δu contains both the virtual power due to the vis-
cous forces acting as an external shear load on the control surface, and the virtual
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power due to viscous dissipative forces inside the control volume, that is,

[∇ · (∇u + ∇T u
)] · δu =

due to the external shear stresses︷ ︸︸ ︷
∇ · [(∇u + ∇T u

) · δu
]

−
viscous dissipation︷ ︸︸ ︷

tr
[(∇u + ∇T u

) · ∇ (δu)
]
, (6.132)

where tr denotes the trace of a tensor.
We wish to utilize Rayleigh’s dissipation function for nonconservative (viscous,

dissipative) terms. However, applying Eq.6.119 to the last term of Eq.6.132 requires
extensive mathematical manipulation due to the term ∇ (δu).

Alternatively, the derivations can be simplified by obtaining the scalar potential
function of

[∇ · (∇u + ∇T u
)] · δu in direction of u using Eq.6.119, and then sub-

tracting the scalar potential function of the external loads obtained similarly. The
remaining terms will be Rayleigh’s dissipation function,

μ tr
[(∇u + ∇T u

) · ∇ (δu)
] = δ

{
1

2
μ tr

[(∇u + ∇T u
) · ∇u

]}
. (6.133)

Details can be found in Mottaghi ([16], pages 75–78).
The scalar potentials associated with the external viscous loads are considered

next.

6.16.2.3 Power Due to Shear Forces Acting on the Control Surfaces

From Eq.6.132, for the external viscous shear loads, we have

∫
CV

μ∇ · [(∇u + ∇T u
) · δu

]
dV

= δ

∫
CV

μ∇ · [(∇u + ∇T u
) · u

]
dV −

∫
CV

μ∇ · [δ (∇u + ∇T u
) · u

]
dV .

(6.134)

The external loads must remain unchanged with respect to δu since they are the
known parameters of the system, that is, the velocity of the flow is known at the
control surfaces. Therefore, the second integral on the right-hand side of Eq.6.134
equals zero, resulting in

∫
CV

μ∇ · [(∇u + ∇T u
) · δu

]
dV = δ

∫
CV

μ∇ · [(∇u + ∇T u
) · u

]
dV . (6.135)
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6.16.2.4 The Non-commuting Term

The only term left on the right-hand side of Eq.6.124 is the non-commuting part of
the rate of the kinetic energy due to variation of the acceleration, ρ (∇u · u) · δu.
In order to obtain the scalar potential function corresponding to the non-commuting
part, we start by considering the vector identity,

1

2
∇ (u · u) = ∇u · u.

Therefore, ∫
CV

ρ (∇u · u) · δu dV =
∫
CV

1

2
ρ∇ (u · u) · δu dV . (6.136)

For an incompressible fluid, we have ∇ · u = 0. Since the virtual velocities must
be compatible with the system constraints, for an incompressible fluid the virtual
velocities must be divergence free (solenoidal) as well, ∇ · δu = 0. Therefore,

∇ (u · u) · δu = ∇ · [(u · u) δu] ,

and using Gauss’ theorem,

∫
CV

ρ (∇u · u) · δu dV =
∫
CS

1

2
ρ (u · u) (δu · n) d A. (6.137)

Since the velocity of the flow at the control surfaces are assumed to be known, the
forcing function at the control surfaces was considered to be invariant with respect to
virtual velocity. Similarly, the non-commuting part of the rate of the kinetic energy,
shown above, only exists on the control surfaces. Thus, the term 1

2ρ (u · u) in the
integrand of Eq.6.137 is invariant with respect to δu. Therefore,

∫
CV

ρ (∇u · u) · δu dV = δ

∫
CS

1

2
ρ (u · u) (u · n) d A. (6.138)

Whenusing Jourdain’s variational principle, it is important to recall that Jourdain’s
virtual velocity does not correspond to any displacement field. Therefore, when the
velocity is known, the virtual velocity becomes the actual velocity and not zero.

Having obtained the scalar potential functions associatedwith both right-hand and
left-hand sides of Eq.6.124, we combine them and obtain the energy rate equation
in the following section.
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6.16.3 Extended JP in Terms of Energy

Using Eqs. 6.124 and 6.130, substituting all the components derived above, the vari-
ational energy rate equation for a general control volume of a Newtonian incom-
pressible viscous fluid is obtained,

δ

⎡
⎣DC

Dt

∫
CV

1

2
ρ u · udV +

∫
CS

(
1

2
ρ u · u

)
(u − vCS) · nd A

⎤
⎦

=

power due to external loads︷ ︸︸ ︷
δ

∫
CS

−p u · nd A + δ

∫
CV

μ∇ · [(∇u + ∇T u
) · u] dV

−

power loss due to viscous dissipation︷ ︸︸ ︷
δ

∫
CV

1

2
μ tr

[(∇u + ∇T u
) · ∇u

]
dV −

non-commuting term

δ

︷ ︸︸ ︷∫
CS

1

2
ρ (u · u) (u · n) d A.

(6.139)

Equation6.139 can be used in modeling fluid dynamic systems and fluid–structure
interactions (FSI).

As mentioned earlier, in order to obtain the energy rate equation corresponding to
a variational energy rate equation, Rayleigh’s dissipation functionmust bemultiplied
by a factor of two. Therefore, the energy rate equation corresponding to Eq.6.139 is

DC

Dt

∫
CV

1

2
ρu · udV +

∫
CS

(
1

2
ρu · u

)
(u − vCS) · nd A

=

power due to external loads︷ ︸︸ ︷∫
CS

−pu · nd A +
∫
CV

μ∇ · [(∇u + ∇T u
) · u] dV

−

power loss due to viscous dissipation︷ ︸︸ ︷∫
CV

μ tr
[(∇u + ∇T u

) · ∇u
]
dV −

non-commuting term︷ ︸︸ ︷∫
CS

1

2
ρ (u · u) (u · n) d A.

(6.140)

For FSI systems, the boundary conditions on the solid surfaces cannot be easily
applied to these equations. The following section will show that the viscous terms
can be modified further to become more applicable to FSI and VIV. We consider FSI
and VIV in detail in Chap. 7.
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6.17 An Expanded Form of the Energy Rate Equation

Our ultimate goal is the reduced-order modeling of FSI systems, but the energy rate
equation obtained in the previous section (Eq.6.139) is not easily accessible, mainly,
due to two reasons. First, it is not clear how the boundary conditions at the solid
surface can be included. Second, the tensor term ∇T u provides some challenges, as
discussed further below. Therefore, we continue with our derivation by modifying
the viscous dissipation and external load terms in order to have them in a more
meaningful form.

Following the procedure by Lamb for an incompressible viscous fluid [10], the
viscous dissipation function can also be expressed as

∫
CV

1

2
μ tr

[(∇u + ∇T u
) · ∇u

]
dV

= δ

∫
CV

1

2
μ
{
(∇ × u) · (∇ × u) + ∇2 (u · u) − 2 ∇ · [u × (∇ × u)]

}
dV .

(6.141)

The power due to the viscous forces external to the control volume can also be
expressed as

δ

∫
CV

μ∇ · [(∇u + ∇T u
) · u] dV = δ

∫
CV

μ∇ · [∇ (u · u) − u × (∇ × u)] dV .

(6.142)
Using Eqs. 6.141 and 6.142, we can obtain the variational energy rate equation as
derived from the extended Jourdain’s principle,

δ

∫
CV

DC

Dt

(
1

2
ρu · u

)
dV =

external loading︷ ︸︸ ︷
δ

∫
CS

−p u · nd A + δ

∫
CV

{μ∇ · [∇ (u · u) − u × (∇ × u)]

viscous dissipation︷ ︸︸ ︷
−1

2
μ
{
(∇ × u) · (∇ × u) + ∇2 (u · u) − 2 ∇ · [u × (∇ × u)]

}}
dV

−

non-commuting term︷ ︸︸ ︷
δ

∫
CS

1

2
ρ (u · u) (u · n) d A, (6.143)

where terms of the form ∇ · [u × (∇ × u)] will cancel each other out, and the terms
∇ · [∇ (u · u)] and ∇2 (u · u), which are identical, can be combined. However, since
these terms represent different concepts, they are kept separate. The left-hand side
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of Eq.6.143 is the summation of the rate of change of kinetic energy (
∑ DT

Dt ) for
all points in the domain. For reduced-order modeling, the rate of change of kinetic
energy of the control volume ( d

dt

∑
T ) might be of more interest. Also, for a control

volume, in the absence of body forces, the external loads can only be applied at the
control surfaces. Therefore, by replacing the left-hand side integral in Eq.6.143 by
its equivalent Eq.6.128 and applying Gauss’ divergence theorem (Eq.6.19) to the
control volume integral on the right-hand side, Eq. 6.143 becomes

δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
DC

Dt

kinetic energy︷ ︸︸ ︷∫
CV

1

2
ρu · udV +

flux of kinetic energy︷ ︸︸ ︷∫
CS

(
1

2
ρu · u

)
(u − vCS) · nd A

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= δ

⎧⎨
⎩
∫
CS

external loads︷ ︸︸ ︷
{− p u · n + μ [∇ (u · u) − u × (∇ × u)] · n

viscous dissipation︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A − 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV

−

non-commuting term︷ ︸︸ ︷∫
CS

1

2
ρ (u · u) (u · n) d A

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(6.144)

Similar to the previous section, it is important to have in mind that the energy rate
equation corresponding to Eq.6.144 is obtained by multiplying Rayleigh’s dissipa-
tion function by a factor of two, with the result

DC

Dt

kinetic energy︷ ︸︸ ︷∫
CV

1

2
ρu · udV +

flux of kinetic energy︷ ︸︸ ︷∫
CS

(
1

2
ρu · u

)
(u − vCS) · nd A

=
∫
CS

external loads︷ ︸︸ ︷
{− p u · n + μ [∇ (u · u) − u × (∇ × u)] · n

viscous dissipation︷ ︸︸ ︷
−μ [∇ (u · u) − 2 u × (∇ × u)] · n} d A −

∫
CV

μ (∇ × u) · (∇ × u) dV
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−

non-commuting term︷ ︸︸ ︷∫
CS

1

2
ρ (u · u) (u · n) d A.

(6.145)

In [17] and Chap.7, Eqs. 6.143, 6.144 and 6.145 are used for FSI problems. Having
obtained the rate of energy equation from the extended Jourdain’s principle, the
classical energy equation in integral form is derived next using Hamilton’s principle.
In all the above, we have used CV to represent CV (t), CS for CS(t), d A for d A(t),
and dV for dV (t).

6.18 Comparison with the Classical Energy Equation in
Integral Form

The classical energy equation in integral form, for a control volume of Newtonian
incompressible viscous flow, and in the absence of body forces, is expressed by [16]

d

dt

∫
CV

(
1

2
ρu2

)
dV = −

∫
CS

(
1

2
ρu2

)
(ur · n) d A −

∫
CS

pu · n d A

+
∫
CS

μ
[(∇u + ∇T u

) · u] · nd A −
∫
CV

μ tr
[(∇u + ∇T u

) · ∇u
]
dV .

(6.146)

Comparing Eq.6.146 with our energy rate equation, Eq.6.140, one difference is
the existence of the non-commuting acceleration term. Examining the irreversibil-
ity of the Eulerian acceleration with respect to Jourdain’s variational operator in
Sect. 6.15.2, the non-commuting term was a result of obtaining the acceleration
from the first-order velocities, as per the definition of Jourdain’s variational operator.
Instead, if we choose the zeroth order velocities, the non-commuting term disappears
and the conservative terms of our energy rate equationwouldmatch the classical ones.

Therefore, our energy rate equation essentially assumes that the particle accel-
erations can be obtained from first-order approximations of the velocities. On the
other hand, the classical energy equation obtains the Eulerian acceleration of the
fluid particles by a zeroth order approximation of the velocity field. This may be
an important difference beyond the considerations discussed here, and may have
significance more generally in fluid mechanics.

Both energy rate equations, ours and the classical one, first integrate the kinetic
energy of the control volume and then differentiate it to obtain the rate of kinetic
energy. Therefore, both methods obtain the rate of average kinetic energy in the
Eulerian reference frame. Conservation laws, however, are defined in the Lagrangian
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reference frame. Stokes [21] calculated the first-order velocities and showed that the
time average of the Eulerian velocities lags the average of the Lagrangian velocities
for oscillatorywaves. Similarly, our energy rate equation calculates the rate of change
of kinetic energy of a control volume via first-order velocities.

In the following section, the chapter is concluded with a summary and a few
additional remarks.

6.19 Discussion

The literature to this point states that a purely Eulerian variational method does not
exist, and that the Navier–Stokes equations have not been obtained using a varia-
tional method. We have shown that Jourdain’s principle can be modified to obtain a
purely Eulerian variational formulation. Also, it was shown that the Navier–Stokes
equations can be obtained from the extended JP as derived here. In our derivations,
we did not make any assumptions, but used Jourdain’s principle, continuummechan-
ics, and constitutive relations for Newtonian incompressible viscous fluids. The key
stipulation was the separation of conservative terms and nonconservative terms in
Eqs. 6.116 and 6.117, something that is normally done in variational mechanics.

Considering the derivations presented here, the main reason for the difficulties
encountered in the literature can be traced to the Lagrangian–Eulerian relations. An
essential component in relating aLagrangian function to anEulerian one is amapping
function of Lagrangian trajectories. In order to show this dependency, using Eqs. 6.71
and 6.75, we can write

∫
CV

[
ρ
D2u
Dt2

· δ �+ ρ
Du
Dt

· D

Dt
(δ�)

]
dV =

∫
CV

[
D

Dt
f · δ� + f · D

Dt
(δ�)

]
dV ,

that is, our extension of d’Alembert principle before imposing the Jourdain’s con-
straints. As is evident in this equation, themapping function� is required. In general,
it is not possible to obtain function � from the information available for a control
volume, because Lagrangian trajectories are defined by initial conditions that are
not observable in an Eulerian frame. However, they are required in d’Alembert’s
principle and consequently in Lagrange’s equations and Hamilton’s principle. This
difficulty was avoided by using JP and utilizing Jourdain’s constraints (δ� = 0).

The absence of virtual displacements in our variational formulation might lead to
a more advantageous approach for modeling viscous fluids. A variational function
obtained by imposing virtual displacements is stationary inside an assumed control
volume only if the first variation vanishes without any restriction on the second vari-
ation. The works of Millikan [14] and Bateman [2], discussed earlier, confirm that a
Lagrangian function cannot be found for which this condition holds. Therefore, the
existence of extrema must be investigated. If the conditions required to vanish the
first variation results in restrictions on the second variation, the function can have
an extremum. In general, it is challenging to find an extremum inside the control
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volume. Therefore, investigating the control surface is preferable. However, the vir-
tual displacements are not reversible on the control surface. Thus, the conditions
imposed to vanish the first variation no longer hold inside the control volume [11,
pp. 42–43], forcing one to try to obtain a function that is stationary, again. Since Jour-
dain’s principle does not use the virtual displacement, it does not have the restriction
on the boundary surfaces, as is evident from our derivations.

