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Preface

There are two distinct yet equivalent approaches to solving a problem in rigid body mechanics: the

Newtonian approach, based on Newton’s laws, and Lagrange’s approach, based on the postulate

called the principle of virtual powers, and which lead to Lagrangian or analytical mechanics.

Although both approaches yield equivalent results, they differ on a number of points both

in terms of conception as well as formulation. In addition to the usual ingredients – velocity,

acceleration, mass and forces – analytical mechanics involves a new concept that does not exist

in Newtonian mechanics, which is given the enigmatic name “virtual velocity”. It is based on this

concept that virtual powers are defined. While Newton’s laws state relationships between vector

quantities (force and acceleration), the principle of virtual powers, is written in terms of virtual

powers, which are scalar quantities. Analytical mechanics is also distinguished by the fact that

parameterization plays a primordial role here: given the same mechanical problem, it is possible

to choose different parameterizations and the resulting equations – and thus, the information

they yield – differ based on the chosen parameterization. Another salient feature demonstrated

in analytical mechanics is that once the parameterization is chosen, the kinematical behavior

of the system, a vector description in essence, is condensed into a scalar function, called the

parameterized kinetic energy.

While Newtonian mechanics brings into play physical concepts that are easy to apprehend,

Lagrange theory appears more complicated because of the virtual velocity and the very

statement of the principle of virtual powers. However, two technical advantages compensate for

this conceptual difficulty:

(i) It is seen that the physicist’s task is practically reduced to choosing the appropriate

parameterization for the system under study. Once the parameterization is chosen, the

Lagrange equations systematically lead to as many equations as there are unknowns (if the

problem is well-posed). Of course, it is also possible to obtain a sufficient number of

equations using the Newtonian approach, but there is no systematic way of doing so. One

must first carry out an analysis of the applied forces and must often subdivide the

mechanical system being studied in an adequate manner and then write the equations for

the subsystems.

(ii) The operations carried out in analytical mechanics – especially the calculation of the

parameterized kinetic energy and its derivatives – are purely algebraic and, therefore,

programmable. This explains the success of analytical mechanics in the study of complex

systems containing a large number of kinematic parameters, where it is more difficult to

obtain the equations of motion using the Newtonian approach.

This book strives to explain the subtleties of analytical mechanics and to help the reader

master the techniques to obtain Lagrange’s equations in order to fully use the potential of this

elegant and efficient formulation. It is meant for students doing their bachelors or masters degree
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in Engineering, who are interested in a comprehensive study of analytical mechanics and its

applications. It is also meant for those who teach mechanics, engineers and anyone else who

wishes to review the fundamentals of this field. Although the content does not require any prior

knowledge of mechanics, it is preferable for the reader to be familiar with the Newtonian

approach.

The format adopted in this book

When writing this book, the authors laid out the objective of revisiting analytical mechanics and

presenting it from a different angle both in form and style. This was done:

– by adopting a more axiomatic and formal framework than a conventional course,

– and by taking special efforts concerning notations to arrive at mathematical expressions

that are both precise and concise.

By “axiomatic framework”, we mean that all through this book, the chapters are constructed

in a manner that is similar to a mathematical discussion, where the ingredients are presented in

the following order:

1. the definitions to establish the vocabulary used,

2. the theorems, where results are proven and where we specify the hypotheses, clearly

indicating the conditions of applicability for this or that result,

3. and finally, examples to illustrate the nuances of the theory and the mechanisms of the

calculation.

While the theory is constructed in a deductive manner and forms a monolithic block, each

theorem is written in a self-contained and condensed form – that is, hypotheses followed by

results – in order to make it “ready to use”.

Synopsis

This book contains 11 chapters and two appendices:

Chapter 1 reviews the basic ingredients of kinematics: time, space and the observer (or

reference frame). We present here the key concept of the derivative of a vector with respect a

reference frame and introduce the concept of a “common reference frame”, which is used to

connect or relate two different reference frames.

Chapter 2 focuses on an important operation in analytical mechanics, namely the

parameterization of the mechanical system being studied. This operation consists of choosing a

certain number of primitive parameters of the system, expressing all existing constraints in terms

of these parameters and, finally, classifying the constraint equations into two categories, called

“primitive” and “complementary” equations. This task, incumbent on the physicist, is specific to

analytical mechanics and has no equivalent in Newtonian mechanics. It is important because, as

we will see, the Lagrange equations that are obtained (and, consequently, the information that

may be extracted from them) are essentially dependent on the choice of parameterization.

The parameterization of the system leads to the definition of the parameterized velocities and

the parameterized kinetic energy, the concept on which the Lagrange kinematic formula is based.

Chapter 3 reviews the conventional concept of efforts that includes forces and torques. These

can be classified as either internal efforts and external efforts, or given efforts and constraint

efforts. The virtual powers of efforts are calculated in Chapter 5 depending on how the efforts are

categorized.

Chapter 4, dedicated to virtual kinematics, introduces new kinematic quantities that are the

counterparts of those introduced in Chapter 1 and are labeled “virtual”: the virtual derivative of
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a vector with respect to a reference frame, the virtual velocity of a particle, the virtual velocity

fields in a rigid body or a system of rigid bodies, and, finally, the virtual angular velocity of a rigid

body. This chapter provides formulae to calculate these quantities and, notably, the formulae for

the composition of virtual velocities.

Chapter 5 deals with virtual power, which is, grosso modo, the product of an effort, seen

in Chapter 3, and a virtual velocity, seen in Chapter 4. The presentation closely follows the

conventional presentation of real powers in Newtonian mechanics and we obtain several results

that are analogous to those obtained for real powers. Two results are, nevertheless, specific to

analytical mechanics: the virtual power expressed as a linear form and the power of the quantities

of acceleration.

Chapter 6 shows how to exploit the principle of virtual powers using the results obtained in the

previous chapters in order to arrive at the final product of analytical mechanics, namely the famous

Lagrange equations. In this chapter, we also see several examples which illustrate how important

the choice of parameterization is and what consequences it has on the obtained results. This

chapter concludes with the statement of Lagrange equations in a non-Galilean reference frame.

Chapters 7 and 8 are concerned with perfect joints. The chief advantage of these joints is

that the generalized forces present in the right-hand side of the Lagrange equations are then

zero or may be easily calculated using Lagrange multipliers. The concept of the perfect joint

also exists in Newtonian mechanics, but they are defined there in a simpler manner, with more

obvious consequences. In analytical mechanics, the definition of a perfect joint is less natural

inasmuch as it involves the parameterization and the virtual velocities that are compatible with the

complementary constraint equations. It is, therefore, important to verify that the perfect character

of a joint is intrinsic, i.e. it does not depend on the chosen parameterization. For this reason, a large

section is dedicated to the invariance of virtual velocity fields with respect to the parameterization.

Chapter 9 is dedicated to the first integrals, which offer the advantage of yielding first-order

differential equations that are easier to solve. The first integral called “Painlevé’s first integral”

has no equivalent in Newtonian mechanics and presents the unique feature of being able to exist

for systems that receive energy from the exterior. The energy integral resembles that of Newtonian

mechanics. However, the conditions for application are slightly different.

Chapter 10 shows how the Lagrange equations are simplified in the particular case of

equilibrium. The chapter also contains a brief discussion on the question of the stability of an

equilibrium position.

Chapter 11 contains several examples to revise all the concepts presented in the book.

The book concludes with two appendices. Appendix1 provides a few basic concepts related

to second-order tensors, which are necessary for studying kinematics.

Appendix2 complements Chapter 7 and establishes the necessary and sufficient conditions of

perfectness for joints that are usually encountered in mechanics.

By introducing the concept of virtual quantities, Lagrangian mechanics is more abstract than

Newtonian mechanics. Nonetheless, it proves to be more fertile in that it extends beyond the

mechanics of rigid bodies in order to lead to more elegant and systematic formulations in the field

of mechanics of deformable media, to say nothing of physics in general. This is why analytical

mechanics is one of the fundamental subjects taught in mechanics. The authors of this book hope

to offer the reader a comprehensive view of and perfect mastery over this beautiful formulation.
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1

Kinematics

Mechanics, the science that studies the motion of bodies, generally comprises three parts:

(i) kinematics, where motions are described regardless of the causes that provoked the motions;

(ii) kinetics, where we combine kinematics with the concept of mass; and (iii) dynamics, where

we add the concept of the forces acting on the body.

This chapter will focus on kinematics and will review the essential concepts of classical

mechanics: the observer or reference frame, time, space, as well as velocity and acceleration.

Chapter 2 will focus on the parameterization, the parameterized kinematics as well as the

parameterized kinetic energy, concepts that are essential for analytical mechanics. Forces will be

studied in Chapter 3.

Apart from the above-mentioned real quantities, analytical mechanics also brings in virtual

quantities (virtual velocity, virtual power), which will be discussed in Chapters 4 and 5.

1.1. Observer – Reference frame

We admit the existence of observers, real or fictional, located in areas that may or may not be

accessible to humans. An observer is denoted by Oi, the integer index i making it possible to

distinguish from the different observers.

The observer Oi needs an instrument called a clock to note the start, end or duration of an

event (the notions of event and time will be seen hereafter).

They also need an observation instrument placed on a support called a reference solid, to

observe mechanical systems and their positions in physical space and at each instant (Figure 1.1;

the notions of mechanical system and position will be seen in section 1.3).

Figure 1.1. Reference solid and observation instrument

Lagrangian Mechanics: An Advanced Analytical Approach,
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2 Lagrangian Mechanics

Definition. A reference frame is an observer equipped with a clock and an observation

instrument placed on a reference solid. The reference frame associated with the observer Oi

will be denoted as Ri.

Thus, the term “reference frame” is almost synonymous with “observer”, while having a

slightly more precise sense. Furthermore, the term “observer” makes one think of the presence of

a human in the study, whereas “reference frame” is more impersonal. For notational convenience,

the notation Ri is preferred to Oi in mathematical relationships.

1.2. Time

Each observer possesses the following concepts with respect to time: (1) the consciousness in
the moment when a given instantaneous event takes place; (2) the perception of the chronological
order, of anteriority or posteriority, and, consequently, of the simultaneity of two instantaneous

events; (3) and finally, the perception of the duration of an event.

In order to carry out calculations, the observer must transcribe the data from the clock into a

mathematical set. It is decided that this set is a one-dimensional affine space called (mathematical)

“time”, which is the set R of all real numbers equipped with (1) the partial order ≤ in order to

account for the chronological order (anteriority or posteriority) and (3) a structure of vector space

or affine space, which makes it possible to represent the duration by a scalar.

1.2.1. Date postulate

The following postulate shows how an observer passes from the set of instantaneous events to the

time set:

Set of instantaneous events � Time R

Date postulate. [1.1]

An observer Oi possesses a clock which enables them to match each instantaneous event

with one and only one scalar, t(i), called the instant of an event observed by the observer Oi (or

with respect to the reference frame Ri).

In short, the observer Oi is able to mark an instantaneous event with an instant.

The upper index (i) in t(i) reminds us that the involved instants are observed with respect to

the reference frame Ri.

1.2.2. Date change postulate

In a mechanical problem with multiple observers, each observer Oi has his own clock that allows

him to mark an instantaneous event by an instant t(i) in R. The question which then arises is

that of communication between these observers and more precisely, that of the correspondence

between their different observed instants. The date change postulate makes it possible to establish

a relation between simultaneously observed instants with respect to different reference frames:

Date change postulate. Let O1 and O2 be two arbitrary observers. According to the date

postulate [1.1], it is possible to know the instants t(1) and t(2) marked by O1 and O2, respectively,

and corresponding to the same instantaneous event.

When we consider different instantaneous events, we obtain different corresponding couples

(t(1), t(2)). It is assumed that there exists a continuous and strictly increasing mapping, χ21:

R → R, that gives the date t(2) as a function of the date t(1):

t(2) = χ21(t
(1)) [1.2]
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Using the mapping χ21, we know the correspondence between the instants noted by the two

observers. If we know the instant t(1), noted by the observer O1, we may deduce the instant t(2)

noted simultaneously by the observer O2, by making t(2) = χ21(t
(1)), and vice versa. The term

“simultaneously” signifies that the two dates correspond to the same instantaneous event.

Since the application χ21 is continuous and strictly increasing, it is a homeomorphism

(i.e. bicontinuous bijection) from R to R. The most natural choice is to take χ21 equal to an

affine function or, even more simply, to take it equal to the identity function. In other words, it is

assumed that all observers mark the same instantaneous event with the same scalar:

t(1) = t(2) = · · · = t [1.3]

An important consequence of this choice is

d

dt(1)
=

d

dt(2)
= . . . =

d

dt
[1.4]

This is why we will only encounter a single derivative with respect to time
d

dt
from now on.