One of themain objectives of this chapter is to lay a theoretical foundation that can
be utilized in reduced-order modeling of FSI and VIV. In reduced-order modeling,
one tries to reduce the number of degrees of freedom in such a way that the few
resulting EOM can capture the main characteristics of the nonlinear problem. In
a sense, reduced-order modeling can be thought of as averaging over the material
domain over some time span(s).

An interesting yet challenging problem that might arise is the Stokes drift type
phenomena. Stokes considered the dynamics of oscillatory waves and showed that
the time average of the Eulerian velocities lags the average of the Lagrangian veloci-
ties [21]. The term Stokes drift was later adopted for these differences in velocities. It
is interesting that the information required to obtain Stokes drift is readily available
from the Eulerian velocities [19], that is, such challenges can be avoided by solving
the problem in either Eulerian or Lagrangian descriptions. Therefore, since the varia-
tional approach proposed here is purely Eulerian, unlike the methods available in the
literature, it may have some additional advantages regarding Stokes drift type phe-
nomena. However, it is too early to make such a conclusion and further investigation
is required.

Hamilton’s principle, Lagrange’s equation, and Jourdain’s principle are all deriv-
able from d’Alembert’s principle. We used this common feature and showed that
the energy rate equation can be obtained from Jourdain’s principle when the system
is described in the Lagrangian frame of reference. However, for a system described
in the Eulerian reference frame, it was shown that the commutation rule does not
hold. This difficulty was overcome by extracting the non-commuting terms from the
acceleration. This result was applied to our extension of Jourdain’s principle, with
an energy rate equation obtained for Newtonian incompressible viscous fluids. The
results of our analytical derivation suggest that an extra term must be added to the
classical energy equation in integral form to account for the non-commuting terms
from the acceleration in the Eulerian reference frame. Further study is warranted.

We kept the viscous dissipative terms separate from the viscous forces external
to the control volume during our derivations in this chapter. However, an interesting
result is obtained if we combined those terms in the variational energy rate equation
and the energy rate equation, as follows.

Considering Eq.6.144, summation of the viscous terms results in

δ

⎧⎨
⎩
DC

Dt

∫
CV

1

2
ρu · udV +

∫
CS

(
1

2
ρu · u

)
(u − vCS) · nd A

⎫⎬
⎭
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= δ

⎧⎨
⎩
∫
CS

[
− p u · n + 1

2
μ∇ (u · u) · n

]
d A

− 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV −
∫
CS

1

2
ρ (u · u) (u · n) d A

⎫⎬
⎭ . (6.147)

Similarly, summation of viscous terms in Eq.6.145 yields

DC

Dt

∫
CV

1

2
ρu · udV+

∫
CS

(
1

2
ρu · u

)
(u − vCS) · nd A

=
∫
CS

[− p u · n + μu × (∇ × u) · n ] d A

−
∫
CV

μ (∇ × u) · (∇ × u) dV −
∫
CS

1

2
ρ (u · u) (u · n) d A.

(6.148)

Comparing Eqs. 6.147 and 6.148, we notice a difference regarding the viscous terms
on their second lines. For many FSI problems where the fluid viscosity is negligible,
the boundary layer approximationmethod has beenwidely used inmodeling the flow
[9]. In the boundary layer method, the viscosity is neglected everywhere in the fluid
domain except in the vicinity of the structure. Similarly, if we neglect the dissipation
inside the control volume, the only terms remaining are 1

2μ∇ (u · u) · n in Eq.6.147
andμu × (∇ × u) · n in Eq.6.148. This difference makes the variational energy rate
equation preferable over the energy rate equation when it comes to reduced-order
modeling, since the kinetic energy term can readily be obtained as 1

2μ∇ (u · u) ·
n = μ

ρ
∇ (

1
2ρu · u) · n, whereas the term μu × (∇ × u) · n in Eq.6.148 makes the

manipulations challenging. This fact and observation is utilized in applying these
equations to the reduced-order modeling of vortex-induced vibration problems in
[17] and Chap.7.

The next chapter will utilize the results of this chapter, which focused on the fluid,
and continue the formulations and derivations for a coupled fluid–structure system.
This includes consideration of the coupling properties based on the no-slip condition.
We showhow to extract singleDOFmodels aswell as coupledflow-oscillatormodels,
with comparisons made to several published flow-oscillator models.
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Chapter 7
Eulerian Flow-Oscillator Models

Abstract We apply the Eulerian formulations of the last chapter to derive a general
variational formulation of a flow-oscillator modeling framework. A brief review of
the application of variational principles to fluid–structure interactions is given. A
summary is provided of Jourdain’s principle for fluid systems. Boundary conditions
are discussed, in particular the no-slip condition and its interpretations. The control
volume is expanded upon. Fluid–structure interaction is then modeled in two ways:
(i) as a single governing equation of motion for a translating cylinder and for an
inverted pendulum, and (ii) as coupled equations of motion utilizing the concept of
a wake oscillator. For the wake oscillator, the no-slip condition is further examined
and implemented. Experimental data is used to derive a more specific reduced-order
model that can be compared with some of the models found in the literature: McIver,
Benaroya and Wei, and Hartlen and Currie. A primary conclusion is that the derived
framework is an excellent basis for the development of flow-oscillator models, where
assumptions are explicitly identified.

7.1 Introduction

The problem of fluid–structure interaction (FSI) has long been one of the great chal-
lenges of engineering. FSI is a crucial consideration in the design ofmany engineering
systems, such as offshore structures, aircraft, and bridges. While the importance of
the subject has been understood for over a century, it has only been in the past half
century that efforts have been made to analytically model the general behavior of
such systems. Parallel to analytical attempts, many experiments have been devoted to
gathering data and interpreting such interactions. Consequently, analytical dynamics
modeling of such problems have evolved with coupling to experimental data result-
ing in various semi-analytical representations. Generally, attempts have been made
specifically to model vortex-induced vibration (VIV) problems by few-degree-of-
freedom (DOF) oscillatory models; therefore, they are referred to as reduced-order
models.

In experimental studies of VIV, certain types of structural configurations have
been preferred in the literature, where a rigid solid body with one or two degree(s)
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Fig. 7.1 Representative configuration of the model problem: a translating cylinder, and b inverted
pendulum

of freedom is immersed in a flow. While experiments have been conducted on a
variety of solid shapes (and occasionally on flexible bodies), reduced-order semi-
analytical models have been generally developed for single DOF rigid bluff bodies,
specifically for circular cylinders. The most commonly used model, here called the
model problem, is a type of translating cylinder or an inverted pendulum that is
immersed in a flow, resting on elastic supports, and constrained to move transversely
to the flow direction [8]. Schematic diagrams of elements of the two representative
configurations of the model problem are shown in Fig. 7.1.

The model problem has been widely used since it possesses a simple geometric
configuration, and yet, it exhibits the majority of the nonlinear behavior character-
istics of VIV systems. Consequently, the majority of VIV experiments have been
conducted on the model problem. Both in experimental and analytical studies, the
flow is controlled and generally considered to be two dimensional for all time, as are
the shedding vortices.

This chapter applies the theoretical framework of the last chapter to the deriva-
tion of reduced-order models from first principles, where assumptions are explicitly
stated. A few key features observed in experimental studies are summarized, with
more details found in [7, 21].

Starting with the stagnant fluid, if the speed of the flow past the cylinder is
increased, three different behavioral regimes are identified: pre-synchronization, res-
onant synchronization, and classical lock-in. Pre-synchronization is the first regime
where the structure starts oscillating and vortices are first observed. The amplitudes
of the structural oscillations are low and the vortices’ strength range from weak
to moderate. Observed in this range is a beating behavior, that is, the amplitude
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of structural response increases and decreases gradually as the structure oscillates.
Moreover, the flow drives the structure in this range.

As the average velocity of the flow is increased, vortices become stronger until
the frequency of the vortex shedding reaches the natural frequency of the structure,
where near-resonant behavior is observed. Thus, the structural response reaches a
maximum in the so-called the resonant synchronization region. Similarly to the pre-
synchronization region, beating behavior is noticeable but weaker, and the structure
remains driven by the flow.

If the flow velocity is increased further, constant structural oscillation amplitude
and frequency are observed for a range of flow velocities. This phenomenon is called
the classical lock-in. Unlike the other two regions, the flow is modulated by the
structure and the vortices observed are the least organized. The existence of three
distinct regimes in the frequency–amplitude response curves of an inverted pendulum
is shown in Fig. 7.2.

Also observed in many of the experiments is the existence of hysteretic behav-
ior, that is, the maximum amplitudes of the oscillations are larger as the velocity
is increased than when it is decreased, as shown in Fig. 7.3. VIV is a complicated
phenomenon. The structural response depends on many factors, such as shedding
frequency, Reynolds number, material damping, structural stiffness, surface rough-
ness, cylinder length, density of the fluid andmass of the cylinder, [7, 21]. Therefore,
reduced-order modeling of VIV has evolved in parallel to experiments in order to
help increase our understanding of this phenomenon, aswell as to provide a predictive
design tool.

Efforts tomodel VIV as reduced-order systems can be divided into two categories:
empirical models and first-principles models. Moreover, the empirical models can
be divided into two subcategories: wake-oscillator (wake-body) models and experi-
mental force-coefficient models.

The wake-oscillator models are based on the assumption that an immersed struc-
ture in a flow experiences hydrodynamic forces that are similar to those of nonlinear
oscillator systems. Therefore, the aim is to obtain nonlinear fluid force equations from
the experimentally acquired data that can be coupled with the structural equation of
motion (EOM). One significant example of these types of models is that proposed
by Hartlen and Currie [11], which is reviewed in Sect. 7.2.

The experimental force-coefficient models are single DOF models. They only
include a single forcing function obtained experimentally. Generally, empirical mod-
els have relative success in capturing the features of VIV. However, these models
neglect the dynamics of the flow by only considering the forces as they are seen by
the structure. Therefore, they do not provide much understanding of the physics of
the problem. Reviews of empirical models can be found in [6, 7].

While variational principles have been known since the times of Euler, and con-
sidered for problems of fluid mechanics for about a century, it was not until 1973 that
McIver [17] was among the first researchers to propose the use of variational meth-
ods in modeling fluid–structure interaction problems. Also, the work by Benaroya
and Wei [3] in 2000 is apparently the earliest attempt to use such methods for VIV
problems. Consequently, the literature on the subject is very limited. A brief review
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Fig. 7.2 The frequency–amplitude response curves of an inverted pendulum, where A is the ampli-
tude of oscillations, D is the diameter of the cylinder, Fs is the frequency of oscillations, Fn is the
natural frequency of the cylinder, U represents the fluid velocity.�,©, amplitude of oscillation for
two independent but identical experimental runs; ×, frequency of oscillation, and vortex shedding
frequency in which VIV was observed; ♦, frequency of vortex shedding where the cylinder was
stationary; I , pre-synchronization; I I , resonant synchronization; I I I , classic lock-in [3]. Reprinted
with permission

is presented in Sect. 7.3, which is followed by a summary of our extension of Jour-
dain’s principle (Chap.6) for fluid systems in Sect. 7.4. Then, after a discussion
of the selection and implementation of the solid boundary conditions in Sects. 7.5
and 7.6, Jourdain’s principle is extended further for FSI systems in Sect. 7.7. Using
the extended formulation, reduced-order models in the form of a single governing
equation of motion (SEOM) and nonlinear coupled equations of motion (EOM) are
obtained for the model problem in Sects. 7.8–7.10, where we also discuss our the-
oretical methodology for obtaining coupled EOM from the energy rate equations.
Then in Sect. 7.11, it is shown that the method developed here can be combined
with similarity methods to obtain a lift-oscillator model similar to that proposed by
Hartlen and Currie. In Sect. 7.12, comparisons are made between the reduced-order
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Fig. 7.3 Oscillation
characteristics of a vibrating
circular cylinder with light
damping. n is the frequency
of vortex shedding, N is the
frequency of oscillations,
Ȳ/D is the normalized
maximum amplitude of
oscillation at the reduced
velocity U/N D, and φ◦
denotes the phase angle
between the fluid force and
the cylinder displacement.
+, frequency of oscillation;
©, frequency of vortex
shedding; �, phase angle;
×, amplitude of oscillation
[2]. Reprinted with
permission of the author

model presented in this chapter and those proposed by McIver, Benaroya and Wei,
and Hartlen and Currie. Concluding thoughts are given in Sect. 7.13. The outline of
the structure of this chapter is shown in Fig. 7.4.

7.2 Hartlen and Currie’s Lift-Oscillator Model

One of the earliest of the wake-oscillator models is the lift-oscillator model proposed
by Hartlen and Currie [11], where they considered the model problem in the form
of a translating cylinder. Hartlen and Currie considered an instantaneous lift coeffi-
cient, cL , to be a representative variable for the oscillatory lift force. Therefore, they
expressed the governing equation of motion for the structure as

mẍs + Cẋs + kxs = 1

2
ρu2DLcL , (7.1)

wherem is the cylinder mass,C is the structural damping, k is the structural stiffness,
ρ denotes the density of the fluid with velocity u, D is the cylinder diameter, L is the
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Fig. 7.4 The structure and organization of this chapter

cylinder length, and xs is the structural displacement transverse to the flow direction.
Then, the governing equation was nondimensionalized as

ẍr + 2ζ ẋr + xr = aω2
0cL , (7.2)

where xr is the dimensionless structural displacement, ζ is a reduced damping coeffi-
cient, ω0 is the dimensionless wind speed, and a is a known dimensionless constant.
Since the structure exhibits oscillatory behavior, they assumed that the lift coefficient
must also behave as an oscillator, in particular, a nonlinear oscillator governed by an
equation of the form

c̈L + (damping term) + ω2
0cL = (forcing term) . (7.3)

Based on the nature of VIV systems, Hartlen and Currie deduced that the oscillator
must be a self-excited and self-limited oscillator. Thus, they selected damping terms
such that the resulting equation becomes a van der Pol-type oscillator, and so they
modified Eq.7.3 to
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c̈L − αω0ċL + γ

ω0
(ċL)3 + ω2

0cL = (forcing term) , (7.4)

where α and γ are found experimentally. The forcing term was selected arbitrarily
to be β ẋr , where β is a constant to be estimated experimentally. Therefore, Hartlen
and Currie expressed their coupled differential equations as

{
ẍr + 2ζ ẋr + xr = aω2

0cL

c̈L − αω0ċL + γ

ω0
(ċL)3 + ω2

0cL = β ẋr ,
(7.5)

where only two of the unknown fluid parameters, α, β, and γ , must be selected in
order to obtain the best fit to an experimental data set.

It is obvious from the summary above that the model proposed by Hartlen and
Currie does not provide any insights into the fluid dynamics and its effects on the
structural response. Moreover, Hartlen and Currie’s model does not permit a descrip-
tion of the beating behavior [5] that is usually observed in VIV problems. However,
their model is one of the most successful attempts at reduced-order modeling of VIV
and, perhaps, the most noteworthy of all such approaches.

Next, we summarize several relevant applications of variational principles for
reduced-order modeling of FSI and VIV systems.

7.3 A Review: Variational Principles for FSI Systems

While variational principles have been known and utilized in modeling the dynamics
of solid systems for well over a century, it has only been during the past few decades
that a few attempts have been devoted to applying variational methods to FSI and
VIV problems. Next, we review a few such attempts which, we believe, are good
representative works.

7.3.1 McIver’s Extension of Hamilton’s Principle

An important approach to modeling fluid dynamics using variational principles is by
McIver [17]. He presented his extended form of Hamilton’s principle for problems
involving fluid–structure interactions. Having considered Hamilton’s principle for a
system of continuous particles, McIver utilized Reynolds transport theorem (RTT)
to modify the principle for a system of changing mass (control volume, CV ). For
a moving control volume, it is customary to consider the relative velocities of the
fluid particles with respect to the control volume. However, McIver considered the
velocity of the control volume with respect to the fluid particles, ur , for which he did
not provide any justification. PerhapsMcIver’s aimwas to introduce the backtracking
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concept, that has been usually used in applying variational methods to fluid systems,
at this stage of his formulation. Also, he assumed that the virtual work performed on
a control volume is purely due to the surface tractions at the control surface, that is,
he neglected the viscous dissipation of energy inside the control volume. Therefore,
using the stress dyadic, σ̄ , he considered the virtual work to be

δW =
∫

C S
δr · σ̄ · n d A, (7.6)

where δr is the virtual displacement, n is the vector normal to the differential surface
element d A, and C S is the control surface. For fluid–structure interaction problems,
the control volume can be chosen so that some portions of the control surface match
the structural surfaces. Denoting the portions of the C S where the flow cannot pass
through by C SC (closed C S), and representing the rest of the C S by C SO (open C S),
McIver’s extension of Hamilton’s principle is given by

δ

∫ t2

t1

(T − 
)CV dt +
∫ t2

t1

∫
C SO

[δr · σ̄ · n + ρ (u · δr) (ur · n)] d Adt

+
∫ t2

t1

∫
C SC

δr · σ̄ · nd Adt = 0, (7.7)

where u is the absolute velocity of the fluid particles, T is the kinetic energy, and 


is the potential energy.
Equation 7.7 represents a stationary process if the integrand of the second term

always disappears at the C SO , that is,

σ̄ + ρuur = 0, or (σ̄ + ρuur ) · n = 0 at C SO . (7.8)

Therefore, the applicability of McIver’s equation is restricted to the cases where
such a control volume can be distinguished from the physics of the problem, where
the fluid is bounded by the structure. McIver considered two simple problems as
examples, a rocket problem and a flexible pipe problem.

7.3.2 Xing and Price’s Extension of Hamilton’s Principle

Xing and Price [24] modified Hamilton’s principle for nonlinear ship–water inter-
actions. They considered that imposing virtual displacements cause the particles to
be virtually transported across an assumed control volume. They defined a general
integral function of interest, H ,

H [φ] =
∫ t2

t1

∫
CV

F

(
φ,

∂φ

∂t

)
dV dt , (7.9)
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where φ is a continuous differentiable function of displacement, x, and time, t .
Denoting the local variation (Eulerian) by δ̄ and the material variation (Lagrangian)
by δ, they obtained the local variation of H to be

δ̄H =
∫ t2

t1

{∫
CV

δ̄FdV +
∫

C S
F

(
φ,

∂φ

∂t

)
(δx · n) d A

}
dt . (7.10)

Therefore, the variation of H is twofold: the Eulerian variation inside the control
volume and the flux of H due to Lagrangian virtual displacements. Then, their
model was applied to a rigid ship traveling in calm water and in waves. Xing and
Price’s method requires further simplifications and assumptions as it contains both
Lagrangian and Eulerian variations.

7.3.3 Benaroya and Wei’s Extension of Hamilton’s Principle

Benaroya andWei [3] considered FSI problemswhere the fluid contains the structure;
for details, see Chap.4. They showed that Hamilton’s principle becomes the balance
of energy rates when the configuration is not known at any time. Similar to McIver’s
approach, they used the RTT to relate Hamilton’s principle to a control volume.
However, unlike McIver’s use of RTT, they chose the conventional form of RTT
where the relative velocities, ur , are the relative fluid particle velocities with respect
to the control volume. They presented their governing equation as

d

dt
(Tstructure + 
structure)CV =

∫
C S

1

2
ρu2 (ur · n) d A

+
∫

C S
(−pn+ τ ) · ud A − (mfluiduu̇)CV , (7.11)

where mfluid is the mass of fluid contained by the CV , p is the pressure, and τ is the
shear stress. They explained that the terms on left-hand side of Eq.7.11 are the struc-
tural dynamic terms, and the right-hand side terms can be evaluated experimentally.
The result is the acceleration of the structure that can be integrated twice to obtain
the structure’s displacement.

In parallel with their theoretical development, Benaroya and Wei conducted a
series of experiments on the VIV of a circular cylinder in uniform flow. The cylinder
was free to vibrate transversely to the flow direction. Having input the experimental
data to Eq.7.11, they showed that their model is successful in predicting the frequen-
cies of the structural oscillation as well as in capturing the beating behavior that is
usually observed in VIV. However, the predicted response amplitudes were roughly
half of the experimental values. Their results are shown in Fig. 7.5. They concluded
that these differences are most likely due to the choice of control volume. In their
subsequent paper [5], they examined the effect of the choice of the experimental
control volume on the predictions of their model. They found that the predictions
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Fig. 7.5 Predicted (bottom) versus experimental (top) amplitudes. Both plots are in seconds [3].
Reprinted with permission

are indeed influenced by the selection of control volume. Having obtained a CV
for which the predictions of the model matched the experimental values (shown in
Fig. 7.6), they concluded that the control volume must contain both upstream and
downstream sections of the flow where the downstream control surface is far enough
from the structure as to not pass through the vortex formation region, yet not too far
to not capture the true kinetic energy flux due to the dissipation of energy.

As evident from Eq.7.11, Benaroya and Wei, similar to McIver, neglected the
viscous dissipation of energy inside the control volume since their experiments found
the viscous forces to be three orders of magnitude smaller than the kinetic energy
flux.

7.3.4 Gabbai and Benaroya’s Extension of Hamilton’s
Principle

Benaroya and Wei showed that when the configuration is unknown, which is the
case for the majority of fluid and fluid–structure interaction problems, Hamilton’s
principle is not a variational principle. However, their promising resultsmotivated the
research work by Gabbai and Benaroya to modify the same approach so as to obtain
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Fig. 7.6 Dong et al. [5] results obtained for the phase-averaged cylinder position versus time,
where the solid line represents the experimental result and the dotted line is the computed result for
a specific control volume. Reprinted with permission

a variational method [8]. Experiments (see Chap.4 for details) show the existence of
a formation region (cavity) in the vicinity of a cylinder that is immersed in a flow.
They assumed that energy is evenly exchanged between the cylinder and the wake in
the formation region. Denoting the displacement of this cavity by w, they obtained
their variational equation as

∫ t2

t1

amcavityẇδẇdt+δ

∫ t2

t1

1

2
mẋ2dt − δ

∫ t2

t1

1

2
kx2dt −

∫ t2

t1

cẋδxdt

−
∫ t2

t1

δW (ẇ, ẅ, x, ẋ, ẍ, t) dt − δ

∫ t2

t1

F(w, t)δwdt = 0,

(7.12)

where the overdot denotes d/dt , m denotes the mass, x is the displacement of the
cylinder, k is the structural stiffness, c is the structural damping, δ is the variational
operator, t is time, F is the fluid stiffness, and W represents the instantaneous total
work done by the transverse hydrodynamic force acting on the cylinder, Ff l/st , and
by the viscous and pressure forces inside the cavity, Fμ/p. Therefore,

δW (ẇ, ẅ, x, ẋ, ẍ, t) = −Ff l/st (ẇ, ẅ, ẋ, ẍ, t) δx + Fμ/p (ẇ, ẅ, ẋ, ẍ, t) δw.
(7.13)

Then, based on the literature, the authors proposed some general functions of ẇ, ẅ,
ẋ , ẍ , t , and lift coefficient for Ff l/st and Fμ/p. They showed how three of the existing
wake-oscillator models are each a specific case of their more general model.
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As evident from the literature, the efforts to apply Hamilton’s principle to the
problems of fluid–structure interaction have had some success. They have provided
more insights into the dynamics of the fluid portion of FSI systems when compared
with empirical models. However, these efforts still require additional assumptions
regarding the fluid forcing function in order to obtain wake-oscillator type models.
Specifically, the couplingmechanismbetween the structural EOMand that describing
the fluid dynamics is the result of assumptions made for a problem at hand rather
than being the result of variational operations. Consequently, there exist no general
variational approaches for fluid–structure interactions, thus motivating the work that
is summarized in this monograph.

InChap.6, the application of variational principles tofluid dynamics problemswas
explored. Among other difficulties, one main challenge was identified to arise from
relating variational principles in the Lagrangian frame to the Eulerian frame. It was
shown that Jourdain’s principle (JP) can be a very effective tool to overcome some of
the challenges faced by other variational principles. Consequently, an extension of
JP was derived in Chap.6 for modeling fluid dynamics problems, and this derivation
is summarized next for the convenience of the reader.

7.4 An Extension of Jourdain’s Principle for Fluid Systems

We consider the application of variational principles for modeling fluid dynamics
problems. Variational principles, similar to other first principles, are defined in the
Lagrangian frame of reference. However, it has been shown that the equations of
motion for fluid systems take on a simpler form in the Eulerian frame of reference.
Having reviewed the literature on the subject, one main source of difficulties is
identified to be that the concept of virtual displacement (a Lagrangian concept)
does not have a Eulerian counterpart, posing many challenges in the application of
Hamilton’s principle and Lagrange’s equation in modeling fluid and FSI systems.
This is overcome by utilizing Jourdain’s variational principle. The following is a
short summary of our derivations in Chap.6.

Jourdain’s principle is based on the dynamic equilibrium relation, and for a system
of N particles, is given by the relation

N∑
i=1

(
mi r̈ i − Fi

) · δ ṙ i = 0, where δr i = 0, δt = 0, (7.14)

mi is the mass of particle i moving on the path r i , vector Fi is the force acting on
particle i , and δ ṙ i is the variation of the velocity of particle i (called virtual velocity).



7.4 An Extension of Jourdain’s Principle for Fluid Systems 201

Alternatively, Jourdain’s principle can be expressed as

⎧⎪⎪⎨
⎪⎪⎩

d

dt

[
N∑

i=1

d

dt
(mi ṙ i ) · δr i

]
= d

dt

[
N∑

i=1

Fi · δr i

]

δt = 0, δr i = 0, and
d

dt
(δr i ) �= 0,

(7.15)

where the first line is the differentiation of d’Alembert’s principle with respect to
time.

In order to distinguish between Jourdain’s and d’Alembert’s variational operators,
many authors have used the sign δ1 to denote Jourdain’s variation.We prefer to retain
the same notation (δ) with Jourdain’s constraints where clarity will come from the
context. That is, δ in the first line of Eq.7.15 is d’Alembert’s variational operator.
Then, both sides of the equation are differentiated using the product rule and use is
made of the δr i = 0 constraint, where δ in the resulting equation is the Jourdain’s
variational operator. (In Chap. 6, Eq.6.58 was used instead of Eq.6.41 as it is more
accessible when extending JP for systems of changing mass.)

In order to extend Jourdain’s principle, Eq.7.15, the relations between the
Lagrangian and the Eulerian reference frames are utilized and use is made of a
mapping function � (x, t) with the properties

r = � (r, t) , (7.16)

d

dt
r = d

dt
� (r, t) = D

Dt
� (x, t)

∣∣∣∣
x=r

, (7.17)

and

u (x, t) = D

Dt
� (x, t) , (7.18)

where r is the Lagrangian trajectory. For a control volume CV (t) of a Newtonian
incompressible viscous fluid, we showed that Jourdain’s principle became (Eq.6.80,
repeated here)

∫
CV (t)

(
ρ

Du (x, t)

Dt
− f b (x, t) − ∇ · σ̄

)
· δu (x, t) dV (t) = 0, (7.19)

where ρ is the density of the fluid, D/Dt denotes the material derivative, u (x, t)
is the Eulerian velocity of the fluid particle occupying position x at time t , f b
represents the body force per unit volume, σ̄ is the stress tensor, δu (x, t) is Jourdain’s
virtual velocity imposed at the spatial position x at time t , and dV (t) represents the
differential volume element.
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Using the constitutive relation for Newtonian incompressible fluids,

σ̄ = −p Ī + μ
(∇u + ∇T u

)
, (7.20)

Equation 7.19 becomes

∫
CV (t)

(
ρ

Du (x, t)

Dt
− f b (x, t) + ∇ p (x, t) − μ∇2u (x, t)

)
· δu (x, t) dV (t) = 0,

(7.21)
where p is the thermodynamic pressure, Ī is the identity tensor, and μ is the coeffi-
cient of dynamic viscosity. Since δu is a nonzero vector, the terms of the integrand
inside the parentheses must add to zero, that is, the Navier–Stokes equations are
obtained.

Also, the energy rate equation is obtained directly from Jourdain’s principle using
the relation

δ L̇ (ṙ i , r i , t) = ∂ L̇

∂ ṙ i
· δ ṙ i , (7.22)

if the commutation rule holds and L̇ is the rate of Lagrangian function. Having shown
that the commutation rule does not hold for the acceleration terms in the Eulerian
reference frame, the non-commuting terms are extracted and the energy equation is
obtained via JP to be (Eq.6.143)

δ

∫
CV

rate of kinetic energy︷ ︸︸ ︷
DC

Dt

(
1

2
ρu · u

)
dV =

external loading︷ ︸︸ ︷
δ

∫
C S

− p u · nd A + δ

∫
CV

{μ∇ · [∇ (u · u) − u × (∇ × u)]

viscous dissipation︷ ︸︸ ︷
−1

2
μ
{
(∇ × u) · (∇ × u) + ∇2 (u · u) − 2 ∇ · [u × (∇ × u)]

}}
dV

−

non-commuting term︷ ︸︸ ︷
δ

∫
C S

1

2
ρ (u · u) (u · n) d A, (7.23)

or alternatively as (Eq.6.145)

δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DC

Dt

kinetic energy︷ ︸︸ ︷∫
CV

1

2
ρu · udV +

flux of kinetic energy︷ ︸︸ ︷∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= δ

⎧⎨
⎩
∫

C S

external loads︷ ︸︸ ︷
{− p u · n + μ [∇ (u · u) − u × (∇ × u)] · n
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viscous dissipation︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A − 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV

−

non-commuting term︷ ︸︸ ︷∫
C S

1

2
ρ (u · u) (u · n) d A

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(7.24)

where vC S denotes the velocity of the control surface element d A, and the last integral
on the right-hand side is due to the non-commuting part of acceleration term. Also,
body forces have been neglected. If the only body force present is due to gravity, its
potential function can be easily obtained, since gravitational forces are conservative
and independent of the fluid velocity field.