Eventually, a single clock is enough for all observers and this is what we will assume in the

sequel.

1.3. Space

1.3.1. Physical space

The physical space (or the material world) is composed of vacuum and matter. It is common to

all observers (who are embedded in the same physical space). It is intrinsic in the sense that it

exists even in the absence of observers.

1.3.1.1. Mechanical system

A mechanical system is loosely defined as an invariant collection of matter. This definition is an

intuitive one, but is not rigorous as the word matter has not been defined.

As with physical space, the concept of a mechanical system is intrinsic and has been defined

independently of the observer.

1.3.1.2. Particle

It is assumed that with the help of an observation instrument, the observer Oi is able to distinguish,

within the physical space, mechanical systems (or mechanical subsystems) that they consider to

be small. This kind of system is called a particle (or material point) for the observer Oi.

This definition is not precise because we do not know how the observer may evaluate that a

system is small. The particle is a model, that is a choice made by the physicist of how to represent

the system under consideration, with respect to the nature of the problem being studied and the

objective that is fixed, and it is the simplest model in mechanics.

With the concept of the particle having been defined for a given observer, it can be assumed

that the concept of particle is, in fact, invariant for all observers, i.e. in a given problem, a system
perceived to be a particle will be a particle for any other observer.

• We consider that any mechanical system is a union, which may or may not be finite, of
particles. As the family of particles in question is always the same, it is assured that we have an

invariant collection of matter.

In this book, a mechanical system is made up of a finite number of rigid bodies (of which

some may be reduced to particles).
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1.3.2. Mathematical space

In order to carry out calculations, the observer must transcribe the results of their observation over

time into mathematical data. To prepare for this task, we introduce a new mathematical structure,

apart from time, which is defined as follows:

Definition. The mathematical space, denoted by E, is a three-dimensional real affine space,

given beforehand. [1.5]

As will be seen in the position postulate [1.10], all observers use the mathematical space E in

order to enter their observations from the physical space. The following terms associated with the

space E are well known in mathematics.

Definition. [1.6]

• An element A ∈ E is called a point.

• A bi-point or a vector is the difference B − A ≡ −−→
AB between two points A,B ∈ E.

• The vector space is the vector space E associated with E.

• A coordinate system of E is defined by a point O ∈ E and a basis e = (�e1, �e2, �e3) of E
that is made up of three independent vectors. We denote it by (O; e) or (O;�e1, �e2, �e3).
The point O, which is arbitrarily chosen in E, is called the origin of E or of the coordinate
system.

• If
−→
OA =

3∑
i=1

xi�ei, then (x1, x2, x3) are called the components of the vector
−→
OA in the

basis (�e1, �e2, �e3), or the coordinates of the point A in the coordinate system (O;�e1, �e2, �e3).

By choosing, beforehand, an origin O in E and a basis (�e1, �e2, �e3) in E, in other words, by

choosing, beforehand, a coordinate system (O;�e1, �e2, �e3) in E, we have the following bijections:

E → E → R3

A �→ −→
OA =

3∑
i=1

xi�ei �→ (x1, x2, x3)
[1.7]

1.3.3. Position postulate

Definition. [1.8]

A physical coordinate system for the observer Oi (or reference frame Ri) is the quadruplet

(oi; ai, bi, ci) made up of four non-coplanar particles (real or fictitious, i.e., materialized or

non-materialized) taken in the reference solid (Figure 1.2(a)).

Keep in mind that the order of the particles, oi, ai, bi, ci, is important: the first particle oi is,

by definition, the origin of the physical coordinate system, the particles ai, bi, ci will correspond,

respectively, to the three vectors �e1, �e2, �e3 of the basis E, as will be seen in [1.14b].

The physical coordinate system (oi; ai, bi, ci) should be distinguished from the mathematical

coordinate system (O;�e1, �e2, �e3) in E.

Any couple formed by two particles will be called a physical segment and [pq] will denote the

segment formed by two particles p, q. It is assumed that by means of their observation instrument,
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the observer is able to measure the distance between any two particles p, q and this distance is

called the physical length of the segment [pq], and also that they are able to measure the angle

between any two segments. Two segments are said to be physically orthogonal when the angle

between them is 90◦ (the right angle may be detected by using, for example, a plumb line and the

water level at the same location or by using a protractor).

Definition. The physical coordinate system (oi; ai, bi, ci) is said to be physically orthonormal if

the segments [oiai], [oibi], [oici] are of unit length and mutually physically orthogonal. [1.9]

The following postulate stipulates how an observer, at every instant, carries out the passage

from the physical space to the mathematical space:

Physical space � Mathematical space E

Position postulate in Ri [1.10]

(a) The observer Oi possesses an observation instrument placed on the reference solid, by

means of which they are able, at each instant, to locate a particle in the physical space with

a point in the space E. More precisely, at each fixed instant t, they are able to establish

a correspondence between each particle p in the physical space and a single point P (i)

in mathematical space E. This point is denoted by P (i) ≡ posRi(p, t) and is read as the
position of the particle p with respect to Ri (or in Ri) at instant t. The upper index (i)
reminds us that this involves results coming from the observer Ri.

The statement is then written as

∀t, ∀ particle p, ∃!P (i) ∈ E, P (i) ≡ posRi(p, t) [1.11]

(b) Conversely, given a fixed instant t, any point in the mathematical space E is the position

in Ri of at least one particle, real or fictitious (that is, materialized or not):

∀t ∈ T, ∀A ∈ E, ∃ particle p,A = posRi(p, t) [1.12]

(c) Convention on the physical coordinate system of Ri [1.13]

The following clauses concern the physical coordinate system and include the hypotheses

that are part of the postulate as well as the conventions that aim to simplify the exposition.

Let (oi; ai, bi, ci) be a physical coordinate system for the reference frame Ri (see

definition [1.8]), and let us denote the respective positions of the particles oi, ai, bi and ci
in Ri at instant t by O

(i)
i , A

(i)
i , B

(i)
i and C

(i)
i :

O
(i)
i ≡ posRi(oi, t) A

(i)
i ≡ posRi(ai, t) B

(i)
i ≡ posRi(bi, t) C

(i)
i ≡ posRi(ci, t)

• The observer Oi chooses their physical coordinate system (oi; ai, bi, ci), physically

orthonormal in the sense of definition [1.9].

• The positions in Ri of the four particles oi, ai, bi, ci are points in E that are fixed
over time. To simplify, we will make them equal to the fixed points that make up the

mathematical space E as follows:

◦ ∀t, let us take the position of the origin oi, in Ri, of the physical coordinate

system equal to the origin O in E (Figure 1.2):

∀t, O
(i)
i = O [1.14]
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◦ It is assumed that it is possible to take

∀t,
A

(i)
i = O + �e1

B
(i)
i = O + �e2

C
(i)
i = O + �e3

⇔

−−−→
OA

(i)
i = �e1−−−→

OB
(i)
i = �e2−−−→

OC
(i)
i = �e3

, [1.14b]

where �e1, �e2, �e3 are the vectors of the basis of E.

Figure 1.2. The position in Ri of the physical coordinate system for Ri

The definition of the position of a body or a mechanical system is based on that of a particle:

Definition. [1.15]

The position of a body S, in the reference frame Ri and at an instant t, denoted posRi(S, t) ,

is, by definition, the set of positions P (i), at t, of all the particles in S. This is a subset of E.

If S is a finite union of particles, posRi(S, t) is a discrete subset of E made up of a finite

number of points. If not, posRi(S, t) may be a volume, a surface or a curve in E and we then say

that the body S is a volumetric, surface or line body.

Definition. [1.16]

Let us consider a mechanical system S , made up of a finite number of bodies (some of which

may be reduced to particles). The position, in a reference frame Ri and at an instant t, denoted

by posRi(S , t) , is, by definition, the set of positions P (i), at t, of all particles in S , in other

words, the set of positions in Ri at t of all the constituent bodies. This is a subset of E.

If S is a finite union of particles, posR0
(S , t) is a discrete subset of E. Otherwise, posR0

(S , t)
may be a union of volumes, surfaces or curves in E and we then say that the mechanical system

S is a volumetric, surface or line system.

1.3.4. Typical operations on the mathematical space E

We will review here the mathematical operations that are typically carried out on the

mathematical space E, together with the interpretations and the corresponding physical

operations.

• Endowing E with a structure of Euclidean space
Let (�e1, �e2, �e3) be a basis of E. It can be easily verified that the following bilinear mapping

defined on E is a scalar product (that is, a bilinear form, that is symmetric and positive definite):
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E × E → R

(�x =
3∑

i=1

xi�ei, �y =
3∑

i=1

yi�ei) �→ �x.�y ≡
3∑

i=1

xiyi
[1.17]

The space E equipped with this scalar product is a Euclidean space. The definition [1.17]

implies that

∀i, j = 1, 2, 3, �ei.�ej = δij =

{
0 if i �= j
1 if i = j

(δij is the Kronecker symbol)

that is, the basis (�e1, �e2, �e3) is orthonormal.
We can now understand why one had better choose a physical coordinate system that is

physically orthonormal, as was done in convention [1.13]. The coordinate system of E is the

image of the physically orthonormal physical coordinate system and this is consistent with the

fact that the basis in E is orthonormal.

The scalar product [1.17] makes it possible to define the following norm in E denoted by ‖.‖:

E → R

�x =

3∑
i=1

xi�ei �→ ||�x|| ≡ √
�x.�x =

√
x2
1 + x2

2 + x2
3

[1.18]

The scalar ||�x|| is called the norm or the magnitude of vector �x.

• Orienting E and E

The observer Oi names the four particles oi, ai, bi, ci of their physical coordinate system

according to the right-hand rule, i.e. in such a way that when they are placed along oiai (their

feet on oi and their head at ai) and when they are looking toward bi, they have ci on their left. The

observer Oi orients E and E by deciding that (
−−−→
OiAi,

−−−→
OiBi,

−−−→
OiCi) is a right-handed orthonormal

basis. Such a right-handed orthonormal basis is represented in Figure 1.2.

Throughout the sequel, we will work only with right-handed orthonormal bases.

1.3.5. Position change postulate

The difficulty when several observers come into play is establishing the relationship between their

different observation results. Indeed, as the observers choose their reference solids independently

of each other, it turns out that even if they observe the same physical space, there is, a priori, no
relationship between the positions observed by various observers.

To illustrate this fact, let us consider two observers O1 and O2, or two reference frames R1

and R2. Let us fix an instant t (this has a sense according to hypothesis [1.3]) and let us consider

a particle p in the physical space (Figure 1.3(a)).

The observers learn the same mathematics and they use the same mathematical space E where

they write down the results of their observation from the physical space. According to the position

postulate [1.11], the observer O1 may mark the position of p in R1, at t, as P (1) = posR1(p, t),
this is a point in E (Figure 1.3(b)). The observer O2 may, in turn, mark the position of p in R2, at
t, as P (2) = posR2(p, t), that is, a priori, another point in E (Figure 1.3(b)).

There arises the following question: what is the relationship between the two points P (1) and

P (2) in E? In other words, what is the relationship that gives the position of a particle in R2 as a

function of the position of the same particle in R1 at the same instant?

The following postulate, called the position change postulate, makes it possible to connect the

observed positions in different reference frames for the same particle at a given instant.
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Figure 1.3. Positions of a particle, observed at the same instant by two different observers

Position change postulate. ∀ reference frames R1 and R2, ∀ instant t, ∃ a positive isometry
Q21(t): E → E such that ∀ particle p, located, respectively, at P (1) ≡ posR1

(p, t), P (2) ≡
posR2(p, t) in R1 and R2, we have

P (2) = Q21(t)P
(1) [1.19]

where the right-hand side is the image of point P (1) under Q21(t).
In other words, at every instant t, the positions of the same particle, observed in the two

reference frames R1 and R2, are connected by a positive isometry denoted by Q21(t).

The bijection Q21(t) constitutes a “dictionary”, with the help of which the two observers are

able to establish correspondence between their observed positions. This dictionary varies with
time.

REMARK. According to [1.19], if the position of a particle p is fixed in R1, that is, if the

point P (1) = posR1(p, t) is a fixed point in E, then the position (P (2)) of this particle in R2 will

be, a priori, a point that varies with time and vice versa. �

We will need the following terminology:

Definition. A biposition is the difference between two positions of two particles (just as a bipoint

is the different between two points). [1.20]

Using the position change postulate [1.19], we can establish correspondence between the

bipositions observed in two different reference frames. In order to do this, let us use the following

mathematical result, which is well known for a point isometry:

Theorem and definition. Q21(t) is a point isometry, ⇔ Q21(t) is affine and its linear part

denoted by ¯̄Q21(t) : E → E is a vector isometry.