For the model problem introduced earlier, gravitational forces can be neglected.
Moreover, Eqs. 7.23 and 7.24 represent the energy rate equation in a variational
format. In order to obtain the actual energy rate equation, the integrals labeled as
“viscous dissipation” must be multiplied by a factor of two, since they are Rayleigh’s
dissipation function, φ, obtained from the relation

δφ = ∇uφ · δu, (7.25)

where ∇uφ denotes the differentiation of φ with respect to u in the direction of u.
Rayleigh’s dissipation function states that if a function φ could be found such that
∇u φ = F, then the term F· δu in the variational formulation can be replaced by δφ.

Equations 7.23 and 7.24 can both be used in modeling fluid dynamic systems
and FSI, as they are essentially the same. The advantages of one over the other
mainly rely on the choice of the control volume and how the boundary conditions
are implemented.

Modeling the dynamics of a system of fluid particles, alone, is a very challenging
problem due to the nonlinear behavior of fluids. For fluid–structure interaction prob-
lems, the difficulties increase since the nature of the boundary conditions between
the fluid and structure is not fully understood, and are generally just assumptions
backed by experimental results. Therefore, a discussion of boundary conditions is
necessary next before we expand Eqs. 7.23 and 7.24 for FSI systems.

7.5 Boundary Conditions at the Surface of Solids

From the time of Newton until the early twentieth century, one topic of intensive
discussions has been the boundary conditions (BCs) on solid surfaces that are inter-
acting with viscous fluid particles. Many great scientists and engineers, including
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Navier, Stokes, and Prandtl, have considered the topic. For a long time, there was no
general agreement on the type of the required BCs with the exception of very slow
motion of viscous fluids, where the no-slip condition was accepted [9].

During the past century, many experiments were conducted and compared with
theoretical and numerical results using the no-slip condition, leading to almost uni-
fied agreement on the no-slip condition [22]. Yet, the no-slip condition remains
an assumption (for fluid systems) since it cannot be proven using a first-principles
approach. The general understanding is that some intermolecular interactions result
in zero relative velocity, ur , of fluid particles at a solid surface [13, pp. 295–296],
that is,

ur = u − v = 0, (7.26)

where u is the velocity of the fluid at the surface of a solid moving with the velocity v.
Alternatively, another definition of the no-slip condition is that the tangential

components of the relative velocity must vanish [16], that is,

ur · t = (u − v) · t = 0, (7.27)

or,
ur − (ur · n) n = 0, (7.28)

where t is the unit tangent vector to the surface of the solid. This condition must be
considered together with the no-penetration condition for the normal direction, that
is, no fluid particles can penetrate the solid.

While the no-slip condition seems to be compatible with many experimental
observations on macroscopic scales, some experiments have shown that it is violated
at microscopic scales for Newtonian fluids. The wetting property of the surface, the
velocity of the flow, surface roughness and gas bubbles are among the factors shown
to affect the no-slip boundary condition [1, 12, 20, 25]. More discussion can be
found in [22, p. 1222].

The applicability of the no-slip condition, or any other condition, must be justified
by a comparison with experimental observations. The no-slip condition, in its most
complete form as expressed by Eq.7.26, satisfies the no-penetration conditions as
well. Therefore, for reduced-order models, care must be exercised so that the reduced
number of equations can capture the main characteristics of the FSI. For example,
if the no-slip condition is strongly imposed, then the resulting reduced-order model
most likely cannotmodel the separation of the vortices from the solid structure, unless
additional assumptions are made. Consequently, it might be necessary to relax the
no-slip condition to some extent in analytical or numerical modeling. In fact, the no-
slip condition has not been applied in its most complete form in many computational
simulations or analyticalmodels of FSI. It is implicitly implemented, for example, via
other constraints in the system [4] or through an assumed force field [10]. Moreover,
the no-slip condition is often explicitly implemented and then is relaxed or corrected
in later steps in the modeling process [23]. Alternatively, some weakly impose the
no-slip condition [16].
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For reduced-order models, the difficulties increase since they are less flexible
with respect to the choice of boundary conditions. We continue our derivation by
considering the no-slip boundary condition as it is widely accepted in the literature.
We will also define explicit and implicit no-slip conditions.

The control volume of interest is described next.

7.6 Control Volume Definition

Generally, care must be exercised in the selection of the control volume, as it greatly
affects the applicability of the analytical formulations. Moreover, if the analytical
formulations are to be coupledwith experimental results, the choice of control volume
may be restricted due to experimental limitations, for example, the measurement
equipment used and wind/water tunnel dimensions.

Equations 7.23 and 7.24 were obtained for a general control volume, that is, a
control volume that can deform and move. Therefore, the derived variational formu-
lations did not face any restrictions in the selection of the control volume. For FSI
and VIV problems, the methodology used later imposes a limitation on the selec-
tion of the CV in that some portions of the control surface must be comprised of
solid surfaces. Since no fluid can cross the solid surface, these control surfaces are
referred to as closed control surfaces,C SC . The other surfaces, where fluid can cross,
are called open control surfaces, C SO .

Since we are interested in reduced-order modeling of the model problem, we start
by defining control volumes for the two types of model problem shown in Fig. 7.1.
While our efforts in this chapter are to derive the EOM for a single DOF rigid body
coupled to the fluid oscillator, the same method can be used for modeling a general
deformable solid as well.

Consider the control volume shown in Fig. 7.7, where the control surface is com-
prised of three sections, C SO , C SC , and the surfaces set apart by the distance α. If
α → 0 and if there exist no singularities between the gap, then the surfaces set apart
by the distance α can be neglected. Also, we assume that both the rectangular and
circular control surfaces move rigidly and independently of each other, as shown in
Fig. 7.8.

The shape of the open portion of the control volume is selected to be rectangular
for simplicity. Moreover, the rectangular control surface can represent solid surfaces,
for instance, they can be chosen to coincide with the walls of a water tunnel.

So far, we have not considered any solid body in our derivations. In order to
include a solid structure, we start by considering the original statement of Jourdain’s
principle for a system volume.
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Fig. 7.7 Control volume of
interest

Fig. 7.8 Selected control
volume: rectangular and
circular control surfaces can
move independently

7.7 Extended JP for FSI Systems

Jourdain’s variational principle for a set of N fluid plus solid particles is expressed
by Eq.7.14. Consider a continuous system of fluid and solid particles and assume
that the system consists of M fluid particles where M < N . Jourdain’s principle then
becomes
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M∑
i=1

(
mi r̈ i − Fi

) · δ ṙ i+
N∑

j=M+1

(
m j r̈ j − F j

) · δ ṙ j = 0,

where δr i = 0, δr j = 0 and δt = 0. (7.29)

As per the alternative form for Jourdain’s principle Eq. 7.15, we can alternatively
express Eq.7.29 as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

⎡
⎣ M∑

i=1

(
mi r̈ i − Fi

) · δr i +
N∑

j=M+1

(
m j r̈ j − F j

) · δr j

⎤
⎦ = 0

δt = 0, δr i = 0, δr j = 0,
d

dt
(δr i ) �= 0, and

d

dt

(
δr j

) �= 0.

(7.30)

If the set of particles is continuous during some time interval, then Eq.7.30 can be
expressed in integral form as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
V f

[
ρ

du (r, t)

dt
− f (r, t)

]
· δ� (r, t) dV f

+ d

dt

∫
Vs

[
ρs

d ṙs

dt
− f s (rs)

]
· δrsdVs − d

dt

∫
Solid
Surface

f ∗
s (rs) · δrsd As = 0

δt = 0, δ� (r, t) = 0, δrs = 0,
d

dt
[δ� (r, t)] �= 0, and

d

dt
(δrs) �= 0,

(7.31)

where V f is the material volume of the fluid particles, Vs is the material volume of
solid particles, ρs denotes the density of the solid, rs is the Lagrangian position of the
solid particles, f s (rs) denotes the force density (force per unit volume) in the solid
domain at rs , f ∗

s (rs) is the density of the fluid forces acting at the solid surfaces,
r is the Lagrangian position of the fluid particles, and � is the mapping function
introduced earlier. Note that f s (rs) does not include any force due to the fluid
dynamics. No constraints are included in deriving Eq.7.31, except those imposed by
Jourdain’s principle. The mapping function �(r, t) is introduced so that Lagrangian
variables can be related to Eulerian variables.

For the integral over the fluid system in Eq.7.31, the derivations shown in Chap.6
remain valid for a Newtonian incompressible viscous fluid. Therefore, the integral
over the fluid system can be replaced using Eq.7.21,
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
CV (t)

(
ρ

Du (x, t)

Dt
− f b (x, t) + ∇ p (x, t) − μ∇2u (x, t)

)
· δu (x, t) dV (t)

+ d

dt

∫
Vs

[
ρs

d ṙs

dt
− f s (rs)

]
· δrsdVs − d

dt

∫
Solid
Surface

f ∗
s (rs) · δrsd As = 0

δt = 0, δrs = 0, and
d

dt
(δrs) �= 0.

(7.32)
The energy equation for a general control volume of fluid particles was given in
Eqs. 7.23 and 7.24. Introducing Eq.7.24 into Eq.7.32 results in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · udV +

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

loading external to the fluid︷ ︸︸ ︷
−
∫

C S

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n
viscous dissipation︷ ︸︸ ︷

−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A + 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV

non-commuting term︷ ︸︸ ︷
+
∫

C S

1

2
ρ (u · u) (u · n) d A

⎫⎬
⎭

+ d

dt

∫
Vs

[
ρs

d ṙs

dt
− f s (rs)

]
· δrs dVs − d

dt

∫
Solid
Surface

f ∗
s (rs) · δrsd As = 0

δt = 0, δrs = 0, and
d

dt
(δrs) �= 0,

(7.33)
where body forces are neglected for fluid particles.

Equation 7.33 represents a general variational formulation for a control volume
of a Newtonian incompressible viscous fluid and a general solid body. In order to
specialize this equation further, boundary conditions must be considered and the
stress–strain relation is required for elastic solid bodies. If the structure is assumed
to be rigid, such as the model problem, forces acting at the elastic boundaries must
be known.

We continue by considering the model problem to illustrate the required proce-
dure. In the following section, Eq.7.33 ismodified further to obtain a single governing
EOM describing the dynamics of the FSI system.
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7.8 Modeling FSI: Single Governing EOM

In deriving Eq.7.33, we have not considered the boundary conditions on the solid
surface. Therefore, we continue our derivation by considering the no-slip condition
in its most complete form.

To include the no-slip condition, we consider the second line of Eq. 7.33 and
divide it into integrals over the closed and the open portions of the control surface,

δ

∫
C S

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A

= δ

∫
C SC

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A

+ δ

∫
C SO

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A.

(7.34)

Considering Fig. 7.9, we denote the virtual power corresponding to the resultant
of the forces acting on the closed control surface, F, with δP , and define it as

δP = δ

∫
C SC

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A. (7.35)

Also, denoting the virtual power of the resultant fluid dynamic forces applied to the
solid structure, F∗ by δP∗, we define

δP∗ = d

dt

∫
Solid
Surface

f ∗
s (rs) · δrsd As =

∫
Solid
Surface

f ∗
s (rs) · d

dt
(δrs) d As , (7.36)

where we considered Jourdain’s constraint, δrs = 0.

Fig. 7.9 Schematics of FSI between a rigid solid and a fluid, where F denotes the resultant of the
forces applied to the fluid by the solid structure and F∗ is the resultant of forces applied to the solid
structure by the flow
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Assuming the no-slip condition, and considering that Jourdain’s principle does
not permit any displacement, the particles at the solid surface remain in the same
relative position. Moreover, the shear terms of Eq. 7.35 (terms containing μ) are
representative of external loads and are not dissipative. Therefore, in the absence of
dissipative terms, the power lost by the structure must be absorbed by the fluid and
vice versa. Therefore, δP = − δP∗.

Moreover, the virtual velocities must be compatible with the system’s constraints,
thus δ ṙs = δu at the closed control surface. Therefore, the external fluid forces and
f ∗

s (rs) are action and reaction forces at any point on the solid surface. Then, using
the terms for external load from Eq.7.23, we obtain

d

dt

∫
Solid
Surface

f ∗
s (rs) · δrsd As = −δ

∫
C SC

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A.

(7.37)
Substituting Eq.7.37 into Eq.7.34, and introducing it into Eq.7.33, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · udV +

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

loading external to the fluid︷ ︸︸ ︷
−
∫

C SO

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A

viscous dissipation︷ ︸︸ ︷
+
∫

C S

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · nd A + 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV

non-commuting term︷ ︸︸ ︷
+
∫

C S

1

2
ρ (u · u) (u · n) d A

⎫⎬
⎭

+ d

dt

∫
Vs

[
ρs

d ṙs

dt
− f s (rs)

]
· δrsdVs = 0

δt = 0, δrs = 0, and
d

dt
(δrs) �= 0.

(7.38)
Equation 7.38 is valid for any control volume of a Newtonian incompressible vis-

cous fluid and any solid body (rigid or deformable). We next continue our derivation
for the model problem, which assumes the solid body to be rigid. For a deformable
solid body, similar manipulations need to be performed, given that the stress–strain
relations f s (rs, t) are known.
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7.8.1 Single Governing EOM for the Translating Cylinder

Consider themodel problem in the formof the translating cylinder shown in Fig. 7.1a.
One generalized coordinate is required to fully describe the motion of the cylinder.
Let the generalized coordinate be the Lagrangian coordinate xs (t) measured from
the center of the cylinder when it is at rest, perpendicular to the axis of symmetry of
the cylinder and transverse to the flow direction.

Setting rs (t) = xs (t) and f s (xs) = 1
Vs

(−C ẋs − kxs) in Eq.7.38, the corre-
sponding terms can be replaced as follows:

d

dt

∫
Vs

[
ρs

d ṙs

dt
− f s (rs)

]
· δrsdVs = d

dt

[(
ms ẍs + C ẋs + kxs

) · δxs
]

= (
ms ẍs + C ẋs + kxs

) · δ ẋs , (7.39)

where C is the net support damping constant and k denotes the net support spring
constant. In deriving Eq.7.39, the structural terms are differentiated and the varia-
tional constraint (δxs = 0) is imposed. Also, the rigidity of the cylinder is considered
in the integration over the solid volume.

Similar to the energy rate terms obtained for the control volume of fluid particles,
Eqs. 7.23 and7.24,we seek the energy rate terms corresponding to the structural terms
using Eq.7.22. The structural parameter xs is a Lagrangian coordinate. Therefore,
Eq. 7.22 can be used to obtain the energy rate equation for the conservative structural
terms,

(
ms ẍs + k xs

) · δ ẋs = ms ẍs · δ ẋs + k xs · δ ẋs

= ∂
(
ms ẍs · ẋs

)
∂ ẋs

· δ ẋs + ∂
(
k xs · ẋs

)
∂ ẋs

· δ ẋs

= δ
(
ms ẍs · ẋs + k xs · ẋs

)
. (7.40)

For the nonconservative linear damper, we use Rayleigh’s dissipation function,
1
2C ẋs · ẋs, and obtain its directional derivative with respect to ẋs in the direction of
ẋs ,

∇ẋs

(
1

2
C ẋs · ẋs

)
= C ẋs . (7.41)

Therefore, the variation of the function above can be obtained using Eq.7.25,

δ

(
1

2
C ẋs · ẋs

)
= C ẋs · δ ẋs . (7.42)
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Substituting Eqs. 7.40 and 7.42 into Eq.7.39, and introducing the resulting relation
into Eq.7.38, we find the energy rate equation for the translating cylinder problem,

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · u dV +

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

−
∫

C SO

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n} d A

+
∫

C S

{
1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A

+ 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV +
∫

C S

1

2
ρ (u · u) (u · n) d A

⎫⎬
⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0.