We then have ∀t, ∀A,B ∈ E

Q21B − Q21A = ¯̄Q21.
−−→
AB [1.21]

where the right-hand side is the product of ¯̄Q21 and vector
−−→
AB.

¯̄Q21(t) is, by definition, the rotation tensor of R1 with respect to R2 at instant t or the
reference frame change tensor (see Appendix 1 for a brief review of tensor algebra).
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From this, we have the following result, which is the vector version of the point relationship

[1.19] :

Theorem of biposition change. At a given instant t,
let P (1), P (2) be the positions of a particle, observed, respectively, in R1, R2, and

let Q(1), Q(2) be the positions of another particle, observed, respectively, in R1, R2.

We have −−−−−→
P (2)Q(2) = ¯̄Q21(t).

−−−−−→
P (1)Q(1) [1.22]

PROOF. It follows immediately from the position change postulate [1.19] and from theorem

[1.21] that

−−−−−→
P (2)Q(2) = Q(2) − P (2) = Q21Q

(1) − Q21P
(1) = ¯̄Q21(t).

−−−−−→
P (1)Q(1) �

The following theorem brings together three very useful properties that isometries possess:

Theorem. ∀ reference frames R1, R2, R3, ∀t,

Q31 = Q32.Q21

Q11 = I

Q21.Q12 = I ⇔ Q12 = Q−1
21 = QT

21

[1.23]

where I is the identity function and the symbol T denotes the transpose.

These equalities are also valid when we replace the point isometries Qij with the rotation

tensors ¯̄Qij .

1.3.6. The common reference frame R0

A single event can be observed in different reference frames (R1, R2, R3, . . .) at different instants

(t(1), t(2), t(3), . . .), connected by the date change postulate [1.2]. There is no difficulty even if

there are many of these instants as we have assumed, in [1.3], that they are equal: t(1) = t(2) =
t(3) = · · · . This makes it possible to use the same symbol t to denote all of them.

With regard to the space, however, the situation becomes a little more complex. At a given

instant t, a particle p is observed at a multitude of positions P (1), P (2), P (3), . . ., which are related

through the position change postulate [1.19]. All these points P (1), P (2), P (3), . . . are elements

of the (mathematical) space E, and they are, a priori, distinct and cannot be confused (contrary to

what is done with instants).

Since the notations multiply rapidly with an increase in the number of the involved particles

and reference frames, it is practically impossible to represent, in space E, all the observation

results in the different reference frames. For example, if there are two particles p, q and three

reference frames R1, R2, R3, we have, at a given instant, six positions represented in Figure 1.4.

Thus, the figures quickly become indecipherable and too tedious to make.

Fortunately, it can be seen that there is no need to represent the observations in all the existing

reference frames. For example, the observations in R1, R2 give rise to two different sets of points;

however, they are, in fact, identical within an isometry, which is the isometry Q21 introduced in

[1.19]. As a result, regardless of the number of reference frames in play, we can content ourselves

with using the observation results from one single reference frame that is arbitrarily chosen from

all the reference frames.
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Figure 1.4. Multiple positions in the presence of multiple reference frames

Definition and notational convention. [1.24]

We arbitrarily choose one among the existing reference frames. This is called the common
reference frame and denoted by R0 . As it is enough to represent the observed positions in a
single reference frame, we will choose to do this in the common reference frame, R0.

We agree to give R0 a special status by simplifying the notation in R0 as follows: the position

P (0) = posR0(p, t) of a particle p at an instant t, observed in the common reference frame R0,

will be denoted by P , without the index (0) for the reference frame:

P = posR0(p, t)

(while the position P (i) in another reference frame Ri must include the index (i)).
Simply put, we will represent only positions in R0 and these positions will not include the

index (0) for the reference frame.

In the example in Figure 1.4, by choosing R0 = R1 we obtain Figure 1.5, which is more

legible.

Figure 1.5. Representation of the problem in Figure 1.4 using the common reference frame R0

In a mechanical problem that involves only a single reference frame, the problem of choosing

a common reference frame does not arise at all. The reference frame R0 is the only available

one. On the other hand, if several reference frames come into play, we may wonder which one

is to be chosen as the common reference frame R0. While the choice is arbitrary in principle,
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in practice the nature of the problem often causes a particular reference frame to come up and

naturally impose itself as the most convenient reference frame for the role of R0: this is the

reference frame – i.e. the observer – with which the physicist identifies from the start and this is

the reference frame that will be chosen as the common reference frame R0.

The reference frame R0 is common in the sense that it is shared by everyone. It may also be

referred to as the script reference frame in the sense that, in general, the positions which appear

in the mathematical relationships are the positions in R0.

• By applying relationship [1.22], with R1 = Ri, R2 = R0 and by taking into consideration

the notation convention [1.24], we obtain:

−−→
PQ = ¯̄Q0i(t).

−−−−−→
P (i)Q(i) [1.25]

By making Q(i) = O
(i)
i ≡ posRi(oi, t) in this relationship, and by taking into account [1.14],

O
(i)
i = O, we obtain

−−→
OiP = ¯̄Q0i(t).

−−−→
OP (i) [1.26]

• Using the notation convention [1.24], the convention on the physical coordinate system

[1.13] is written in R0 as follows:

Convention on the physical coordinate system of R0. [1.27]

Let (o0; a0, b0, c0) be a physical coordinate system for the reference frame R0. Let O0, A0,

B0 and C0 denote the respective positions of the particles o0, a0, b0 and c0, in R0 and at the

current instant t:

O0 ≡ posR0(o0, t) A0 ≡ posR0(a0, t) B0 ≡ posR0(b0, t) C0 ≡ posR0(c0, t)

• The observer R0 chooses their physical coordinate system (o0; a0, b0, c0), physically

orthonormal as per definition [1.9].

• The positions of the four particles o0, a0, b0, c0 in R0 are the points in E that are fixed
over time. For simplicity, they will be equaled to the fixed points forming the coordinate

system of E as follows:

◦ ∀t, it is agreed that the position in R0 of the origin o0 of the physical coordinate

system is equal to origin O of E:

∀t, O0 = O [1.28]

◦ It is assumed that it is possible to take

∀t,
A0 = O + �e1
B0 = O + �e2
C0 = O + �e3

⇔
−−→
OA0 = �e1−−→
OB0 = �e2−−→
OC0 = �e3

, [1.28b]

where �e1, �e2, �e3 are the vectors of the basis of E.

EXAMPLE. Let us consider the bidimensional problem of a disc S2, of unit radius, rolling

on a plane support S0, as shown in Figure 1.6(a). The common reference frame R0 is chosen as

the frame whose reference solid is the support S0 (this seems the most natural thing to do here).

The physical coordinate system of R0 is defined by three particles [o0; a0, b0] as shown in Figure

1.6(a).
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We also define the reference frame R2 whose reference solid is the disc S2. The physical

coordinate system in R2 is defined by three particles [o2; a2, b2], and the particle o2 is located at

the center of the disc S2 and the particles a2, b2 are on the edge of the disc.

Figure 1.6. (a) Disc rolling on a plane support; (b) positions of the systems in R0

According to convention [1.13], the physical coordinate systems are chosen such that they are

physically orthonormal in the sense of definition [1.9]. The (mathematical) space E, in which the

positions in different reference frames are written, as well as the associated vector space E are

two dimensional. The (mathematical) coordinate system of E is denoted by (O;�e1, �e2).
According to the notation convention [1.24], we will represent the positions of the mechanical

systems in R0. By applying [1.24] and then [1.14]a−b, we find that the positions in R0 of particles

o0, a0 are:

O0 = O
(0)
0 = O

A0 = A
(0)
0 = O + �e1

Similarly, we find that the position in R0 of particle b0 is B0 = O + �e2. This problem is

represented in Figure 1.6(b). �

1.3.7. Coordinate system of a reference frame

Let us introduce another terminology that is commonly used in mechanics:

Definition. [1.29]

Let us consider a given reference frame Ri endowed with its physical coordinate system

(oi; ai, bi, ci) and let

• Oi, Ai, Bi and Ci denote the respective positions of the particles oi ai, bi and ci, in R0

and at the current instant t:

Oi ≡ posR0(oi, t) Ai ≡ posR0(ai, t) Bi ≡ posR0(bi, t) Ci ≡ posR0(ci, t)

• and

�xi ≡ −−−→
OiAi �yi ≡ −−−→

OiBi �zi ≡ −−−→
OiCi

Ri is said to be endowed with the coordinate system (Oi; �xi, �yi, �zi) or, put another way,

(Oi; �xi, �yi, �zi) is the coordinate system of Ri. These expressions are convenient contractions in

language that make it possible to designate the physical coordinate system of a reference frame

using one point and three vectors, rather than four particles:

– “Ri is endowed with the coordinate system (Oi; �xi, �yi, �zi)” is a contraction of “Ri is

endowed with the physical coordinate system (oi; ai, bi, ci) whose position in R0 is

(Oi;Ai, Bi, Ci)”.



Kinematics 13

– “(Oi; �xi, �yi, �zi) is the coordinate system of Ri” is the contraction of “(Oi;Ai, Bi, Ci) is

the position in R0 of the physical coordinate system (oi; ai, bi, ci) of Ri”.

Note that the definition of a coordinate system of Ri involves the positions of the particles oi,
ai, bi, ci in R0.

When making figures, we usually plot the coordinate system (Oi; �xi, �yi, �zi) (more precisely,

its position in R0) to represent or visualize the reference frame Ri (see Figure 1.7).

Figure 1.7. Coordinate system (Oi; �xi, �yi, �zi) of reference frame Ri

In the 2D example in Figure 1.6, (O2; �x2, �y2) is the coordinate system of R2.

According to [1.28]–[1.28b], the coordinate system (O0; �x0, �y0, �z0) of the common reference

frame R0 is identified with the coordinate system (O;�e1, �e2, �e3) of the affine space E:

O0 = O and (�x0, �y0, �z0) = (�e1, �e2, �e3) [1.30]

For any reference frame Ri, one has to be careful to avoid confusing the “coordinate system

of Ri” and the “(mathematical) coordinate system”:

– The coordinate system of Ri is indeed a coordinate system in the mathematical sense of

the term (set of a point in E and of three vectors of E) and thus it can be given all the

classical terminology relative to a mathematical coordinate system: the point Oi is called

the origin of the coordinate system of Ri and (�xi, �yi, �zi) the basis of the coordinate system
of Ri, the coordinate system of Ri is said to be a right-handed orthonormal basis if the

basis (�xi, �yi, �zi) is right-handed orthonormal. We also speak of coordinates of a point in

the coordinate system of Ri.

– Conversely, a mathematical coordinate system is not necessarily a coordinate system for

Ri in the sense of the above definition. We will see, in [1.37], a condition required for the

mathematical coordinate system to be the coordinate system of Ri.

Theorem. Let (Oi; �xi, �yi, �zi) be the coordinate system of a reference frame Ri, defined in

[1.29]. The image of vectors �xi, �yi, �zi under ¯̄Qi0 are the vectors of the basis of E:

( ¯̄Qi0.�xi,
¯̄Qi0.�yi,

¯̄Qi0.�zi) = (�e1, �e2, �e3) [1.31]
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PROOF. Let us carry out the proof for �xi, the proof for the two other vectors �yi, �zi being

similar. With the notations in definition [1.29] for the coordinate system (Oi; �xi, �yi, �zi) of Ri, we

have:
¯̄Qi0.�xi = ¯̄Qi0.

−−−→
OiAi

=
−−−−−→
O

(i)
i A

(i)
i according to [1.25]

= �e1 according to [1.14]a−b �
In the case Ri = R0, the relationship [1.31] gives

(�x0, �y0, �z0) = (�e1, �e2, �e3) [1.32]

and we once again arrive at [1.30].

1.3.8. Fixed point and fixed vector in a reference frame

Let A be a point in E. The expression “the point A is fixed in E” is perfectly well defined. It

signifies simply that at any instant A is the same point in E. The following definition is a new

definition:

Definition. Let A be a point in E (which does or does not vary with t). We say that A is fixed in
Ri or attached to Ri if

∀t, A(i) ≡ Qi0(t)A is a fixed point (in E) [1.33]

The following theorem ensures that definition [1.33] effectively renders the intuitive idea of

the fixity of a point with respect to a reference frame.