(7.43)

In derivingEq.7.43,we did not add any constraints regarding the nature of solid–fluid
interaction other than the action and reaction forces. In order to include the boundary
conditions, we next separate the integrals over the control surface into integrals over
its open and closed portions. For the flux of kinetic energy, we have

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

=
∫

C SC

(
1

2
ρu · u

) (
u − vc

C S

) · nd A +
∫

C SO

(
1

2
ρu · u

) (
u − vo

C S

) · nd A,

(7.44)

where vo
C S and vc

C S are the velocities of the open and closed portions of the control
volume, respectively. The first integral on the right-hand side of Eq. 7.44 is equal to
zero due to the no-penetration condition, therefore,

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A =

∫
C SO

(
1

2
ρu · u

) (
u − vo

C S

) · nd A. (7.45)

For the fluid dissipative forces at the control surfaces,we expand the fourth integral
in Eq.7.43 as follows:
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C S

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · nd A

=
∫

C SO

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · nd A

+
∫

C SC

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · nd A. (7.46)

The second integral on the right-hand side, over the closed control surface, can be
interpreted in multiple ways. We expect energy to be dissipated at higher rates near
the structure due to a larger velocity gradient. Even though the no-slip condition
implies that no energy is lost due to friction because of zero relative motion between
the fluid and solid, viscous dissipation can be envisioned between the fluid particles
at the solid surface and those particles adjacent to them. So, we choose to keep the
dissipative terms at the closed control surfaces and continue our derivations.

Wemake two clarifications regarding the viscous terms. First, for a solid structure
that does not move, the dissipative terms at the closed boundary disappear [14, article
329]. Therefore, one choice seems to be that u in Eq.7.46 can be replaced with ur ,
especially when experimental data is considered. Second, the same discussion as that
made for dissipative terms applies to viscous forces acting external to the fluid, and
one may decide to keep these in the energy equation. However, the pressure terms
are conservative forces for incompressible fluids and they can be neglected.

Finally, regarding the non-commuting terms, we also consider the no-slip condi-
tion, which states that at the closed control surface u = ẋs for all time. Replacing u
by ẋs at the closed surfaces and considering that the commutation rule holds for ẋs ,
the non-commuting terms disappear. Therefore, in Eq.7.43 we have

∫
C S

1

2
ρ (u · u) (u · n) d A =

∫
C SO

1

2
ρ (u · u) (u · n) d A. (7.47)

Having specified the boundary condition, the variational energy rate equation for the
translating cylinder problem is obtained by substituting Eqs. 7.45–7.47 into Eq.7.43,
resulting in

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · u dV +

∫
C SO

(
1

2
ρ u · u

) (
u − vo

C S

) · nd A

−
∫

C SO

external load at open CS︷ ︸︸ ︷
{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n



214 7 Eulerian Flow-Oscillator Models

viscous dissipation at open CS︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2u × (∇ × u)] · n

}
d A

+

viscous dissipation at solid surface︷ ︸︸ ︷∫
C SC

1

2
μ [∇ (u · u) − 2u × (∇ × u)] · n d A

+

viscous dissipation inside the CV︷ ︸︸ ︷∫
CV

1

2
μ (∇ × u) · (∇ × u) dV +

∫
C SO

1

2
ρ (u · u) (u · n) d A

+ ms ẍs · ẋs + 1

2
C ẋs · ẋs + k xs · ẋs

}
= 0.

(7.48)

Rayleigh’s dissipation function must be multiplied by a factor of two in order to
obtain the energy rate equation [18]. Therefore, the energy rate equation for the
translating cylinder problem is

DC

Dt

∫
CV

1

2
ρu · u dV +

∫
C SO

(
1

2
ρ u · u

) (
u − vo

C S

) · n d A

−
∫

C SO

[− p u · n + μu × (∇ × u) · n] d A

+
∫

C SC

μ [∇ (u · u) − 2u × (∇ × u)] · n d A

+
∫

CV

μ (∇ × u) · (∇ × u) dV +
∫

C SO

1

2
ρ (u · u) (u · n) d A

+ ms ẍs · ẋs + C ẋs · ẋs + k xs · ẋs = 0,
(7.49)

where we summed the viscous terms at the open control surface.
The model problem in the form of the inverted pendulum is considered in the

following section.

7.8.2 Single Governing EOM for the Inverted Pendulum

Similarly to the translating cylinder problem, the inverted pendulum problem
(Fig. 7.1b) is a single DOF structure. The single generalized coordinate is selected
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to be the angle of rotation of the rigid cylinder θ (radians) about its support. Also,
the same assumptions as those made by Benaroya and Wei [3] are used, which are
three-dimensional effects can be ignored (vortices remain two dimensional), weight
and buoyancy forces must be included for the structure, and the resultant of all the
forces act at the geometric center of the circular cylinder. Moreover, the horizontal
plane passing through the center of geometry contains the two dimensional vortices.

Therefore, by replacing the last term in Eq.7.38 by

[
I0θ̈ + CT θ̇ + kT θ − (ms g − B)

L

2
sin θeθ

]
· δθeθ ,

the energy rate equation is found to be

DC

Dt

∫
CV

1

2
ρu · udV +

∫
C SO

(
1

2
ρu · u

) (
u − vo

C S

) · nd A

−
∫

C SO

[− pu · n + μu × (∇ × u) · n] d A

+
∫

C SC

μ [∇ (u · u) − 2u × (∇ × u)] · nd A

+
∫

CV

μ (∇ × u) · (∇ × u) dV +
∫

C SO

1

2
ρ (u · u) (u · n) d A

+ I0θ̈ θ̇ + CT θ̇2 + kT θ θ̇ −
[
(ms g − B)

L

2
sin θ

]
θ̇

}
= 0.

(7.50)

The derivations required to obtain this equation are not presented here since they are
similar to those shown in the last section. Detailed derivations can be found in [19].

Having obtained a single degree-of-freedom equation for the model problem, we
next seek reduced-order models that are two coupled EOM. We begin by explaining
our methodology based on some of the fundamental concepts of the variational
calculus.

7.9 Coupled Equations of Motion: Conceptual Approach to
the Wake Oscillator

We have obtained the variation of the rate of the Lagrangian function L (Eq. 7.48
and the variational equation corresponding to Eq.7.50). Our next goal is to derive
two nonlinear coupled equations that can fully describe the main characteristics of
the dynamics of a FSI system.



216 7 Eulerian Flow-Oscillator Models

In analytical mechanics, the partial derivatives of the Lagrangian function with
respect to velocities results in a fundamental concept called the generalized momen-
tum [15], pi , defined as

pi = ∂L

∂q̇i
, (7.51)

where q̇i is the generalized velocity that can be selected to be either the Lagrangian
or the Eulerian velocities.

The following derivations are similar in many ways to that concept as a result of
the definition of Jourdain’s variational operator:

δψ = lim
ε→0

1

ε
[ψ (u + ε δu) − ψ (u)] , (7.52)

and

δψ = ∂ψ

∂u
· δu, (7.53)

where ψ is a potential function, u is the velocity field and δu is the variation of
the velocity field. However, here we are dealing with the rate of the Lagrangian
function, L̇ (or in the Eulerian reference frame, DL/Dt), instead of the Lagrangian
L . Therefore, applying Eq.7.53 would result in the rate of generalized momenta.

A fundamental concept of variational calculus, called Noether’s principle, states
that any infinitesimal transformation of either the action variables, or the inde-
pendent variable, involving a constant parameter results in a conservation law if
the Lagrangian remains unchanged [15]. In Chap.6 and [19], we showed that the
energy rate equation (L̇ = 0) can be directly obtained from Jourdain’s principle using
Eq.7.53. That is, the corresponding differential equations can be obtained by using
the definition of Jourdain’s principle and by choosing u and ṙs to be the independent
generalized velocities. Thus,

δ L̇ = ∂ L̇

∂u
· δu + ∂ L̇

∂ ṙs
· δ ṙs = 0, (7.54)

where ∂ L̇/∂u and ∂ L̇/∂ ṙs are defined as

∂ L̇

∂u
· δu = ∂ L̇ (u + εδu)

∂ε

∣∣∣∣
ε=0

≡ lim
ε→0

1

ε

[
L̇ (u + ε δu) − L̇ (u)

]
, (7.55)

and
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∂ L̇

∂ ṙs
· δ ṙs = ∂ L̇

(
ṙs + εδ ṙs

)
∂ε

∣∣∣∣∣
ε=0

≡ lim
ε→0

1

ε

[
L̇
(
ṙs + εδ ṙs

) − L̇
(
ṙs
)]
. (7.56)

Since δu and δ ṙs are arbitrary, independent, nonzero vectors, Eq.7.54 results in

∂ L̇

∂u
= 0 (7.57)

∂ L̇

∂ ṙs
= 0. (7.58)

For the model problem, these are four coupled equations: Eq.7.58 is a single differ-
ential equation (since the structure has a single DOF) representing the solid structure,
and Eq.7.57 are three differential equations describing the flow.

Consequently, if we use ∂ L̇/∂ ṙs = 0 to obtain the structural governing equation
and substitute it into Eq.7.54, we are left with

∂ L̇

∂u
· δu = 0. (7.59)

Defining the partial scalar potential function δ L̇u as

δ L̇u = ∂ L̇

∂u
· δu, (7.60)

the coupled set of equations represented by Eqs. 7.57 and 7.58 becomes

⎧⎨
⎩

δ L̇u = 0
∂ L̇

∂ ṙs
= 0.

(7.61)

Since L̇u is a set of potential functions satisfying δ L̇u = 0, then L̇u = 0 is the cor-
responding balance of energy (conservation) equation. Therefore, Eq.7.61 become

⎧⎨
⎩

L̇u = 0
∂ L̇

∂ ṙs
= 0.

(7.62)

These are two coupled equations: ∂ L̇/∂ ṙs = 0 is an ordinary differential equation
representing the structural oscillation, and L̇u = 0 is an integral equation representing
the fluid dynamics.

Generally, variational methods are powerful tools for conservative systems. The
approach explained here requires monogenic forces and a scleronomic system.
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Frictional forces (structural damping and viscous forces) are polygenic and the cor-
responding energy rate terms are obtained using Rayleigh’s dissipation function.
Therefore, the first line of Eq. 7.62 alone is not a conservation equation but rather it
is a power equation representing the dynamics of the fluid system as coupled to the
structural EOM. These concepts will become clearer in application below.

7.10 Coupled Equations of Motion: The Wake Oscillator

In this section, wewish to obtain reduced-order wake-oscillator models comprised of
two coupled EOM (in the form of the wake-oscillator model) using the methodology
explained in the previous section. In Sect. 7.8, we obtained a single governing EOM
for FSI systems in the general form of Eq. 7.38. For the single degree-of-freedom
model, the boundary conditions are important but are not crucial to the modeling
process since the structural response is estimated via averaging the energy that must
be transferred to the structure. On the other hand, when obtaining a reduced-order
model in the form of a wake-oscillator model, the boundary conditions are extremely
important as these essentially determine the nature of the coupling between the two
governing equations of motion.

In Sect. 7.5, we discussed that imposing the no-slip condition in its most complete
form may weaken the reduced-order model’s ability to capture the true dynamics of
the FSI system, and thatweak forms of no-slip conditions have generally been applied
in many computational simulations or analytical models of FSI. Therefore, we start
the modeling process from the variational formulation expressed by Eq.7.38. For
these reasons, we wish to reintroduce the no-slip condition into Eq.7.38. This is
done explicitly and implicitly in the following two sections, where this terminology
will become clear.

For simplicity, only the model problem in the form of the translating cylinder
is considered. We apply Gauss’ divergence theorem to Eq.7.43 in order to take the
non-commuting term inside the control volume and neglect the changes that resulted
from the no-slip condition in deriving Eq.7.43, resulting in

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · udV +

∫
C S

(
1

2
ρu · u

)
(u − vC S) · nd A

loading external to the fluid︷ ︸︸ ︷
−
∫

C S

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n

viscous dissipation︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A + 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV
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+

non-commuting term︷ ︸︸ ︷∫
CV

∇ ·
[
1

2
ρ (u · u) u

]
dV

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0.

(7.63)

Equation 7.63 can also be expressed as

δ

⎧⎨
⎩
∫

CV

DC

Dt

(
1

2
ρu · u

)
dV

loading external to the fluid︷ ︸︸ ︷
−
∫

C S

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n

viscous dissipation︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A + 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV

+

non-commuting term︷ ︸︸ ︷∫
CV

∇ ·
[
1

2
ρ (u · u) u

]
dV

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0, (7.64)

whereweusedEq.7.23 instead ofEq.7.24 for thefluid terms. Equations 7.63 and7.64
are similar equations, yet each has different advantages depending on the selection of
the control volume. Note that no boundary condition has yet been applied in deriving
Eqs. 7.63 and 7.64.

7.10.1 Reduced-Order Model with Implicit Implementation
of the No-Slip Condition

The applicability of an analytical formulation is greatly affected by the selection of
the control volume. For reasons that will become apparent, we consider the more
restricted form of the control volume shown in Fig. 7.10, where the control volume
moves rigidly with the structure. Therefore,

vC S = vstructure. (7.65)
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Fig. 7.10 The selected
control volume where the
control volume moves
rigidly with the structure. rs
denotes the displacement of
the structure

No other requirements are necessary other than some portions of the control surface
must be the solid surfaces. In Fig. 7.10, the open portion of the control volume is
selected to be rectangular in shape for simplicity. Moreover, we denote the velocity
of the structure by ẋs , resulting in ẋs = vC S .

In Sect. 7.7, we discussed that by excluding the dissipative terms the remaining
viscous terms together with the pressure represent the external loads on the closed
surface, and they can be viewed as conservative action and reaction forces where
the no-slip condition is considered. Therefore, going through the same steps shown
there, Eq.7.63 becomes

δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · u dV +

∫
CV

∇ ·
[(

1

2
ρu · u

) (
u − ẋs

)]
dV

−
∫

C SO

[
− pu · n + 1

2
μ∇ (u · u) · n

]
d A

+
∫

C SC

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n d A

+ 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV +
∫

CV

∇ ·
[
1

2
ρ (u · u) u

]
dV

⎫⎬
⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0,

(7.66)
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where the term
(
1
2ρu · u) (u − ẋs

)
is taken inside the control volume, assuming

that the fluid particles can shed from the structure. Thus, the no-slip condition is
implemented by neglecting the viscous and pressure forces at the solid structure
in Eq.7.66. The no-penetration condition will be satisfied by integration over the
appropriate control volume.