Theorem. Let A be a point in E (which does or does not vary with t).
A ∈ E is fixed in Ri ⇔, the (fictitious) particle of position A in R0 at any instant is at a fixed

position in Ri. [1.34]

PROOF. Let a denote the (fictitious) particle whose position in R0 at any instant is A: ∀t, A =
posR0(a, t) (there exists such a particle according to the position postulate [1.12]). The following

equivalences hold:

A is fixed in Ri ⇔ ∀t, Qi0A is a fixed point in E (definition [1.33])

⇔ ∀t, Qi0posR0(a, t) is a fixed point in E

⇔ ∀t, posRi(a, t) is a fixed point, according to the

position change postulate [1.19] �

Let us introduce the following definition, similar to [1.33]:

Definition. Let �W be a vector in E (a vector that may or may not be variable with t). We

say that �W is constant in Ri (or fixed in Ri, or attached to Ri) if ∀t, �W (i) ≡ ¯̄Qi0(t) �W
is a constant vector in E. [1.35]

The following theorem gives the physical interpretation for a constant vector in a reference

frame:

Theorem. Let �W be a vector in E (which does or does not vary with t).
�W ∈ E is constant in Ri ⇔ and

the biparticle of biposition �W in R0, at any instant, has a fixed biposition in Ri.
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PROOF. Let us write �W = B − A, with A,B ∈ E, a (respectively, b) the (fictitious) particle

of position A (respectively, B) in R0 at any instant: ∀t, A = posR0(a, t), B = posR0(b, t).

According to definition [1.35], �W ∈ E is fixed in Ri ⇔ ∀t, ¯̄Q10(t) �W is a constant vector in

E. Now,

¯̄Q10(t). �W = ¯̄Q10.
−−→
AB

= Qi0B − Qi0A according to [1.21]

= Qi0posR0(b, t) − Qi0posR0(a, t)
= posRi(b, t) − posRi(a, t) according to the position change postulate [1.19] �

REMARK. The fixity of a point and the constancy of a vector are concepts that have a sense

only with respect to a reference frame. Moreover, one should not confuse the constancy of a

vector with that of its norm. �

The following theorem can be proved:

Theorem.

(i) The coordinate system (Oi; �xi, �yi, �zi) of a reference frame Ri, defined in [1.29], is fixed
in Ri, that is

• the point Oi is a fixed point in Ri,

• and the vectors �xi, �yi, �zi are fixed vectors in Ri. [1.36]

(ii) Conversely, if a (mathematical) coordinate system (Oi; �xi, �yi, �zi) (Oi ∈ E and �xi, �yi, �zi ∈
E) is fixed in a reference frame Ri, then it is a coordinate system of the reference frame

Ri as defined in [1.29]. [1.37]

1.4. Derivative of a vector with respect to a reference frame

Consider a vector quantity (for example, the position vector of a particle) whose observation result

in the common reference frame R0 is a vector �W ∈ E that is function of t (in R0 we write �W
rather than �W (0)).

The vector
d �W

dt
(∈ E) is the classical derivative of �W with respect to time, a derivative that

any observer can calculate by using universally known mathematics. One way of calculating
d �W

dt
is to differentiate the components of �W in a fixed basis of E.

Let us now introduce a new concept, more complicated than the previous classical derivative.

It is called the time derivative of the vector �W with respect to a given reference frame R1.

Definition. The time derivative of a vector �W with respect to a reference frame R1, denoted by

dR1
�W

dt
or, in abridged form

d1 �W

dt
, is, by definition

dR1
�W

dt
≡ ¯̄Q01.

d

dt

(
¯̄Q10. �W

)
∈ E [1.38]

The computation of
d1 �W

dt
is made up of three elementary steps summarized in the flowchart
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below:

�W ∈ E
d1 �W

dt
∈ E

↓ (1) ↑ (3)

�W (1) ∈ E
(2)
→

d �W (1)

dt
∈ E

[1.39]

This flowchart may be interpreted in figurative terms as follows. Let us imagine that the

reference frames R0 and R1 are two infinite, transparent sheets of paper laid one atop the other,

and sliding against each other, such that the observations in a reference frame may then be “read
through transparency and traced to the other reference frame”.

Assume that one can draw the vector under consideration, �W , on the sheet R0 at different

instants. At each instant t, one can take the vector �W drawn on the sheet R0 and “trace it onto
the sheet R1” to obtain the vector associated with �W in R1, �W (1) = ¯̄Q10. �W . By repeating this

tracing operation at different instants, it becomes possible to construct, on the sheet R1, the family

of vectors

t �→ �W (1)(t) [1.40]

which is, a priori, different from the family of vectors t �→ �W (t) drawn on the sheet R0 because

the two sheets R0 and R1 move with respect to one another. The mapping [1.40] represents the

transfer onto R1 of the evolution over time of the vector �W . This is operation (1) in flowchart

[1.39].

Knowing the mapping [1.40], one calculates the derivative d �W (1)

dt of vector �W (1), which is

simply the classical derivative with respect to time. Like �W (1), the derivative d �W (1)

dt is drawn on

the sheet R1. This is operation (2) in flowchart [1.39].

The third and final operation, number (3) in the flowchart (i.e. calculating ¯̄Q01.
d �W (1)

dt ),

consists of “tracing d �W (1)

dt backwards onto the sheet R0” to obtain vector
dR1

�W

dt defined in

[1.38]. This operation is required in rigid bodies mechanics with the objective of simplifying the

formulae obtained in kinematics.

• For a vector �W such that ¯̄Q10. �W depends on time and other space variables, the partial

derivative of �W with respect to time in the reference frame R1 is defined in a similar manner:

Definition. The time partial derivative of a vector �W with respect to a reference frame R1,

denoted by
∂R1

�W

∂t
, is, by definition

∂R1
�W

∂t
≡ ¯̄Q01.

∂

∂t

(
¯̄Q10. �W

)
∈ E [1.41]

Theorem.

dR1
�W

dt
= �0 ⇔ �W is fixed inR1 (see definition [1.35]) [1.42]
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DEMONSTRATION.

dR1
�W

dt
= �0 ⇔ d

dt

(
¯̄Q10. �W

)
= �0 according to definition [1.38]

⇔ ¯̄Q10. �W is a constant vector in E �

We also have the following classical relationships (whose demonstration can be found in

books on Newtonian mechanics):

Theorem. ∀ reference frame R1, ∀�U, �V , �W ∈ E, ∀λ ∈ R,

dR1

dt
(�U + �V ) =

dR1
�U

dt
+

dR1
�V

dt
[1.43]

dR1

dt
(λ �W ) =

dλ

dt
�W + λ

dR1
�W

dt
[1.44]

d

dt
(�U.�V ) =

dR1
�U

dt
.�V + �U.

dR1
�V

dt
[1.45]

Note that the derivative on the left-hand side of [1.45] is the derivative of a scalar function

and does not depend on the reference frame, while the derivatives on the right-hand side relate

to vectors and carry the index for the reference frame R1.

Theorem. Consider �W = α�x1 + β�y1 + γ�z1 ∈ E, where b1 = (�x1, �y1, �z1) is a vector basis in

E, fixed in R1. Then

dR1
�W

dt
= α̇�x1 + β̇�y1 + γ̇�z1 [1.46]

PROOF. Apply relationships [1.42]–[1.44]. �

1.5. Velocity of a particle

Definition. By definition, the velocity, with respect to the reference frame R1 and at the instant
t, of a particle p whose position is P is

�VR1(p, t) =
dR1

−−→
O1P

dt
=

[1.38]

¯̄Q01.
d

dt

(
¯̄Q10.

−−→
O1P

)
[1.47]

where O1 is a fixed point in R1.

1.6. Angular velocity

The following theorem is a classic result in Newtonian mechanics of rigid bodies:

Theorem and definition. Composite derivative of a vector. Let R1, R2 be two reference

frames. We have: ∀ vector �W ∈ E:

d1 �W

dt
=

d2 �W

dt
+ �Ω12 × �W with �Ω12 ≡ �ΩR1R2 ≡ 1

2

3∑
j=1

�bj × d1�bj
dt

, [1.48]
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where (�b1,�b2,�b3) is an orthonormal basis made of vectors in E, fixed in R2 (Figure 1.8). The

vector �Ω12 is called the angular velocity vector of R2 with respect to R1 (at instant t).
The skew-symmetric tensor ¯̄Ω12 associated with �Ω12 is called the angular velocity tensor of

R2 with respect to R1 (at instant t). It is related to the rotation tensors ¯̄Q01,
¯̄Q02 and ¯̄Q12 through

¯̄Ω12 = ¯̄Q01.
d ¯̄Q12

dt
. ¯̄Q20 [1.49]

Figure 1.8. Composite derivative of a vector

To obtain an explicit expression for �Ω12 in [1.48], let us write [�x2, �y2, �z2] instead of [�b1,�b2,�b3].
We then have

�Ω12 =
1

2

(
�x2 × d1�x2

dt
+ �y2 × d1�y2

dt
+ �z2 × d1�z2

dt

)
The following theorem is an important particular case of [1.48] :

Theorem. Derivative formula with respect to R1 of a vector constant in R2.

∀R1, R2, ∀ �W ∈ E constant in R2,
d1 �W

dt
= �Ω12 × �W [1.50]

PROOF. One has just to apply [1.48], noting that as �W is constant in R2, we have d2
�W

dt = �0
according to [1.42]. �

Theorem. Composition of angular velocities.

∀R1, R2, R3, �Ω13 = �Ω12 + �Ω23 [1.51]

PROOF. Let us apply [1.48] to three pairs of reference frames (R1, R2), (R2, R3) and

(R1, R3):

∀ �W ∈ E,
d1 �W

dt
=

d2 �W

dt
+�Ω12× �W

d2 �W

dt
=

d3 �W

dt
+�Ω23× �W

d1 �W

dt
=

d3 �W

dt
+�Ω13× �W

[1.52]
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Adding each side of the first two equalities leads to

d1 �W

dt
=

d3 �W

dt
+ (�Ω12 + �Ω23) × �W [1.53]

By identifying [1.53] with the last equality of [1.52], we find: �Ω13 × �W = (�Ω12+ �Ω23)× �W ,

hence [1.51] taking into account the fact that vector �W is arbitrary. �

By making R3 = R1 in [1.51], we can immediately deduce:

Corollary. The angular velocity of R2 with respect to R1 is the opposite of the angular velocity

of R1 with respect to R2:

�Ω12 = −�Ω21 [1.54]

1.7. Reference frame defined by a rigid body: Rigid body defined by a reference
frame

Before discussing the kinematics of rigid bodies, let us introduce two terminologies that will be

necessary for what follows.

In section 1.3, we saw that a reference solid is a support that makes it possible for an observer

to locate particles at each instant in the physical space. We admit that a reference solid is indeed a

rigid body (a solid) in the classic sense of rigid body mechanics. The following definition is easy

to understand:

Definition. The reference frame defined by a rigid body S is the reference frame whose reference

solid is S. It is often denoted by RS . We also say that the rigid body S defines the reference
frame RS . [1.55]

By agreeing on the fact that a particle p is fixed in a reference frame R1 if ∀t, its position

P (1)(t) = posR1(p, t) in R1 is the same point of E, we will now introduce the reciprocal concept

for [1.55], namely, the rigid body defined by a reference frame:

Definition. The rigid body defined by a reference frame R1, denoted by S(R1) , is, by

definition, the union of all fixed particles in R1 (which is indeed a rigid body). [1.56]

From the very definition of S(R1), we have the following equivalence:

p is a fixed particle inR1 ⇔ is a particle of S(R1) (i.e., p ⊂ S(R1))

As all the particles of the reference solid in R1 are fixed in R1, the reference solid of R1 is a
subset of S(R1). We say that S(R1) “extends the reference solid of R1 to infinity”.

For all reference frames R1, R2 and at any instant t, posR2(S(R1), t) is the entire space E.

1.8. Point attached to a rigid body: Vector attached to a rigid body

In section 1.3.8, we defined the concepts of a point and a vector attached to a given reference

frame Ri. Given a rigid body S, one can define its reference frame RS and talk of a point or

vector attached to RS . We will now introduce two new concepts, namely the point attached to S
and the vector attached to S.
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Definition. [1.57]

A point A in E (that does or not vary with t) is attached to the rigid body S or “follows” a
particle of S

– if A is the position in R0 at all instants t of a particle of S,

– in other words, if there exists a particle a of S such that ∀t, posR0(a, t) = A.

We can show the equivalence between the concept of a fixed point in a reference frame

(definition [1.33]) and the concept of a point attached to a rigid body (definition [1.57] above):

Theorem.
A is attached to S ⇔ A is attached to RS [1.58]

Thus, the two expressions “A is attached to S ” and “A is attached to RS” are synonymous, and

the two definitions [1.57] and [1.33] are consistent.

• The concept of a vector attached to a rigid body is defined in the same way:

Definition. [1.59]

A vector �W in E (a vector that may or may not vary with t) is attached to the rigid body S

– if �W is the biposition of a biparticle of S in R0 at any instant t,

– in other words, if there exist two particles a, b of S such that ∀t, posR0(b, t) −
posR0

(a, t) = �W .

The following equivalence can be proved in a manner similar to [1.58]:

Theorem.
�W is attached to S ⇔ �W is attached toRS [1.60]

Thus, the two expressions “ �W is attached to S” and “ �W is attached to RS” are synonymous, and

the two definitions [1.59] and [1.35] are consistent.

• In the presence of a reference frame RS defined by a rigid body S, we can interchangeably

use “point (respectively, vector) attached to RS” or “point (respectively, vector) attached to S”,

with a preference for the latter expression, whose physical significance is more direct.

1.9. Velocities in a rigid body

The results in this section are valid for a rigid body.

Theorem and definition. ∀t, ∀ reference frame R1, ∀ rigid body S defining a reference frame

RS , ∀ particles p, p′ belonging to the rigid body S, whose positions in R0 are, respectively, P
and P ′, we have

�VR1(p
′, t) = �VR1(p, t) +

�ΩR1RS
× −−→
PP ′ , [1.61]

where �ΩR1RS
is the angular velocity vector of RS with respect to R1, as defined in [1.48].

PROOF. Let O1 be a point of E, fixed in R1. We have

�VR1(p
′, t) − �VR1(p, t) =

d1
dt

−−−→
O1P

′ − d1
dt

−−→
O1P =

d1
dt

−−−−−−→
P (t)P ′(t)
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As the particles p, p′ belong to the rigid body S, their positions in RS , P (S) and P ′(S) are fixed

points in E over time and, therefore, ∀t,
−−−−−−→
P (S)P ′(S) is a constant vector in E. Further, according

to [1.22], we have ∀t,
−−−−−−→
P (S)P ′(S) = ¯̄QS0.

−−→
PP ′, where ¯̄QS0.

−−→
PP ′ is a constant vector of E. In other

words, the vector
−−→
PP ′ is constant in RS according to the definition [1.35].

We thus have
d1
dt

−−−−−−→
P (t)P ′(t) = �ΩR1RS × −−−−−−→

P (t)P ′(t) on application of theorem [1.50]. �

Velocity field

The notation �VR1(p, t) is quite natural and easy to understand. The only problem it poses is that

it contains a particle as an argument, which does not make it possible to talk of velocity fields,

whose arguments are points in the affine space E. The following, new, notation, called “Eulerian”

notation, is a little more complex but enables us to resolve this problem.

Eulerian (or spatial) notation. Let S be a rigid body and let there be a point A ∈ posR0(S, t).
We write

�VR1S(A, t) ≡ the velocity with respect to R1 and at instant t
of the particle of S passing through point A at instant t

[1.62]

When using the Eulerian notation, the particle is not known by its name but by its position

at the instant considered. In general, the particle is not the same over the course of time.

As opposed to �VR1S(A, t), the notation �VR1(p, t) is said to be Lagrangian (or material). To

illustrate the difference between the two velocities, Lagrangian and Eulerian, imagine that the

reference frame R1 is defined by the rails on which a train, S, is running. The Lagrangian

description consists of observing, over time, a given particle p of the train, materialized, for

example, by a corner of a window on the train. As the train moves, this particle will change

position with respect to the ground and its velocity is denoted by �VR1(p, t). With the Eulerian

description, imagine an electric pole positioned in the ground along the tracks. Look at the

shadow of the tip of the pole that falls upon the train, which is a fixed point A with respect to R1.

At a given instant t, the Eulerian velocity �VR1S(A, t) is the velocity of the particle of the train

that passes through the point A at this instant. As the point A is fixed, the particle that passes

through A is not the same over time, contrary to the case of Lagrangian velocity.

In general, Lagrangian and Eulerian velocities are not identical. One may prove to be

preferable to the other or may even prove indispensable, depending on the context of the

mechanical problem.

• Let p be a particle of S located at P = posR0(p, t) in R0 over time. We have the trivial

equality

∀t, �VR1S(P, t) =
�VR1

(p, t)
[1.47]
=

dR1

−−→
O1P

dt

On the contrary, for any point A ∈ E:

�VR1S(A, t) �= dR1

−−→
O1A

dt

The equality holds only when A is a point attached to the rigid body S, that is, when A
denotes the position of the same particle of the rigid body over time.
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• Using the Eulerian notation [1.62], we can define the velocity field of a rigid body S with

respect to R1 and at the instant t:

VR1S(., t) : E ⊃ posR0(S, t) → E

A �→ �VR1S(A, t)

Velocity field in a rigid body

Theorem. ∀t, ∀R1, ∀ rigid body S defining a reference frame RS , ∀A,B ∈ posR0(S, t) ⊂ E,

�VR1S(B, t) = �VR1S(A, t) + �ΩR1RS × −−→
AB [1.63]

Thus, ∀t, the velocity field VR1S(., t) (defined on posR0(S, t)) is completely determined by

the velocity at one point (here, point A) and the angular velocity �ΩR1RS
.

PROOF. Let t be a fixed instant, and A,B two given points ∈ posR0(S, t) ⊂ E. At the instant t,

• the point A is the position P (q, t) of a particle p of the rigid body S with respect to R0;

• the point B is the position P ′(q, t) of a particle p′ of the rigid body S with respect to R0.

We then have at the instant t

�VR1S(A, t) = �VR1(p, t)
�VR1S(B, t) = �VR1(p, t

′) [1.64]

The proof is achieved by applying [1.61] at the instant t and with the particles p, p′ of S that

were just defined. �

The equalities [1.64] are only valid at the instant t, but this suffices for the proof.

For mathematical convenience, we may define the velocity field over the entire space E and

not only over posR0(S, t). To do this, we must carry out a classical operation in rigid bodies

mechanics, which consists of extending the rigid body S “to infinity”, so as to be able to state the

previous theorem with the velocity field of a rigid body S defined over all of E. However, we

have not done this.

In practice, we write relationship [1.63] in abridged form as follows:

∀t, ∀R1, ∀ rigid body S, ∀A,B ∈ posR0
(S, t) ⊂ E: �V1S(B, t) = �V1S(A, t) + �Ω1S × −−→

AB

1.10. Velocities in a mechanical system

We can easily generalize the Eulerian notation [1.62] to a mechanical system:

Eulerian notation. Let S be a mechanical system and A be a point such that A ∈ posR0(S , t).
We write

�VR1S (A, t) ≡ the velocity with respect to R1 and at the instant t
of the particle of S passing through point A at instant t

[1.65]

When using the Eulerian notation, the particle is not known by its name but is known by its

position at the instant considered. In general, the particle is not the same over time.
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There exists a case where the notation �VR1S (A, t) is ambiguous. This is when A is the point of

contact I between two rigid bodies Si and Sj in S (Figure 1.9). In this case, we must distinguish

between two velocities �VR1Si
(I, t) and �VR1Sj

(I, t) for two particles of Si and Sj respectively,

passing through the same point I at the instant considered t. These particles are infinitely close

but are not identical.

Figure 1.9. Velocity at the contact point between two rigid bodies

In general, the point I is attached neither to Si nor to Sj and

�VR1Si(I, t) �= �VR1Sj (I, t)

We see the importance of the second index, indicating the rigid body in the notation for the

velocity vector.

• Let p be a particle of S located at P = posR0(p, t) in R0 over time. We then have the trivial

equality

∀t, �VR1S (P, t) = �VR1(p, t)
[1.47]
=

dR1

−−→
O1P

dt

On the contrary, for any point A ∈ E, which is not attached to the system S :

�VR1S (A, t) �= dR1

−−→
O1A

dt

This equality holds only when A is a point attached to system S , i.e. when A denotes the

position of the same particle in the system over time.

• Using the Eulerian notation [1.65], we can define the velocity field of a system S with respect

to R1 and at an instant t:

VR1S (., t) : E ⊃ posR0(S , t) → E

A �→ �VR1S (A, t)
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1.11. Acceleration

1.11.1. Acceleration of a particle

Definition. The acceleration of a particle p with respect to the reference frame R1 and at the
instant t is, by definition,

�ΓR1
(p, t) =

dR1
�VR1

(p, t)

dt
[1.66]

1.11.2. Accelerations in a mechanical system

For accelerations, we introduce analogous to [1.65] the following notation:

Eulerian notation. Let S be a mechanical system and A be a point such that A ∈ posR0
(S , t).

We write

�ΓR1S (A, t) ≡ the acceleration with respect to R1 and at the instant t
of the particle of S passing through point A at instant t

[1.67]

1.12. Composition of velocities and accelerations

Before concluding this chapter, we recall the well-known results in kinematics and we introduce

some neologisms, which will be used sometimes in the rest of the book.

1.12.1. Composition of velocities

Theorem. ∀R1, R2, ∀ system S , ∀A ∈ E:

�VR1S (A) = �VR1S(R2)(A) +
�VR2S (A) or shortly: �V1S (A) = �V12(A) + �V2S (A) [1.68]

If system S is a rigid body S, then an immediate consequence of [1.68] is

�Ω1S = �Ω12 + �Ω2S [1.69]

which is merely [1.51].

The motion of S with respect to reference frame R1 is called the absolute motion. The motion of

S with respect to reference frame R2 is called the relative motion. Similarly, velocities �VR1S (A)

and �VR2S (A) are called the absolute velocity and the relative velocity, respectively.

According to notations [1.56] and [1.65], �VR1S(R2)(A) ≡ �V12(A) is the velocity with respect

to R1 of the particle of rigid body S(R2) (that is, the particle attached to R2), which coincides

with A at the instant t. To refer to this kind of velocity, we introduce the following new term:

Definitions. [1.70]

– The motion of S(R2) (or simply, of R2) with respect to reference frame R1 is called the
background motion.

– The velocity �VR1S(R2)(A) ≡ �V12(A) is called the background velocity.
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With this terminology, relation [1.68] means that the absolute velocity is equal to the sum of

the relative velocity and the background velocity.

The absolute motion is the composition of the relative motion and the motion underlying it,

namely the background motion.

1.12.2. Composition of accelerations

Theorem. ∀R1, R2, ∀ system S , ∀A ∈ E:

�ΓR1S (A) = �ΓR1S(R2)(A) + �ΓR2S (A) + 2�ΩR1R2 ∧ �VR2S (A)

or shortly: �Γ1S (A) = �Γ12(A) + �Γ2S (A) + 2�Ω12 ∧ �V2S (A)
[1.71]

Accelerations �ΓR1S (A) and �ΓR2S (A) are called the absolute acceleration and the relative
acceleration, respectively. The term 2�ΩR1R2 × �VR2S (A) is the Coriolis acceleration. The

following new definition is analogous to [1.70]:

Definition. The acceleration �ΓR1S(R2)(A) ≡ �Γ12(A) is called the background acceleration.

[1.72]

1.13. Angular momentum: Dynamic moment

Consider a given reference frame R1 and a system S . A current particle of the system is denoted

by p, its position with respect to R0 is P (t) = posR0(p, t).

The momentum, or quantity of movement, is a vector equal to a mass times a velocity, thus

having the form m�V or �V dm.

The angular momentum of system S about a point A (with respect to R1 and at instant t),
denoted by �σR1S (A, t), is defined as the moment of the quantities of movement about point A:

�σR1S (A, t) ≡
∫

S

−→
AP (t) ∧ �VR1(p, t)dm =

∫
S

−→
AP (t) ∧ �VR1S (P, t)dm [1.73]

In the first integral above, the integration variable is particle p ⊂ S , whereas in the second

integral the integration variable is point P belonging to the position posR0(S , t) of the system

with respect to R0.

The angular momentum of system S about an axis Δ (with respect to R1 and at instant t),
denoted by σR1S (Δ, t), is defined as the projection of the angular momentum about any point A
belonging to Δ onto the unit vector �u parallel to Δ:

σR1S (Δ, t) ≡ �σR1S (A, t).�u [1.74]

The right-hand side does not actually depend on the point A chosen on Δ.

The following new terms are defined in exactly the same way as above, with the velocity

replaced by the acceleration:

Definitions.