Having obtained the variational energy rate equation, we wish to obtain two cou-
pled governing equations via the methodology explained in Sect. 7.9. We start by
applying Eqs. 7.55–7.66 in order to obtain the rate of generalized momentum asso-
ciated with u. However, we are just interested in the partial scalar potential L̇u.
The potential terms not containing the flow velocity u will drop out and the terms
expressed purely by u remain the same. Moreover, the potential functions of both
velocities u and ẋs remain the same. Therefore, δ L̇u is found to be

δ L̇u = δ

⎧⎨
⎩DC

Dt

∫
CV

1

2
ρu · u dV +

∫
CV

∇ ·
[(

1

2
ρu · u

) (
u − ẋs

)]
dV

−
∫

C SO

[
− pu · n + 1

2
μ∇ (u · u) · n

]
d A

+
∫

C SC

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n d A

+ 1

2

∫
CV

μ (∇ × u) · (∇ × u) dV +
∫

CV

∇ ·
[
1

2
ρ (u · u) u

]
dV

⎫⎬
⎭ .

(7.67)

The equation representing the participation of the fluid dynamic parameters is
obtained from Eqs. 7.62 by setting L̇u = 0.

For the structural terms, we apply Eq.7.56 to the remaining terms of the energy
equation (Eq.7.66), which are

δ

∫
CV

∇ ·
[(

1

2
ρu · u

) (−ẋs
)]

dV + δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0.

(7.68)
Considering the structural terms, we have

δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= (

ms ẍs + C ẋs + kxs
) · δ ẋs (7.69)

= (ms ẍs + Cẋs + kxs) δ ẋs . (7.70)

Manipulating the flux of the kinetic energy term using Gauss’ theorem, we obtain
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δ

∫
CV

∇ ·
[(

1

2
ρu · u

)
ẋs

]
dV = δ

∫
C S

(
1

2
ρu · u

) (
ẋs · n) d A

=
∫

C S

(
1

2
ρu · u

) (
δ ẋs · n) d A

= δ ẋs

⎧⎨
⎩
∫

CV

∇
(
1

2
ρu · u

)
· ex dV

⎫⎬
⎭ , (7.71)

where ex is the unit vector in the direction of ẋs . Substituting Eqs. 7.70 and 7.71 into
Eq.7.68, we have

− δ ẋs

⎧⎨
⎩
∫

CV

∇
(
1

2
ρu · u

)
· ex dV

⎫⎬
⎭ + (ms ẍs + Cẋs + kxs) δ ẋs = 0. (7.72)

Considering that δ ẋs is arbitrary, the structural EOM is found to be

ms ẍs + C ẋs + k xs =
∫

CV

∇
(
1

2
ρu · u

)
· ex dV . (7.73)

Finally, the general coupled equations of motion are obtained from Eqs. 7.67 and
7.73 to be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs =
∫

CV

∇
(
1

2
ρu · u

)
· ex dV ,

DC

Dt

∫
CV

1

2
ρu · u dV +

∫
CV

∇
(
1

2
ρu · u

)
· udV

−
∫

C SO

[
− pu · n + 1

2
μ∇ (u · u) · n

]
d A

+
∫

C SC

1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n d A

+
∫

CV

1

2
μ (∇ × u) · (∇ × u) dV +

∫
CV

∇
[
1

2
ρ (u · u)

]
· u dV

=
∫

CV

∇
(
1

2
ρu · u

)
· ẋsdV .

(7.74)

Having obtained the coupled equations for themodel problem,we next show that a
different set of equations can be obtained using a different approach to implementing
the boundary conditions.
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7.10.2 Reduced-Order Model with Explicit Implementation
of the No-Slip Condition

In the previous section, we obtained a reduced-order model by implementing the
no-slip condition implicitly, that is, by assuming that the fluid forces at the solid
surface have an equal and opposite reaction. Therefore, they do not affect the total
energy of a system (based on d’Alembert’s principle). Alternatively, in this section,
we show that a different approach can be used if we wish to keep the interacting
forces at the solid surface. Similarly to the previous section, we assume that the
no-slip condition holds. (Note that Dong et al. [5] did not consider any boundary
conditions and yet they obtained a control volume where the predictions of their
analytical model matched the experimental observation with very good accuracy.)
We choose the control volume shown in Fig. 7.8. The open portion of the control
volume can contain closed surfaces and it may be selected to have shapes other than
the rectangle shown in that figure.

The no-slip condition implies that

u − ẋs = 0, or, ẋs − u = 0, at the solid surface. (7.75)

Therefore, we wish to introduce Eq.7.75 into Eq.7.64. Since the virtual velocities
must be compatible with the system constraints, and the no-slip condition is simply
a nonholonomic constraint, we have

δu − δ ẋs = 0, or, δ ẋs − δu = 0, at the solid surface. (7.76)

From the derivations of Sect. 7.8, and by dimensional considerations, we choose a
no-slip condition of the form

δ

∫
C SC

(
1

2
ρu · u

) (
ẋs − u

) · nd A = 0. (7.77)

Since Eq.7.77 equals zero for all time, we can add it to Eq.7.64 to obtain

δ

⎧⎨
⎩
∫

CV

DC

Dt

(
1

2
ρu · u

)
dV +

no-slip condition︷ ︸︸ ︷∫
C SC

(
1

2
ρu · u

) (
ẋs − u

) · nd A

loading external to the fluid︷ ︸︸ ︷
−
∫

C S

{− pu · n + μ [∇ (u · u) − u × (∇ × u)] · n
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viscous dissipation︷ ︸︸ ︷
−1

2
μ [∇ (u · u) − 2 u × (∇ × u)] · n

}
d A +

∫
CV

1

2
μ (∇ × u) · (∇ × u) dV

+

non-commuting term︷ ︸︸ ︷∫
CV

∇ ·
[
1

2
ρ (u · u) u

]
dV

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0. (7.78)

Summation of the viscous terms and expansion of the second and last integrals of
Equation 7.78 yields, for the problem at hand,

δ

⎧⎨
⎩
∫

CV

ρ
DC

Dt

(
1

2
u2
)

dV +
∫

C SC

ρ

(
1

2
u2
) (

ẋs · n) d A −
∫

C SC

ρ

(
1

2
u2
)

(u · n) d A

−
∫

C S

[
− pu · n + μ∇

(
1

2
u2
)

· n
]

d A +
∫

CV

1

2
μ (∇ × u) · (∇ × u) dV

+
∫

C SC

ρ

(
1

2
u2
)

(u · n) d A +
∫

C SO

ρ

(
1

2
u2
)

(u · n) d A

⎫⎪⎬
⎪⎭

+ δ

(
ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

)
= 0. (7.79)

Summing terms of the form
∫

C SC
ρ
(
1
2u2

)
(u · n) d A and applying Gauss’ theorem

to the viscous terms in the integrand of the fourth integral,

∫
C S

1

2
μ∇

(
u2
)

· nd A =
∫

CV

μ∇2
(
1

2
u2
)

dV , (7.80)

we obtain,

δ

⎧⎨
⎩
∫

CV

ρ
DC

Dt

(
1

2
u2
)

dV +
∫

C SC

ρ

(
1

2
u2
) (

ẋs · n) d A +
∫

C SO

ρ

(
1

2
u2
)

(u · n) d A

+
∫

CV

[
∇ p · u − μ∇2

(
1

2
u2
)

· n + 1

2
μ (∇ × u) · (∇ × u)

]
dV

+ ms ẍs · ẋs + 1

2
C ẋs · ẋs + kxs · ẋs

}
= 0.

(7.81)
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Applying Eqs. 7.62–7.81 results in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs = −
∫

C SC

ρ

(
1

2
u2

)
(ex · n) d A

∫
CV

ρ
DC

Dt

(
1

2
u2

)
dV +

∫
C SO

ρ

(
1

2
u2

)
(u · n) d A

+
∫

CV

[
∇ p · u − μ∇2

(
1

2
u2

)
+ 1

2
μ (∇ × u) · (∇ × u)

]
dV

= −ẋs

∫
C SC

ρ

(
1

2
u2

)
(ex · n) d A,

(7.82)

where u2 = u · u, and the required steps are similar to those of Sect. 7.10.1.
Thus far, we have obtained two possible reduced-order governing equations of the

model problem in the form of a translating cylinder. Similar reduced-order models
for the inverted pendulum problem can be obtained [19].

As evident from our derivations thus far, depending on our interpretation of the
boundary conditions, and on how we choose to implement it, the resulting reduced-
order model would differ to some extent. Both Eqs. 7.74 and 7.82, or any other
models obtained by implementing the boundary conditions differently than those
shown, can be simplified further by dimensional analysis, similarity methods or
perturbation techniques. However, experimental data and observations are required
for further simplifications.

In order to show the steps required, as an example, we consider the experimental
observations of Benaroya andWei [3] and Dong et al. [5] to obtain a model similar to
the wake oscillator proposed by Hartlen and Currie. To accomplish this, we will not
use similaritymethods in a traditionalway.However,wewillmake a few assumptions
based on experimental observations.

It is emphasized that the next section is an example where we specialize the above
equations only to demonstrate that the above-derived equations embody the flow-
oscillators of the literature. The example does not limit the applicability of those
equations.

7.11 Modeling VIV: A Lift-Oscillator Model

Our main goal in this chapter has been to obtain first-principle-based equations gov-
erning vortex-induced structural oscillations, which we accomplished in the previous
sections with Eqs. 7.74 and 7.82. These results are two coupled governing equations,
one a differential equation representing the structure and the other an integral equa-
tion representing the fluid dynamics.
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However, wake-oscillator models in the literature are generally two coupled dif-
ferential equations, one linear and one nonlinear. In order to show that such equations
can be obtained from, for example, Eq.7.82, we seek a reduced-order model similar
to the lift-oscillator model of Hartlen and Currie [11]. Their model has been chosen
since it is one of the earliest and, perhaps, the most noteworthy of the wake-oscillator
models.

We start our manipulations with some general assumptions that can be made for
many VIV problems and apply these to the reduced-order model Eq.7.82.

For fluids with very low viscosity, the boundary layer approximation method,
proposed by Prandtl, assumes that viscosity only exists in the vicinity of the solid
structure, and is neglected elsewhere. In Eq.7.82 the term μ∇2

(
1
2u2

)
represents the

sum of the viscous forces acting as external loads, and those dissipating energy on
the surface of the structure and on the open control surfaces. Therefore, following
Prandtl’s hypothesis, we neglect the viscous dissipation inside the control volume,
(see Eq.7.48), ∫

CV

1

2
μ (∇ × u) · (∇ × u) dV ≈ 0. (7.83)

Applying Eq.7.83 to Eq.7.82 results in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs = −
∫

C SC

ρT̂ (ex · n) d A

∫
CV

ρ
DC T̂

Dt
dV +

∫
C SO

ρT̂ (u · n) d A +
∫

CV

(
∇ p · u − μ∇2T̂

)
dV

= −ẋs

∫
C SC

ρT̂ (ex · n) d A,

(7.84)

where the kinetic energy density function is T̂ = u2/2. In order to simplify Eq.7.84
further, we consider some experimental observations of Dong et al. [5].

Dong et al. performed a series of experiments on the VIV model problem in the
form of an inverted pendulum. They found an optimum control volume for which the
analytical model proposed by Benaroya andWei [3] predicted the structural response
with excellent accuracy. The phase-averaged terms of Benaroya and Wei’s energy
rate equation obtained by their experiments are shown in Fig. 7.11, where the figure
depicts the results for the optimum control volume. The corresponding spectra of the
fluid energy transport terms (of Fig. 7.11) are shown in Fig. 7.12.

Considering Fig. 7.12, Dong et al. reported that their careful examination indicates
that the flux of the fluid kinetic energy across the open control surface and the work
done by the pressure were correlated with the vortex shedding while the flux of the
kinetic energy around the cylinder was correlated with the cylinder oscillation. We
expect that the last statement is a result of the no-slip condition.
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Fig. 7.11 Phase-averaged terms of Eq. 7.124 for the inverted pendulummodel where the dark solid
line denotes the time rate of change of the fluid kinetic energy in CV, the light solid line is the flux
of kinetic energy, the dashed lined is the rate of work done on the cylinder by pressure forces, and
the dotted line is the time rate of change of mechanical energy of the cylinder. The work done by
the viscous forces are included in the figure, however, they are too small to be visible ([5], reprinted
with permission)

Fig. 7.12 Spectra of the energy terms shown in Fig. 7.11, where —©— corresponds to the time
rate of change of the fluid kinetic energy inside the CV, · · · 
 · · · is for the flux of kinetic energy,
—�— is for the rate of work done by pressure on the structure, - -�- - represents the rate of
mechanical energy of the cylinder ([5], reprinted with permission)
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These experiments were conducted on an inverted pendulum, while we have con-
sidered the model problem in the form of a translating cylinder. However, due to
similarities between the two problems, we assume similar results would be found for
the problem at hand. Moreover, the control volume of their experiments was selected
such that the downstream control surface views the structured vortices, that is, it was
close enough to the structure so that the shed vortices had not yet broken down into
smaller eddies.

Since Dong et al. considered the rate of kinetic energy to be
∫

CV
∂T
∂t dV , we extract

the same integral from the first integral in the second equation of Eq. 7.84 and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs = −
∫

C SC

ρT̂ (ex · n) d A

∫
CV

ρ
∂ T̂

∂t
dV +

∫
C SC

ρT̂ (u · n) d A + 2
∫

C SO

ρT̂ (u · n) d A

+
∫

CV

(
∇ p · u − μ∇2T̂

)
dV = −ẋs

∫
C SC

ρT̂ (ex · n) d A.

(7.85)

Next we interpret the experimental observations of Dong et al. so that they become
applicable to Eq.7.85. Based on their observation that the flux term at the closed
surface corresponds to the structural vibration, we assume the relation

∫
C SC

ρT̂ (x, t) [u (x, t) · n] d A =
∫

C SC

ρT̂

(
x, t + 1

fs

)[
u
(
x, t + 1

fs

)
· n
]

d A,

(7.86)
where fs (Hz) is the vibration frequency. Equation 7.86 represents a boundary con-
dition, and since we have two coupled equations it must only be applied to one
of them. Therefore, the similar term in the other equation becomes relaxed from
this boundary condition. Since the no-slip condition is a boundary condition for
the fluid and not the structure, we make the substitution in the governing equation
of the fluid (second equation) in Eq.7.85. Moreover, the terms

∫
C SC

ρT̂ (u · n) d A

and ẋs
∫

C SC
ρT̂ (ex · n) d A vary with the same frequency, thus we assume that their

superposition also varies with the same frequency. Therefore,

α ẋs
∼= ẋs

∫
C SC

ρT̂ (ex · n) d A +
∫

C SC

ρT̂ (u · n) d A, (7.87)

whereα is a constantwith dimensions of force and the integrals are evaluated from the
experimental measurements in the vicinity of the structure. This relaxes the condition
on the corresponding term in the structural differential equation. In the last equation,



7.11 Modeling VIV: A Lift-Oscillator Model 229

∫
C SC

ρT̂ (x, t) (ex · n) d A ≡
∫

C SC

ρT̂

(
x, t + 1

fv

)
(ex · n) d A, (7.88)

where fv (Hz) is the frequency of vortex shedding.
Considering the second equation in Eq.7.85, and introducing Eq.7.87, we have

∫
CV

ρ
∂ T̂

∂t
dV + 2

∫
C SO

ρT̂ (u · n) d A +
∫

CV

(
∇ p · u − μ∇2T̂

)
dV = −α ẋs . (7.89)

Applying Gauss’ divergence theorem to the pressure and viscous terms, we have

∫
CV

ρ
∂ T̂

∂t
dV + 2

∫
C SO

ρT̂ (u · n) d A +
∫

C S

(
pu−μ∇ T̂

)
· nd A = −α ẋs , (7.90)

so that no pressure or viscous terms are present inside the control volume. Note that
the viscous termswere neglected by the hypothesis of Eq. 7.83. Dong et al. found that
the rate of work done by the viscous forces to be so small that its corresponding trace
is not visible in Fig. 7.11. They also found that the time rate of change of the kinetic
energy of the system was correlated with the vortex shedding frequency. Therefore,

∫
CV

ρ
∂

∂t
T̂ (x, t) dV =

∫
CV

ρ
∂

∂t
T̂

(
x, t + 1

fv

)
dV , (7.91)

or,
∂

∂t

∫
CV

ρT̂ (x, t) dV = ∂

∂t

∫
CV

ρT̂

(
x, t + 1

fv

)
dV . (7.92)

At this point, we choose the direction of free-stream flow to be the z axis of the
Cartesian coordinate system defined in Fig. 7.13. Therefore, T̂ (x, t) = T̂ (x, z, t).