– The quantity of acceleration is a vector equal to a mass times an acceleration, thus having

the form m�Γ or �Γdm.
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– The dynamic moment of system S about point A (with respect to R1 and at instant t),
denoted by �δR1S (A, t), is defined as the moment of the quantities of acceleration:

�δR1S (A, t) =

∫
S

−→
AP (t) ∧ �ΓR1(p, t)dm ≡

∫
S

−→
AP (t) ∧ �ΓR1S (P, t)dm [1.75]

– The dynamic moment of system S about axis Δ (with respect to R1 and at instant t),
denoted by δR1S (Δ, t), is defined as the projection of the dynamic moment about any

point A belonging to Δ onto the unit vector �u parallel to Δ:

δR1S (Δ, t) ≡ �δR1S (A, t).�u [1.76]

The right-hand side does not actually depend on the point A chosen on Δ.



2

Parameterization and Parameterized Kinematics

The kinematics results reviewed in Chapter 1 are results that are also known in Newtonian

mechanics. In this chapter, we will introduce the following concepts that are (except for the first

concept) specific to analytical mechanics:

1. the position parameters of a mechanical system;

2. the mechanical joints and the constraint equations expressed as relationships between

position parameters;

3. the parameterization, that is, the manner in which the constraint equations of the problem

are categorized and, consequently, how the position parameters are classified into primitive

and retained parameters;

4. some additional results on velocity, taking into account the chosen parameterization;

5. the parameterized velocities and Lagrange kinematic formulae, which will help the reader

prepare for the Lagrange’s equations which will be studied in the following chapter.

2.1. Position parameters

2.1.1. Position parameters of a particle

Consider a particle p. Its position P = posR0
(p, t), in the reference frame R0 and at a given

instant t, is a point in E.

Let the reference frame R0 be endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) = (O;�e1, �e2, �e3) (see [1.30]). The point P may be defined, a priori, by its three

Cartesian, cylindrical or spherical coordinates in the coordinate system in question. The

expression “a priori” signifies that at this stage we consider the particle to be free in space,

without taking into account any possible constraints between this particle and other bodies (these

constraints will be discussed in section 2.2).

Consider, for example, a particle moving in the plane O�x0�y0, and the a priori position P of

the particle may be defined by two Cartesian coordinates.

In certain cases, the position of the particle may also depend on time.

EXAMPLE. Consider a particle whose position is P , moving in a plane endowed with an

orthonormal coordinate system (O; �x0, �y0) (Figure 2.1). Its position may be defined by the two

Cartesian coordinates x, y of P relative to (O; �x0, �y0):

−−→
OP = x�x0 + y�y0 or P = P (x, y) [2.1]
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Figure 2.1. Particle moving in a plane

In certain problems, we may decide to define the position of the particle in a different way,

introducing an intermediate basis (�x1, �y1) that rotates at the constant angular velocity ω about

�z0. If x′, y′ denote the Cartesian coordinates of P relative to the rotating coordinate system, the

position P of the particle may be expressed as a function of the parameters x′, y′, t as follows:

−−→
OP = x′�x1 + y′�y1 = (x′ cosωt − y′ sinωt)�x0 + (x′ sinωt+ y′ cosωt)�y0

that is

P = P (x′, y′, t) [2.2]

According to this point of view, the position of the particle depends explicitly on time t. The

two points of view, [2.1] and [2.2], are equivalent. The choice of the point of view is dictated by

the context of the problem to be solved. �

2.1.2. Position parameters for a rigid body

As defined in [1.15], the position posR0(S, t) of a rigid body S, in the reference frame R0 and at

an instant t, is the set of positions P , at t, for all particles of S.

If the rigid body is not rectilinear, its a priori position may be defined by the three coordinates

of the position of a particle of the rigid body and three angles. As is the case for a particle, the

expression “a priori” signifies that at this stage, we consider the rigid body to be free in space,

without taking into account any possible mechanical joints with other bodies.

Let us review the Euler angles, which are most widely used in rigid body mechanics to

define the angular position of a rigid body.

EXAMPLE. EULER ANGLES.

Consider a non-rectilinear rigid body S moving in the physical space. Let the common

reference frame R0 be endowed with the right-handed orthonormal coordinate system (O; b0)
where b0 ≡ (�x0, �y0, �z0).

As the rigid body S is not rectilinear, we may choose four non-coplanar particles within this,

oS , aS , bS , cS , such that the physical coordinate system (oS ; aS , bS , cS) is physically orthonormal

in the sense of definition [1.9] (if S is planar, it can always be extended, in a unique way, into the
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3D space, and we then can choose three particles in the plane and the fourth particle outside the

plane). Let us denote:

OS ≡ posR0(oS , t) AS ≡ posR0(aS , t) BS ≡ posR0(bS , t) CS ≡ posR0(cS , t)

�xS ≡ −−−−→
OSAS �yS ≡ −−−−→

OSBS �zS ≡ −−−→
OSCS

The basis bS ≡ (�xS , �yS , �zS) thus constructed is a right-handed orthonormal basis. The point

OS and the basis bS are attached to S. It is assumed that there is no constraint between b0 and bS
(we say that the rotation of the rigid body S relative to R0 is free).

The position in R0 of the rigid body S is known as soon as we know the three coordinates of

the point OS relative to the coordinate system (O; b0) and the position of the basis bS relative to

the basis b0.

We will show that the position of bS relative to b0 may be determined using three angles. To

this end, let us introduce two intermediate bases between bS and b0.

Definition for the Euler angles and the intermediate bases u, v [2.3]

1. The first intermediate basis, denoted by u ≡ (�n, �u, �z0) , is defined as follows:

• Consider a vector straight line that is orthogonal to both �z0 and �zS (there only exists

one such line if �z0 and �zS are non-collinear. If not, there exist an infinity of such

lines) (Figure 2.2). In the frequent case when �z0 and �zS are not collinear, this line is

also the intersection between the vector planes �xS�yS and �x0�y0.

We arbitrarily choose one of the two unit vectors that orient this straight line and

denote it by �n.

• We then define the unit vector �u ≡ �z0 × �n.

The basis u ≡ (�n, �u, �z0) thus constructed is a right-handed orthonormal basis.

2. The second intermediate basis is denoted by v ≡ (�n,�v, �zS) , where the vector �v is defined

by �v = �zS × �n. This is a right-handed orthonormal basis.

We use the following terms for the different angles:

• the precession angle is ψ ≡ angle (�x0, �n) = angle (�y0, �u), measured with respect to �z0.

• the nutation angle is θ ≡ angle (�z0, �zS) = angle (�u,�v), measured with respect to �n.

• the spin angle is ϕ ≡ angle (�n, �xS) = angle (�v, �yS), measured with respect to �zS .

The three angles ψ, θ, ϕ are the Euler angles (for the basis (�xS , �yS , �zS) with respect to the

basis (�x0, �y0, �z0)). The vector line oriented by �n is called the line of nodes.

We move from the basis b0 = (�x0, �y0, �z0) to the basis bS = (�xS , �yS , �zS) through three

successive rotations around three different axes (Figure 2.3):

1. We move from basis b0 to basis u = (�n, �u, �z0) through the rotation around �z0, with the

rotation angle ψ.

2. We then move from basis u to basis v = (�n,�v, �zS) through the rotation around �n, with the

rotation angle θ.

3. Finally, we move from basis v to basis bS through a rotation around �zS , with the rotation

angle ϕ.
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Figure 2.2. The Euler angles. Global view. For a color version of this figure, see www.iste.co.uk/
levan/lagrangian.zip

Figure 2.3. Euler angles. Decomposition in three successive rotations

Figure 2.3 shows the three rotations and clearly shows that each time we move from one basis

to the other, the rotation is carried out around a different common axis.

Once the bases b0, u, v, bS have been chosen, knowing the three Euler angles ψ, θ, ϕ
completely determines the position of basis bS with respect to b0. �

The position of a rectilinear rigid body, which is not reduced to a point, is defined by five

parameters: these are the same as those for a non-rectilinear rigid body apart from the rotation

around the axis of the rectilinear rigid body.

If we consider a plane rigid body moving in the plane O�x0�y0, for example, the position of

the rigid body may be defined by the two coordinates of a particle of the rigid body and the

rotation angle about the direction orthogonal to the plane of the rigid body.

In certain cases, the position of the rigid body may also explicitly depend on time.

EXAMPLE. Consider a disc S whose center is C and of radius R, moving in a plane endowed

with an orthonormal coordinate system (O; �x0, �y0). Its position may be defined by the two

Cartesian coordinates (x, y) of the center C and the angle ϕ ≡ (�x0, �xS), which is measured with

respect to �z0, where �xS is a unit vector attached to the disk S (Figure 2.4(a)).
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(a)

(b)

Figure 2.4. Disc moving in a plane

Consider a current particle on the disc, whose position P is on a radial line C�er attached to

the disc. The distance r ≡ ‖−−→CP‖ and the angle α ≡ (�xS , �er) are constant. The position P can be

expressed as a function of the parameters x, y, ϕ by

−−→
OP =

−−→
OC +

−−→
CP = x�x0 + y�y0 + r�er(ϕ+ α)

where the radial vector �er is �er(ϕ+ α) = cos(ϕ+ α)�x0 + sin(ϕ+ α)�y0, that is

P = P (x, y, ϕ) [2.4]

In certain problems, we may decide to define the position of the disc in another manner by

introducing an intermediate coordinate system (O′; �x0, �y0), which is mobile with respect to the

plane, with
−−→
OO′ = f(t)�x0+g(t)�y0 where f(t), g(t) are known functions of time (Figure 2.4(b)).

If x′, y′ denote the Cartesian coordinates of the center C with respect to this coordinate system,

then it is possible to define the position of the disc by x′, y′, angle ϕ and time t via f(t), g(t).
The position P of a current particle of the disk can be expressed as a function of the parameters

x′,y′, ϕ, t through

−−→
OP =

−−→
OO′ +

−−→
O′C +

−−→
CP = f(t)�x0 + g(t)�y0 + x′�x0 + y′�y0 + r�er(ϕ+ α)

= (x′ + f(t)) �x0 + (y′ + g(t)) �y0 + r�er(ϕ+ α)

that is:

P = P (x′, y′, ϕ, t) [2.5]

Proceeding in this manner, the position of the disc depends explicitly on the time t. The two

points of view [2.4] and [2.5] are equivalent and the choice of one or the other of these is dictated

by the context of the problem to be solved. �
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• Generally speaking, it is assumed that the position P , in R0 and at each instant, of a particle

of the rigid body S is a function of NS variables q
(S)
1 , . . . , q

(S)
NS

and possibly of time t:

RNS+1 ⊃ Π× [0, T ] → E

(q
(S)
1 , . . . , q

(S)
NS

, t) �→ P = P (q
(S)
1 , . . . , q

(S)
NS

, t)
[2.6]

where Π × [0, T ] is an (open, connected) region of RNS+1; [0, T ] is the time interval of interest;

the greatest instant T is often equal to infinity.

Each (n + 1)-tuple (q
(S)
1 , . . . , q

(S)
NS

, t) corresponds to one position P of the current particle,

that is, to one position of the rigid body S.

– The image under the mapping [2.6] is the set of positions of the current particle that can

be represented by the mapping. A good mapping [2.6] must be subjective: its image must

contain the set of possible positions of the current particle and ideally the entire space E. In

other words, any position P ∈ E of the current particle relative to R0 must be the image of

at least one (n+ 1)-tuple (q
(S)
1 , . . . , q

(S)
NS

, t) ∈ Π × [0, T ].

– On the other hand, the mapping [2.6] is not necessarily injective: a position P may be the

image of two distinct (n+ 1)-tuples (q
(S)
1 , . . . , q

(S)
NS

, t).

Hypothesis. For the derivation and integration purposes in the sequel, it is assumed that the

mapping [2.6] is of class C2. [2.7]

We thus exclude impact problems, where velocities are modeled by discontinuous functions

and where the mapping [2.6] belongs to class C0 only.

2.1.3. Position parameters for a system of rigid bodies

Let us consider a mechanical system S , made up of a finite number of rigid bodies (some of which

may be reduced to particles). Its position posR0(S , t) relative to the reference frame R0 at an

instant t has been defined in [1.16]. This position is known if the mappings [2.6] are known for all

the constituent rigid bodies. The set of parameters that makes it possible to determine the position

of system S is the union of all parameters (q
(S)
1 , . . . , q

(S)
NS

) of each constituent rigid body, and

possibly of t. Denoting this set by (q1, . . . , qN , t), the a priori position (relative to the reference

frame R0 and at each instant) of a current particle p of the system, namely P = posR0(p, t), is

determined by (q1, . . . , qN ) and possibly the time t:

P = P (q1, . . . , qN , t) or
−−→
OP =

−−→
OP (q1, . . . , qN , t) (O is the origin of E)

[2.8]

Definition. The variables q1, . . . , qN are called the position parameters for the system. [2.9]

Throughout this book, the expression “position parameter” or simply “parameter” is used

instead of the usual expression “generalized coordinate” in the literature.