Since no external or dissipative forces are present inside the control volume in
Eq.7.90, a shed vortexmust repeat its pattern periodically as it travels in the direction
of the free-stream flow. Therefore, we have

T̂ (x, z, t) = T̂ (x, z − cvt, t) , (7.93)

where cv is the velocity of shed vortices.
Considering Eqs. 7.92 and 7.93 together with Fig. 7.11, T̂ (x, t) has the charac-

teristics of a propagating wave with velocity cv and frequency fv. Therefore, from
the wave equation, we have

∂2T̂ (x, t)

∂t2
≡ c2v∇2T̂ (x, t) , (7.94)
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Fig. 7.13 A schematic diagram of the experiments of Dong et al. where the shedded vortices are
P + S-type vortices. For the classification of vortices refer to [7]

or

∇2T̂ (x, t) = 1

c2v

∂2T̂ (x, t)

∂t2
. (7.95)

Introducing Eq.7.95 into Eq.7.89, yields

∫
CV

ρ
∂ T̂

∂t
dV + 2

∫
C SO

ρT̂ (u · n) d A +
∫

CV

∇ p · udV −
∫

CV

μ

c2v

∂2T̂ (x, t)

∂t2
dV = −α ẋs .

(7.96)
Based on the experiments of Dong et al., the flux of the kinetic energy across the
open control volume was found to vary with the frequency of the vortex shedding,
that is,

∫
C SO

ρT̂ (x, t) [u (x, t) · n] d A =
∫

C SO

ρT̂

(
x, t + 1

fv

)[
u
(
x, t + 1

fv

)
· n
]

d A.

(7.97)
However, the kinetic energy inside the control volume must also vary with the same
frequency when Eq.7.92 is considered. Moreover, the flux of the kinetic energy adds
and subtracts energy from the system very similarly to a spring. Since, T̂ (x, t),
u (x, t) and T̂ (x, t) u (x, t) have the same frequency, and since the solution of the
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velocity field inside the control volume is a function of the boundary conditions, we
can write ∫

C SO

ρT̂ (x, t) [u (x, t) · n] d A ∝
∼ −

∫
CV

ρ fv T̂ (x, t) dV , (7.98)

where ∝
∼ means they are approximately proportional and the negative sign is intro-

duced to show that the right-hand side is positive when the left-hand side is negative.
Assuming proportionality, we can write

∫
C SO

ρT̂ (x, t) [u (x, t) · n] d A = −
∫

CV

βρ fv T̂ (x, t) dV , (7.99)

where β is a constant to be determined. Substituting Eq.7.99 into Eq.7.96, we obtain

− μ

c2v

∫
CV

∂2T̂ (x, t)

∂t2
dV +

∫
CV

ρ
∂ T̂

∂t
dV −

∫
CV

2β fvρT̂ dV +
∫

CV

∇ p · udV = −α ẋs .

(7.100)
From Gauss’ divergence theorem, we expect that the term

∫
C SC

ρT̂ (ex · n) d A in
Eq.7.85 can be related in the following way,

∫
C SC

ρT̂ (ex · n) d A ∝
∼

∫
CV

∇
(
ρT̂

)
· ex dV , (7.101)

and, since T̂ (x, t) has the characteristics of a propagating wave

∂ T̂ (x, t)

∂t
≡ −cv∇ T̂ (x, t) . (7.102)

Equation 7.101 becomes

∫
C SC

ρT̂ (ex · n) d A ∝
∼ −

∫
CV

1

cv
ρ

∂ T̂ (x, t)

∂t
dV . (7.103)

Therefore, we assume proportionality and obtain

∫
C SC

ρT̂ (ex · n) d A = −
∫

CV

γ
1

cv
ρ

∂ T̂ (x, t)

∂t
dV , (7.104)

where γ is a constant to be determined. It is important to note that in Eqs. 7.99 and
7.104, constants β and γ can more generally be replaced with functions of fv and
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fv/cv, respectively, if the vortices are not structured in a velocity range of interest.
However, the vortices were fairly structured at the examined flow velocity [3, 5].

Substituting Eqs. 7.100 and 7.104 into Eq.7.85 yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs =
∫

CV

γ
1

cv
ρ

∂ T̂ (x, t)

∂t
dV

− μ

c2v

∫
CV

∂2T̂ (x, t)

∂t2
dV +

∫
CV

ρ
∂ T̂

∂t
dV −

∫
CV

2β fvρT̂ dV +
∫

CV

∇ p · udV = −α ẋs .

(7.105)
Thus far, we have not considered the pressure terms, since they are perhaps the

most complex and challenging terms. The pressure is the thermodynamic pressure,
generally assumed to be independent of velocity in the derivation of the constitutive
relation for Newtonian incompressible fluids. Yet, its distribution is often found to
be a function of velocity. For example, for problems with steady low speed flow, the
pressure distribution is found via Bernoulli’s equation to be

p + 1

2
ρu2 = p∞ + 1

2
ρu2

∞, (7.106)

which leads to defining a nondimensional excess pressure, called the pressure coef-
ficient C p,

C p ≡ p − p∞
1
2ρu2∞

, (7.107)

where p∞ and u∞ are the pressure and velocity at infinity.
While the pressure coefficient was originally defined for steady flow, it has been

used extensively in similarity analyses of complicated nonlinear problems. For exam-
ple, it is used to relate the local pressure at a point, p (x), to other parameters of the
nondimensional Navier–Stokes equations via the relation

p (x) − p∞
1
2ρu2∞

= f
(
Fr, Re;

x
l

)
, (7.108)

where Fr denotes the Froude number, Re is the Reynolds number, l is a length scale,
and f ( ) is a function [13].

As evident from Eq.7.105, pressure is an external load to the control volume.
Also, since we are seeking a reduced-order model that can be coupled with the
experiments, a set of experimental velocities is already the result of the pres-
sure field. In Chap.6, we argued that the classical energy equation is the zeroth-
order approximation to a complete energy accounting. Moreover, when deriving
our variational energy equation we assumed that the pressure remains constant
with respect to first-order velocities, and there seems no reason why we cannot
assume it to vary with first-order velocities. Given the difficulties faced in acquiring
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experimental data, we are encouraged to consider an approximation of pressure at
least up to first order. However, the zeroth-order terms can be neglected since their
effects must be observable from the measured velocities.

The experiments of Dong et al. found that the work done by the pressure was
correlated with the rate of kinetic energy, that is,

p (x, t) = p

(
x, t + 1

fv

)
. (7.109)

Based on Eq.7.107, we expect a relation between pressure and kinetic energy of the
form

p (x, t) = f
[
ρT̂ (x, t)

]
, (7.110)

where f is a function to be determined. Furthermore, since T̂ (x, t) behaves similarly
to a wave, that is,

p (x, t) = f
[
ρT̂ (x, t)

]
= f

[
ρT̂

(
x, t + 1

fv

)]

= f
[
ρT̂ (x − cvt, t)

]
, (7.111)

p itself must be in the form of a wave. Therefore,

∂p (x, t)

∂t
≡ −cv∇ p (x, t) . (7.112)

Consequently, we can say that ∇ p (x, t) must be a function of ∂
∂t T̂ (x, t), that is,

∇ p (x, t) = − 1

cv
f
[

∂

∂t
T̂ (x, t)

]
, (7.113)

where f is a vector-valued function to be determined. Substituting Eq.7.113 into
Eq.7.105, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ms ẍs + Cẋs + kxs = γ

cv

∫
CV

ρ
∂ T̂ (x, t)

∂t
dV

μ

c2v

∫
CV

∂2T̂ (x, t)

∂t2
dV −

∫
CV

ρ
∂ T̂

∂t
dV +

∫
CV

1

cv
f

[
∂ T̂ (x, t)

∂t

]
· udV

+
∫

CV

2β fvρT̂ dV = α ẋs .

(7.114)
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Defining an instantaneous kinetic energy function for the control volumeof an incom-
pressible fluid by

T (t) =
∫

CV

ρT̂ dV , (7.115)

and introducing it into Eq.7.114, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ms ẍs + Cẋs + kxs = γ

cv
Ṫ

μ

ρc2v
T̈ − Ṫ + f

(
Ṫ
) + 2β fvT = α ẋs ,

(7.116)

where α, β, and γ are defined by Eqs. 7.87, 7.99 and 7.104, respectively; f
(
Ṫ
)
is a

function with an order higher than one with respect to Ṫ , and an appropriate form
of f

(
Ṫ
)
must be selected based on experimental considerations. Since the sign of

f
(
Ṫ
)
must be positive, Eq.7.116 is a van der Pol-type oscillator.

For comparison with Hartlen and Currie, we may assume that f
(
Ṫ
)
is the first-

order term of the Taylor series of a sine function. We select

f
(
Ṫ
) = η

ρ fvc4v
Ṫ 3, (7.117)

where the negative sign is eliminated since f
(
Ṫ
)
must be a positive-valued function,

and η is a constant found experimentally. Based on this choice, the reduced-order
model becomes ⎧⎪⎨

⎪⎩
ms ẍs + Cẋs + kxs = γ

cv
Ṫ

μ

ρc2v
T̈ − Ṫ + η

ρ fvc4v
Ṫ 3 + 2β fvT = α ẋs .

(7.118)

It is worth noting that one may choose to keep the zeroth-order term of the f
(
Ṫ
)

due to experimental considerations. This will introduce another constant that must be
evaluated togetherwith η from curve fitting to particular experimentalmeasurements.

Thus far, we have obtained reduced-order models in the form of single governing
EOM and two coupled EOM. Next, a comparison is made between our derived
equations and some of the existing models in the literature.
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7.12 Comparison with Some Existing Models

7.12.1 Comparison with McIver’s Extension of Hamilton’s
Principle

McIver’s extended Hamilton’s principle for systems involving fluid–structure inter-
action [17], specifically systems where the fluid is internal to the structure. In this
section, we compare our derivations to those of McIver, even though we recognize
the significant differences in our two physical systems.

The first difference is due to McIver’s assumption that the only virtual work
applied to a control volume is due to the surface traction over the control surfaces
[17, p. 251]. Therefore, McIver started his derivations by assuming that there is no
dissipation of energy due to viscosity. If we hadmade the same assumption, the terms
marked viscous dissipation would not be present in Eq.7.23.

In his paper, McIver also presented his energy rate equation in the absence of any
interacting system as [17, Eq. 23]

d

dt
(T + 
)CV =

∫∫
CVO

[
u · σ̄ + ρ

(
1

2
u2 + e

)
(vCV − u)

]
· nd A, (7.119)

where e denotes the density of the potential 
, and we have changed McIver’s
notations to match ours to avoid confusion. Neglecting the potential energy terms
(as we did) and substituting the terms T and σ̄ , Eq. 7.119 becomes

d

dt

∫
CV

1

2
ρu2dV =

∫
C S

{
u · [−p Ī + μ

(∇u + ∇T u
)] +

(
1

2
ρu2

)
(vC S − u)

}
· nd A.

(7.120)
For comparison, if we neglect the terms corresponding to viscous dissipation in
Eq.7.24 and manipulate the other terms to match those of McIver’s equation, the
energy rate equation becomes

DC

Dt

∫
CV

1

2
ρu2dV

=
∫

C S

{
u · [−p Ī + μ

(∇u + ∇T u
)] +

(
1

2
ρu2

)
(vC S − u) +

(
1

2
ρu2

)
u
}

· nd A.

(7.121)

Comparing Eq.7.121 with Eq.7.120, another important difference becomes clear,
that is, there is the additional term of power due to the non-commuting part of the
rate of kinetic energy,

(
1
2ρu2

)
u. As mentioned earlier, this term was obtained after

examining the commutation rule in the Eulerian reference frame inChap. 6. However,
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McIver assumed the commutation rule holds. Moreover, he did not consider the
relations between the Lagrangian and the Eulerian reference frames.

For an incompressible fluid, the thermodynamic pressure can be considered to be
a conservative force. McIver considered the energy equation for a control volume
of fluid particles in the absence of a solid system to be Eq.7.119, and he discussed
that the energy of the control volume would be conserved if the control volume is
selected such that the terms on the right-hand side of Eq. 7.119 disappear for all time.
For this, the control surface must satisfy the relation

vC S · n = − u · σ̄ · n
ρ
(
1
2u2 + e

) + u · n. (7.122)

For FSI and VIV, the selection of a control volume such that it satisfies this relation is
very challenging. Itmight be easily recognizable for systemswhere an approximately
laminar flow is internal to the structure, but it is ambiguous otherwise. Thus, it is
very challenging to compare McIver’s method with ours any further since McIver’s
appropriate control volume cannot be distinguished without knowing the velocity
field of the flow.

Another interesting extension of Hamilton’s principle was by Benaroya and Wei
[3], which is considered in the following section.

7.12.2 Comparison with Benaroya and Wei’s Extension of
Hamilton’s Principle

In the previous section, we discussed that the applicability of McIver’s approach
is greatly limited by the constraint it imposes on selecting the appropriate control
volume. Having considered McIver’s method, Benaroya and Wei ([3], and Chap. 4)
took on a more challenging task to extend Hamilton’s principle for VIV problems
where the flow is external to the structure. In this chapter, we used their methodology
in obtaining the single governingEOMfor themodel problem.Thus, a short summary
of their work suffices.