If the system S is made up of p1 non-rectilinear rigid bodies, p2 rectilinear rigid bodies and

p3 particles, and if each rigid body has its own parameters, then the position of S in a 3D context

depends, a priori , on N = 6p1 + 5p2 + 3p3 parameters and possibly on time.

REMARK. As the considered bodies are rigid, the description of the position (and thus the

motion) of the system is greatly simplified. It is enough to know the value of a finite number of
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parameters (q1, . . . , qn, t) in order to know the positions of all the particles of the system. In the

case of a deformable mechanical system, this is no longer possible; the positions of the particles

of the system are defined individually (by a position field or a displacement field), and in an

imprecise manner it can be said that the position of the system depends on an infinite number of

parameters. �

2.2. Mechanical joints

There are mechanical problems that involve a single rigid body in space, subject to given

at-a-distance forces, that is, the case of a body in free fall which is subjected only to weight or a

planet in a celestial mechanics that is subjected to gravitational force. The question of constraints

does not arise for such rigid bodies.

However, quite often a rigid body is not alone in space, but is surrounded by other rigid

bodies such that it does not move completely freely but is constrained by the presence of

neighboring rigid bodies. Physical conditions such as non-interpenetration or no-slip cause

restrictions on the relative positions of rigid bodies. They forbid certain relative motions between

the rigid bodies and permit certain others. We say that the rigid body is subject to mechanical
joints or simply joints.

A joint between two rigid bodies may be realized through direct contact or through

intermediate organs. The intermediate organ may be simply a rope connecting rigid bodies or a

sophisticated technologic device, such as a ball bearing between a rotary shaft and a bearing.

Below are the standard joints in mechanics:

Clamp Cylindrical joint Ball-and-cylinder joint

Pivot (or hinged joint) Spherical joint with pin Cylinder-and-plane joint

Prismatic joint (or sliding joint) Spherical joint (or ball joint) Ball-and-plane joint

Screw joint (or helical joint) Planar contact Point contact

Connection by a rope

From the kinematics point of view, most of the joints that we see in mechanics are expressed
by mathematical relationships between the position parameters (and their time derivatives) and

possibly time itself. These relationships are restrictions on the number of degrees of freedom of

the rigid bodies connected. They express the motions allowed by the mechanical joints and are

called constraint equations. They will be presented in detail in the following section.

From the dynamic point of view, interaction efforts (as defined in [3.1], effort is the generic

term that designates force or torque) between two connected rigid bodies must exist at the joint

to ensure the mechanical connection, i.e. to force the rigid body or rigid bodies to respect the

kinematic constraints arising from the joint. These are called constraint efforts.

Apart from a few special cases, the constraint efforts are unknown just as with certain position

parameters. If the mechanical problem is well posed, the problem equations must make it possible

to determine the position parameters over time (i.e. the motion of the system) and they must also

make it possible to calculate the constraint efforts if desired.

2.3. Constraint equations

Definition. Consider a joint between two rigid bodies in a system or between a rigid body

in a system and a body outside the system. This joint is expressed by a certain number of

relationships between the position parameters q1, . . . , qN , their time derivatives q̇1, . . . , q̇N and

possibly time t itself. These relationships are called the constraint equations.

One should distinguish between a joint, which is a physical device, and the constraint

equations expressing this joint, which are mathematical relationships.



34 Lagrangian Mechanics

A joint may be rendered by one or more constraint equations. A constraint equation may be

an equality or inequality (an inequality is also called an inequation). A bilateral joint is expressed

by one or more equalities, while a unilateral joint is expressed through equalities as well as at

least one inequality. In this book, we will focus chiefly on constraint equations that take the form

of an equality.

Definition.

1. A constraint equation is time independent if it is a relationship only between the position

parameters q1, . . . , qN and not time t.

2. A constraint equation is time dependent if it is a relationship between the position

parameters q1, . . . , qN and time t.

3. A mechanical joint is said to be time independent (respectively, time dependent) if all the

constraint equations expressing this joint are independent of (respectively, dependent on)

time.

A relationship that is time independent (respectively, time dependent) is also said to be

scleronomous (respectively, rheonomous), from the Greek skleros = hard, rheo = flowing and

nomos = law.

EXAMPLE. Let us return to the example (represented in Figure 2.4) of the disc S moving

in a plane and assume that the disc is in contact with the mobile axis O′�x0. Using the position

parameters x′, y′, ϕ, t (see Figure 2.4(b)), this contact is expressed by

y′ = R

This is a time-independent constraint equation.

On the other hand, if the position parameters are chosen equal to the coordinates x, y of

center C, defined with respect to the fixed coordinate system (O; �x0, �y0) (see Figure 2.4(a)), and

the rotation angle ϕ, then the contact considered is expressed by

y = R+ g(t)

which is, here, a constraint equation that is time dependent. This example shows how the same

mechanical joint may be expressed by equations that are time dependent or time independent

depending on the choice of the position parameters. �

The constraint equations and the constraint efforts exist in a concomitant manner for each

given joint. Each constraint equation induces or provokes certain constraint efforts and,

conversely, each constraint force results from or ensures certain constraint equations.

EXAMPLE. In the previous example, the contact between the disc and the mobile axis was

expressed by the equation y′ = R. If the contact takes place with friction, it induces two contact

forces – one that is normal and one that is tangential. �

Definitions. [2.10]

1. A constraint equation is said to be holonomic if it is a relationship between the position

parameters and possibly time, without involving the time derivatives of the position

parameters. It is, thus, of the form

f(q1, . . . , qN , t) = 0 (or ≥ 0 or ≤ 0 if there is an inequality)
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2. A constraint equation is said to be non-holonomic if it is a relationship between the

position parameters and possibly time, together with the time derivatives of the position

parameters. It thus takes the form

f(q1, . . . , qN , q̇1, . . . , q̇N , t) = 0 (or ≥ 0 or ≤ 0 if there is an inequality)

3. A constraint equation is said to be semi-holonomic (or integrable) if it is a non-holonomic

relationship that can be integrated with respect to time in order to reduce it to the form

f(q1, . . . , qN , t) = C

where C is a constant of integration that depends on the initial conditions.

The term “holonomic” comes from the Greek holos = whole and nomos = law.

Definition. [2.11]

A constraint equation that is said to be solved is a particular holonomic equation that gives

a certain parameter as a function of some others (not necessarily all other parameters). For

example:

qn+1 = χ(q1, . . . , qn, t) where n < N

The parameter expressed as a function of the others is called a solved parameter.

In what follows, we will only consider the non-holonomic constraint equations, which take

the following differential form:

N∑
k=1

αk(q1, . . . , qN , t)q̇k + β(q1, . . . , qN , t) = 0 [2.12]

Throughout the following, it is assumed that all constraint equations considered are

independent. In other words, no constraint equation can be obtained by transforming other

constraint equations (transforming by linear combination, derivation, integration, etc.).

With regard to the mathematical smoothness, we assume the following conditions:

Assumptions. [2.13]

– The functions f(q1, . . . , qN , t) in [2.10], especially the χ functions in [2.11], are of class

C2 over their domain.

– The functions αk and β in [2.12] are of class C1 over their domains.

EXAMPLES.

1. Consider a particle with position P , moving with respect to the reference frame R0

endowed with an orthonormal coordinate system (O; �x0, �y0, �z0). For the position

parameters of the particle, we can choose between the Cartesian coordinates x, y, z of the

point P and the spherical coordinates r, ϕ, θ defined with respect to the center O.

Assume that the particle is connected to the fixed point O through an inextensible wire of

length �. The mechanical joint is expressed by

x2 + y2 + z2 = �2 or r = �
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The two constraint equations are holonomic. The second equation is solved contrary to the

first one.

This example shows that depending on the choice of position parameters, the equations

expressing the same mechanical joint may have more or less simple forms.

2. Let us return to the example (represented in Figure 2.4(a)) of a disc moving in a plane,

where the position parameters are x, y, ϕ (see relation [2.4]).

Assume that the disc is in no-slip contact with the axis O�x0, at the point denoted by I . The

contact at I is expressed by

y = R [2.14]

This is a solved constraint equation. The no-slip contact condition at I can be written as

�0 = �V0S(I) = �V0S(C) + �Ω0S × −→
CI = ẋ�x0 + ẏ�y0 + ϕ̇�z0 × (−R�y0) = (ẋ+Rϕ̇)�x0 + ẏ�y0

that is
ẋ+Rϕ̇ = 0

ẏ = 0

The last relationship is a consequence of [2.14]. The first relationship is a semi-holonomic

constraint equation as it may be integrated with respect to time to arrive at the form

x + Rϕ = C, where the constant of integration C = x0 + Rϕ0 depends on the initial

conditions.

3. Consider a disc S with center C and radius a, moving in the reference frame R0 endowed

with the orthonormal coordinate system (O; �x0, �y0, �z0). For the position parameters of the

disc, we choose the coordinates x, y, z of the center C and the Euler angles ψ, θ, ϕ defined

in [2.3] (Figure 2.5).

Figure 2.5. Disc in contact with a plane

Assume that the disc is in no-slip contact with the plane O�x0�y0 at the point I . The contact

at I is expressed by

z = a sin θ [2.15]

This is a holonomic, even solved, constraint equation. To express the no-slip contact

condition at I , let us use the vectors of the intermediate basis v ≡ (�n,�v, �zS) represented in
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Figure 2.5. The vector �zS is orthogonal and attached to the disc S. The no-slip contact

condition is written as

�0 = �V0S(I) = �V0S(C) + �Ω0S × −→
CI = ẋ�x0 + ẏ�y0 + ż�z0 + (ψ̇�z0 + θ̇�n+ ϕ̇�zS) × (−a�v)

That is, projecting on to the basis u ≡ (�n, �u, �z0):

/�n : ẋ cosψ + ẏ sinψ + a(ϕ̇+ ψ̇ cos θ) = 0

/�u : −ẋ sinψ + ẏ cosψ + aθ̇ sin θ = 0

/�z0 : ż − aθ̇ cos θ = 0

The last relationship is a consequence of [2.15]. The first two relationships are

non-holonomic constraint equations of the differential form [2.12]. �

2.4. Parameterization

Let us consider a mechanical system S whose a priori position in R0 is described by N position

parameters, q1, . . . , qN (see [2.9]) and possibly by time. We assume that there exist mechanical

joints in the system, which are expressed by a certain number of constraint equations.

We will choose some solved (see definition [2.11]) constraint equations to eliminate certain

parameters in favor of others. There is no difficulty in the elimination of parameters as we exploit

resolved equations. Furthermore, it is clear that we cannot use non-holonomic or semi-holomonic

constraint equations (see definition [2.10]). Using an appropriate ordering of parameters, we can

always assume that we preserve n first parameters q1, . . . , qn and leave out others, where n is a

chosen number (n ≤ N and the lower bound for n depends on the number of solved constraint

equations available).

Definitions. [2.16]

1. In analytical mechanics, the position parameters, a priori, q1, . . . , qN of the system and

possibly the time t are called primitive parameters to distinguish them from the retained

parameters defined below.

2. The solved constraint equations used to eliminate qn+1, . . . , qN are called primitive
constraint equations. They are of the form

qn+1 = χn+1(q1, . . . , qn, t)
...

qN = χN (q1, . . . , qn, t)

[2.17]

3. The retained parameters are, by definition, the parameters that have been preserved:

q1, . . . , qn, t or, more briefly, q, t with q ≡ (q1, . . . , qn) .

We can, thus, express all kinematic quantities that appear in what follows as functions of

(q, t) solely. In particular, the position P , in R0 and at each instant, of a current particle

of the system is a function of (q, t):

P = P (q, t)

4. The other constraint equations, that is, those which were not used to eliminate

qn+1, . . . , qN , are called the complementary constraint equations.

Using [2.17], we can express the complementary constraint equations in terms of the

parameters (q, t).

A parameterization of the system consists of the four points listed above.
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The parameterization defined in the above sense does not exist in Newtonian mechanics. On

the other hand, it is indispensable in analytical mechanics and is the first task to be carried out in

any problem. In order to establish a parameterization, the physicist must:

– choose the primitive parameters of the system studied. In practice, these parameters appear

naturally when we address the mechanical problem. Other position parameters may be

discarded from the start, if they are not useful;

– choose the primitive constraint equations. This is a subjective choice guided by the

objective specified by the physicist. Indeed:

• it will be seen that when a given constraint equation is classified as primitive, the

constraint efforts associated with this equation do not appear in the governing

equations and thus become inaccessible;

• if we wish to obtain a particular constraint effort, the constraint equations

corresponding to this effort must be classified as complementary.