Benaroya andWei discussed in detail that in the absence of known particle trajec-
tories for the fluid flow, stationarity cannot be ensured. Thus, setting δr = udt would
lead to the conservation of energy equation. Based on their experimental measure-
ments, they neglected the viscous dissipation of energy inside the control volume
and obtained the energy equation for the translating cylinder problem (Fig. 7.1a) to
be,

ẋs
(
ms ẍs + kxs

) + (
m f luiduu̇

)
CV

=
∫

C S

1

2
ρu2 (ur · n) d A +

∫
C SO

(−pn+ τ ) · u d A +
∫

C SC

(−pn+ τ ) · u d A,

(7.123)
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and for the inverted pendulum problem, they derived the governing EOM

θ̇

[
I0 θ̈ + kT θ − (ms g − B)

L

2
sin θ

]
+ (

m f luiduu̇
)

CV

=
∫

C S

1

2
ρu2 (ur · n) d A +

∫
C SO

(−pn+ τ ) · u d A +
∫

C SC

(−pn+ τ ) · u d A,

(7.124)

where they have ignored the structural damping.
Comparing Benaroya and Wei’s results (Eqs. 7.123 and 7.124) to Eqs. 7.49 and

7.50, we notice that the sign of the flux of kinetic energy in our equation is different
than theirs. The reason is that Benaroya andWei used theRTT to relate the integration
over the control system to that over the control volume while we used the RTT twice
when deriving our energy equation in Chap.6; once for the same purpose and once
to relate the change of control volume to itself.

Moreover, Benaroya and Wei consider the pressure and shear forces at the closed
surface which we neglect by considering them to be action and reaction forces that do
not appear in the energy equation. Regarding these terms, their equation also differs
from that obtained by McIver.

Additionally, we notice similar differences to those observed in Sect. 7.12.1, that
is, the dissipation terms and the non-commuting term of the rate of kinetic energy
are not present in their formulation.

Next, we compare our lift-oscillator model with the one proposed by Hartlen and
Currie.

7.12.3 Comparison with Hartlen and Currie’s Lift-Oscillator
Model

The lift-oscillator model proposed by Hartlen and Currie was not derived from a
first-principles approach. In Sect. 7.11, our aim was to obtain a model similar to their
lift-oscillatormodel since it is one of themost popular empiricalmodels. Comparison
of our result, Eq. 7.118, to Hartlen and Currie’s model expressed by Eq.7.5 reveals
a few differences that are worth noting, as follows.

The first difference is that the constants of Hartlen and Currie’s model (α, β, and
γ ) are meant to be used to fit the EOM to a particular dataset. These constants do
not correspond to any dynamical parameter of the fluid flow, and therefore, cannot
provide any physical insights. Contrary to their model, the constants α, β, γ and η

of the model developed here are obtained from specific assumptions made regarding
fluid dynamic behavior.

As mentioned earlier, only two of the unknown fluid parameters of Hartlen and
Currie’s model must be selected in order to obtain the best fit to an experimental
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data set [5]. However, in our model, only the constant η is obtained by curve fitting,
where its physical meaning is well understood from Eq.7.117.

Another difference observed between the two models is how the two EOMs are
coupled. To clarify this statement, let us assume that the nonlinear EOM representing
the fluid flow is a second oscillator coupled with the structure. In Hartlen and Currie’s
model, the structural EOM observes the forcing function due to cL , that is, the
displacement of the oscillator. However, in our model the structural EOM is coupled
to the second oscillator via the velocity, Ṫ , i.e., the rate of kinetic energy. As has
been discussed, Hartlen and Currie’s model cannot represent beating behavior [5].
The beating behavior can be envisioned to be a result of the superposition of two
waves with different frequencies. If Hartlen and Currie’s model does not permit
beating behavior, then the two oscillators are in phase. Since velocity is out of phase
with respect to displacement, then coupling via velocity allows a beating behavior.

Having compared ourmethodwith three existingmodels, the chapter is concluded
next.

7.13 Discussion

While the importance of fluid–structure interaction has been well understood for
many years, there exist no compelling analytical methods where the reduced-order
models are derived from first principles. In the past few decades, few attempts to
utilize variational principles in modeling FSI systems have had any success. These
models were not directly obtained from variational operations and they required
ad hoc assumptions. To overcome this difficulty, we extended Jourdain’s principle
for the modeling of FSI systems for a Newtonian incompressible viscous fluid. As
examples, we considered the model problem first as a translating cylinder and then as
an inverted pendulum (shown in Fig. 7.1), and obtained two types of reduced-order
models, first in the form of a single governing EOM (SEOM), and then in the form
of two coupled EOMs.

For the SEOM model, we used Benaroya and Wei’s methodology to extend our
energy rate equation for such systems. Thismethod requires the pressure to be known
at the surface of the structure. PIV andDPIVmethods only estimate the velocity field.
Thus, the pressure term is problematic. To obtain the pressure, Benaroya and Wei
integrated the Navier–Stokes equation numerically. In our derivations, we neglect
the pressure terms by considering them to be action and reaction forces. However,
the pressure remains a requirement for the open sections of the control surface.

Our method, based on the important concept of generalized momentum in ana-
lytical mechanics, uses the rate of generalized momenta to obtain reduced-order
coupled governing equations from the variational energy rate equation (extended
JP). Depending on the type of equations required, two possible methods are those
expressed by Eqs. 7.57, 7.58, and by Eq.7.62.

For the model problem, we chose Eq.7.62 and obtained two coupled equa-
tions, one a differential equation and the other an integral equation. We showed the
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importance of boundary conditions and their implementation by obtaining two dif-
ferent possible reduced-order governing equations for the translating cylinder model
problem (Eqs. 7.74 and 7.82).

The wake-oscillator models available in the literature are ad hoc models, obtained
by guessing a function that can capture some characteristics of a system. Therefore,
they do not provide any insights into the fluid dynamic parameters that can affect the
outcome. Nevertheless, they are valuable for engineering applications. As an exam-
ple, we considered the model proposed by Hartlen and Currie. Their lift-oscillator
model captures many features of the structural response without addressing the fluid
dynamics.

Referring to Eq.7.116, the method developed in this chapter has the advantage
that the resulting reduced-order model is expressed in terms of the kinetic energy of
the control volume. Each of the terms in Eq.7.116 has a specific meaning and can
be traced back to the energy equation, and even further back to the Navier–Stokes
equation.

There exist no reduced-order models in the literature that are obtained without
an assumed lift or drag coefficient function. The reduced-order modeling method
proposed here does not require any such ad hoc assumptions. The coupled equations
are obtained directly from the energy equation by using a variational method based
on first principles, but we recognize that the specific derivation of our actual flow-
oscillator equations required a prior knowledge of the particular physical problem.
While there are assumptions at this stage of the work, these are chosen based on
a reading of experimental data. The primary contributions of this chapter are the
general derivations surrounding Jourdain’s principle and the formulation in Eulerian
form, along with application to fluid–structure systems.

We expect that the method developed here can be extended to compressible flows
and elastic structures, albeit with a major effort.

Our summary of the whole monograph is given in the next chapter.
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Chapter 8
Concluding Thoughts

The problem of fluid–structure interaction (FSI) has long been one of the great chal-
lenges in engineering. It is a crucial consideration in the design of many engineering
systems such as offshore structures, skyscrapers, aircraft, and bridges. This mono-
graph has focused on incompressible flows and bluff bodies. There is also a vast
literature and research effort on compressible flows over aerodynamic bodies.

While the importance of the subject has been understood for well over a century,
it has been only in the past few decades that efforts have been made to analyt-
ically model the general behavior of such systems. Parallel to analytical attempts,
many experiments have been devoted to gathering data and interpreting such interac-
tions. Generally, attempts have been made to model vortex-induced vibration (VIV)
problems as few degrees-of-freedom (DOF) oscillatory models; therefore, they are
referred to as reduced-order models.

Due to the complexity of the interactions between fluid and structure, in particu-
lar for vortex-induced vibration, a variety of efforts have been undertaken to explain
the physics of this coupling. Initially, the efforts were experimental so that “reality”
could be visualized, and then explained. Tremendous efforts have led to impres-
sive results by numerous experimentalists along with extensive phenomenological
understanding of this behavior. The practical needs of industry required more than
just understanding, it required designs of structures and machines that could operate
safely for long periods of time in fluid environments where complex interactions
occur. For vortex-induced oscillations, this led to the need for design equations that
were representative of the experimental data. Physical theory lagged experimental
data, of course, but the need for governing design equations was there, resulting in the
formulation of governing equations that qualitatively mimicked the data and could
be made to fit the data in specific instances by the use of parameters. Such semi-
empirical equations have formed the backbone of reduced-order modeling for VIV.

Only recently, analytical dynamics-based modeling of such problems has evolved
with coupling to experimental data, resulting in various semi-analytical representa-
tions. Our monograph represents a line of work with the goal of laying a fundamental
foundation for such reduced-order modeling. This effort is based on the variational
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principles of mechanics. In Chap.2, we provided a representative review of the liter-
ature. While the review does not include all published works, of course, as there are
thousands of such publications, we have endeavored to review the highlights of such
work as exemplified by the better known papers. We believe that this chapter well
represents the state of the art as it relates to the work presented in this monograph,
emphasizing analytical approaches. There are numerous papers on experimental and
numerical approaches to this class of problems, both of a fundamental nature, and
with dozens of application-specific studies.

In Chap.3, we summarized analytical mechanics. The analytical approaches are
based on variational principles. The termvariational is from the calculus of variations,
the foundation for such techniques. An important advantage of the analytical method
is that the equations of motion are coordinate independent, and the derivations of
the governing equations proceed in parallel with a consideration of the boundary
conditions. Newton’s second law of motion is vectorial, and boundary conditions
are generally considered separately from the derivations of the governing equations.
We have included this chapter in order to provide the opportunity for the interested
and motivated reader to gain the needed background for the remaining chapters of
the book, and thus make the book relatively self-contained. We also introduce more
advanced concepts related to Jourdain’s Principle in Chaps. 6 and 7, as they are
needed.

Chapter 4 summarizes our initial foray into this approach to the analytical mod-
eling of VIV. Our motivation was to move beyond phenomenological approaches
that, while valuable, are limited in their ability to explain VIV in terms of funda-
mental physical principles. This part of the work is based on Hamilton’s Principle
in conjunction with Reynolds Transport Theorem. Hamilton’s principle in analytical
dynamics is a great intellectual achievement. As with Lagrange’s equations, Hamil-
ton’s principle is derived from the Principle of VirtualWork. Our work in this chapter
is an extension of the fundamental work of McIver for systems of changing mass. In
particular, the development by McIver was a successful attempt to model structures
with internal moving fluid. We built on his ideas and extended Hamilton’s principle
for structures vibrating in an incompressible fluid. There were challenges, one of
which was the definition of the control volume around the structure and its location
and extension. Our result was a single energy equation for the structural vibration,
coupled to experimental results.

Chapter 5 reexamines the approach taken in Chap. 4, again by utilizingHamilton’s
Principle in conjunctionwithReynolds Transport Theorem.After general derivations
based on these, a transversely oscillating circular cylinder is modeled as a 2D prob-
lem. Terms in the derived equations are related to the various energies in the system,
both fluid and structural. Two coupled governing equations of motion are derived,
one for the fluid wake-oscillator and the second for the rigid structural dynamics.
These general equations are then compared to wake- oscillator models that are well
known: Krenk and Nielsen, Hall, Berger, and Tamura and Matsui. Nonlinear wake-
oscillator models have been shown to be leading-order approximations for the vortex
shedding instability from a fixed cylinder in uniform flow, while wake-body models
have been shown to represent the same type of leading-order approximation for
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forced oscillations of circular cylinders in uniform flows. These findings imply
that these models have, at least to some degree, fluid dynamical origins. It is
precisely because of these fluid dynamical origins that wake-body models have
been successful.

However, by the very nature of being leading-order approximations to very com-
plex interactions, they have limitations. The methodology presented in this chapter
serves to address these. The fluid dynamical origins can be accounted for since the
starting variational principle is rigorous. The limitations are accounted for because
any assumptions made in reducing the variational principle are explicitly stated. It
has been shown that the wake-body model derived from the proposed methodology
shares many qualitative features with the three comparison models chosen from the
literature. We can argue that the comparison models are special cases of our derived
models. This follows from the fact that the derived model is found to involve terms
that do not appear in the comparison models. These additional terms are, for the
most part, the autoparametric terms. It is not the aim of this paper to weigh in on
the issue of whether or not these terms should be retained. Suffice it to say that
many authors have previously addressed the inadequacy of linear coupling terms in
wake-body models. There are terms in the comparison models that are not captured
in the derived model. This is simply a manifestation of the assumed forms in the
derived equations. Subject to a different set of assumptions, these equations could
conceivably be modified such that the “missing” terms appear in the derived model.
It cannot be stressed enough that these modifications would need to be justified.
This is, in essence, the embodiment of the advantage of the method presented in
this chapter and this book generally: That while the wake-body models still contain
arbitrary coefficients, their forms are arrived at by a line of reasoning, rather than a
“hit or miss” approach.

We believe that this approach can be implemented in other fluid–structure interac-
tion problems. The possibility of applying it to derive wake-body models for elastic
structures in uniform and shear flows is something that is possible with much work.
The current chapter was based on variational methods, where the variation was a
virtual displacement. Based on these derivations, a flow-oscillator set of equations
was formulated. In the next two chapters, a variational approach based on virtual
velocities is formulated, where we first relate Lagrangian variables to Eulerian vari-
ables.

Chapters 6 and 7 are coupled, with the first laying the Jourdain’s Principle basis for
transforming Lagrangian variables and equations into an Eulerian frame of reference.
First Lagrangian and Eulerian displacement fields are related. Then velocity fields,
and then the time derivatives of the system properties are related. In order to set
up a variational principle, it became necessary to relate variations in both frames
of reference. Since virtual displacements are not easily suited to fluids, Jourdain’s
Principle is introduced and discussed as an alternative framework, and derived from
d’Alembert’s Principle. Jourdain’s Principle is then derived for an Eulerian frame of
reference. Then energy and energy-rate equations are derived in the Eulerian frame.
TheRayleigh dissipation function is introduced and discussed, sincewe are interested
in applications to incompressible but viscous fluids.
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Chapter 7 begins with a summary of the key results from Chap.6, as well as a
summary of the key experimental results and the essential flow-oscillator mathemat-
ical models. The introduction of the structure into the fluid required a discussion
of boundary conditions, in particular, the no-slip condition and how it can be intro-
duced. Jourdain’s Principle is extended for fluid–structure interacting systems. A
general variational formulation for a control volume of a Newtonian incompress-
ible viscous fluid and an internal general solid body is derived. It is then used to
derive a single degree-of-freedom model of fluid–structure interaction, and then for
a wake-oscillator model with two coupled equations. Two approaches are taken in
order to show that depending on the assumptions made, a different set of equa-
tions is derived. This is acceptable, and demonstrates the power and usefulness of
the variational framework that has been created. The key advantage over the phe-
nomenological approaches is that instead of implicit assumptions, we are able to
identify (and modify if necessary) the assumptions made explicitly. In order to com-
pare the derived framework, with specificmathematical models, experimental results
are used in order to reduce the general framework models to wake-oscillator models
published in the literature. These are compared to the models of: McIver, Benaroya
and Wei, and Hartlen and Currie.

While it is theoretically possible to extend the current work to compressible and/or
elastic structures, this would be a significant endeavor and challenge. It is unclear
what would be accomplished by doing this, but the theoretical issues to be resolved
can be of interest more generally.
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