Note that a non-holonomic constraint equation cannot be used to express a parameter as a

function of other parameters. It cannot, thus, be chosen as a primitive constraint equation.

The retained parameters and the complementary constraint equations result from the above

choice. It should once again be emphasized that the choice of categorizing one constraint equation

as primitive and another as complementary, i.e. the choice of the retained parameters, is the

responsibility of the physicist and depends on the chosen objective.

The expression for the virtual velocity fields (VVF), the Lagrange’s equations that we will

obtain and, therefore the mechanical information that we can derive from these equations, are all

dependent on the chosen parameterization.

For a given mechanical system, there are often several possible parameterizations. We can

distinguish between the three following types of parameterization.

Definitions. [2.18]

– The total parameterization consists of taking all the primitive parameters as the parameters

to be retained (n = N ). In other words, there is no primitive constraint equation and all

the constraint equations are written as complementary equations.

– The parameterization is said to be reduced if the number of retained parameters, n, is

strictly smaller than N . In this case, a certain number of (solved) constraint equations are

chosen to be primitive and then used to eliminate certain primitive parameters.

– The parameterization is said to be independent if there exists no complementary constraint

equation. This is a minimal reduced parameterization, in the sense that all constraint

equations are classified as primitive.

The reduced parameterization is an intermediate category between two extreme cases: total

parameterization and independent parameterization. The typical parameterization encountered in

this book is, therefore, the following reduced parameterization:

Parameterization. [2.19]

It is assumed that the mechanical system S is given in the following parameterization:

1. Primitive parameters: q1, . . . , qN , t.
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2. Primitive constraint equations:

qn+1 = χn+1(q1, . . . , qn, t)
...

qN = χN (q1, . . . , qn, t)

[2.20]

3. Retained parameters: q1, . . . , qn, t, or in abridged form (q, t).

The position P , in R0 and at the instant t, of a current particle of the system is

P = P (q, t) [2.21]

4. Complementary constraint equations: they are specified depending on the problem

studied.

The mapping (q, t) �→ P (q, t) is of class C2. [2.22]

Indeed:

– according to hypothesis [2.7], the mapping (q1, . . . , qN , t) �→ −−→
O1P (q1, . . . , qN , t) belongs

to class C2,

– moreover, according to hypothesis [2.13], the functions χn+1, . . . , χN in [2.20] are of class

C2 over their domain.

2.5. Dependence of the rotation tensor of the reference frame on the retained
parameters

In the following, we will bring in a reference frame R1 that is different from the common reference

frame R0. The rotation tensor ¯̄Q01 of R1 with respect to R0 often depends on t, but not on the

position parameters q. In certain cases, however, it turns out that the chosen parameterization

implies that ¯̄Q01 also depends on q. For a general case, we will thus write a priori

¯̄Q01 = ¯̄Q01(q, t) [2.23]

With q = q(t), the tensor ¯̄Q01(q, t), for example, is a composite function of time, which is

denoted by ¯̄Q01(t) in Chapter 1. In Chapter 1, the notation ¯̄Q01(t) sufficed because only the

dependence with respect to time was important. From this point onwards, however, we must

keep in mind the dependence [2.23], a priori, even though we will not systematically write the

arguments q, t explicitly.

EXAMPLE. Consider a 2D problem where two reference frames are involved: the common

reference frame R0 endowed with an orthonormal coordinate system (O; �x0, �y0) and another

reference frame, R1, endowed with an orthonormal coordinate system (O1; �x1, �y1). Let X,Y
denote the Cartesian coordinates of the point O1 relative to the coordinate system (O; �x0, �y0),
and let ϕ be the angle (�x0, �x1) measured around �z0 ≡ �x0 × �y0 and assume that ϕ = ωt where ω
is a given constant (Figure 2.6).

The tensor ¯̄Q01 is the rotation of angle ϕ around �z0, which rotates the vectors �x0, �y0 into the

vectors �x1, �y1, respectively.

Consider a rod S whose position in R0 is AB. The coordinates of point A relative to the

coordinate system (O1; �x1, �y1) are denoted byx, y, and the angle (�x1,
−−→
AB) measured around �z0



40 Lagrangian Mechanics

is θ. We will parameterize the position of the rod relative to R0 using two different

parameterizations.

Figure 2.6. Example of parameters

1. First parameterization:

(a) Primitive parameters: we choose to define the position of the rod S in R0 using the

coordinates X,Y of point O1, the coordinates x, y of point A and the angles ϕ, θ.

(b) Primitive constraint equations: it is decided that no constraint equation is classified as

primitive.

(c) The retained parameters are, therefore: q = (X,Y, x, y, ϕ, θ).

The position P , in R0 and at the instant t, of any particle p of the rod is

P = P (X,Y, x, y, ϕ, θ).

(d) Complementary constraint equations: the constraint equation ϕ = ωt is thus found to

be complementary.

Using this parameterization, the rotation tensor ¯̄Q01 depends on the parameters q via ϕ.

2. Second parameterization: we will now consider a different parameterization where the

constraint equation ϕ = ωt is this time classified as primitive and not complementary.

(a) Primitive parameters: these are the same as in the first parameterization.

(b) Primitive constraint equations: we decide to classify the constraint equation ϕ = ωt
as primitive.

(c) The retained parameters are, therefore, q = (X,Y, x, y, θ) and t; the dependence with

respect to t occurs via ϕ = ωt.

The position P , in R0 and at the instant t, of the current particle p is

P = P (X,Y, x, y, θ, t).

(d) Complementary constraint equation: none.

Using this parameterization, the rotation tensor ¯̄Q01 does not depend on q. �

From this example, the following general observations can be drawn for a system that is made

up of one or more rigid bodies, whose retained parameters are (q, t) as follows:
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1. If the reference frame R1 is defined by a rigid body (in the system studied) whose position

in R0 depends on q, the rotation tensor ¯̄Q01 will obviously depend on q.

2. However, even if the reference frame R1 is not defined by a rigid body belonging to the

system, the rotation tensor ¯̄Q01 may depend on q. In the previous example, R1 is not defined

by the rod and yet it may still depend on q.

For the rest of the chapter:

1. up to section 2.10, we will study the general case when ¯̄Q01 depends on (q, t), and we will

then derive the case when ¯̄Q01 does not depend on q as a particular case;

2. from section 2.10 onwards, we will study only the case when ¯̄Q01 does not depend on q.

The case when ¯̄Q01 depends on (q, t) leads to more complex expressions, but it is

indispensable in certain situations, as will be seen in the following chapters.

• One of the first uses of [2.23] is to derive, from [2.21], the position P (1) = posR1(p, t) of

the current particle in any reference frame R1:

−−−→
OP (1) = ¯̄Q10(q, t).

−−→
O1P according to [1.26], where O1 is the origin of

= ¯̄Q10(q, t).(
−−→
OP − −−→

OO1) the coordinate system of R1

= ¯̄Q10(q, t).
−−→
OP (q, t) − ¯̄Q10(q, t).

−−→
OO1

This signifies that the position P (1) of p in R1 is also a function of q, t:

−−−→
OP (1) =

−−−→
OP (1)(q, t) [2.24]

Consequently, the position of the mechanical system S , in any reference frame and at any

instant, is determined by the parameters q and possibly the time t.

2.6. Velocity of a particle

The objectives considered here and for the longer term are the following:

– We go back to the velocity [1.47] of a particle p and we will give it an explicit expression

by taking into account the fact that here the position P of the particle in R0 is given by

[2.21].

– The obtained expression will serve as the model that will be used in Chapter 4 to adopt the

definition of the virtual velocity (VV) of a particle with respect to R1.

– In Chapter 5, this VV will in turn be used to define the virtual power (VP) of efforts and

the VP of the quantities of acceleration.

In Chapter 5, it will be seen that the relationships obtained for the VP involve the VV with

respect to a reference frame R1 such that ¯̄Q01 may or may not depend on the retained parameters

q. The typical example is that of expression [5.14] for the VP of interefforts between two rigid

bodies, where there appears the VV relative to the reference frame defined by one of the two rigid

bodies and where the rotation tensor of this reference frame depends on q. Thus, to prepare to

study the VP in Chapter 5, we will now investigate the velocity in two steps:
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1. we will begin by considering the general case when ¯̄Q01 may or may not depend on q;

2. from this we will then derive the results for the particular case when ¯̄Q01 does not depend

on q.

Theorem. Let p be a particle whose position P (q, t) in R0 is given by [2.21]. Its velocity, with

respect to the reference frame R1 and at the instant t, is given as

�VR1(p, t) =
¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇i +

∂R1

−−→
O1P

∂t
, [2.25]

where ¯̄Q01 = ¯̄Q01(q, t) and the partial derivative
∂R1

−−→
O1P

∂t
is defined in [1.41]. The derivatives

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
are the standard derivatives of the vector ¯̄Q10.

−−→
O1P ∈ E with respect to qi.

They are not the derivatives with respect to R1.

PROOF. According to [1.47], we have �VR1
(p, t) = ¯̄Q01.

d

dt

(
¯̄Q10.

−−→
O1P

)
. Taking into account

[2.21], the final derivative is written as

d

dt
=

n∑
i=1

∂

∂qi
q̇i +

∂

∂t
�

Let us introduce the following hypothesis which is often – but not always – satisfied:

Hypothesis. The rotation tensor ¯̄Q01 of R1 with respect to R0 depends only on time and

not on q. [2.26]

If this hypothesis is satisfied, one may simplify relationship [2.25] in a straightforward

manner:

Theorem. Let p be a particle whose position P (q, t) in R0 is given by [2.21]. Using hypothesis

[2.26], the velocity of the particle p, with respect to the reference frame R1 and at the instant t,
is

�VR1(p, t) =
n∑

i=1

∂
−−→
O1P

∂qi
q̇i +

∂R1

−−→
O1P

∂t
[2.27]

The derivatives
∂
−−→
O1P

∂qi
are the ordinary derivatives of

−−→
O1P ∈ E with respect to qi. They are

not the derivatives with respect to R1.

Relationship [2.27] is simpler than [2.25], however it can only be used under hypothesis
[2.26].

EXAMPLE AND COUNTER-EXAMPLE. Let us return to the example in section 2.5 and

calculate the velocity – with respect to R1 (respectively, R0) – of the particle a with the position

A, using the two different parameterizations considered in section 2.5.

1. First parameterization.

(a) Let us calculate the velocity of the particle a with respect to R1 using the first

parameterization. We can directly apply [2.25] or (which amounts to the same thing)
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start from definition [1.47]:

�VR1(a, t) ≡ dR1

−−→
O1A

dt
≡ ¯̄Q01.

d

dt

(
¯̄Q10.

−−→
O1A

)
[2.28]

where
−−→
O1A = x�x1(ϕ) + y�y1(ϕ). Straightforward calculations lead successively to

¯̄Q10.
−−→
O1A = x�e1 + y�e2 recall that (�e1, �e2) is the basis of E,

and [1.30]: (�x0, �y0) = (�e1, �e2)

⇒ d

dt

(
¯̄Q10.

−−→
O1A

)
= ẋ�e1 + ẏ�e2

⇒ ¯̄Q01.
d

dt

(
¯̄Q10.

−−→
O1A

)
= ẋ�x1 + ẏ�y1

or
�VR1(a, t) = ẋ�x1 + ẏ�y1 [2.29]

As the rotation tensor ¯̄Q01 here depends on ϕ, hypothesis [2.26] is not satisfied and

we cannot use [2.27]. Indeed, relationship [2.27] would give us

�VR1(a, t) =

n∑
i=1

∂
−−→
O1A

∂qi
q̇i +

∂R1

−−→
O1A

∂t

=
∂
−−→
O1A

∂x︸ ︷︷ ︸
�x1

ẋ+
∂
−−→
O1A

∂y︸ ︷︷ ︸
�y1

ẏ +
∂
−−→
O1A

∂ϕ︸ ︷︷ ︸
x�y1−y�x1

ϕ̇+
∂R1

−−→
O1A

∂t︸ ︷︷ ︸
�0

= (ẋ− yϕ̇)�x1 + (ẏ + xϕ̇)�y1 which is incorrect.

(b) For the purposes of comparison, let us calculate the velocity with respect to R0:

�VR0(a, t) ≡ dR0

−→
OA

dt
≡ ¯̄Q00.

d

dt

(
¯̄Q00.

−→
OA
)

=
¯̄Q00=

¯̄I

d
−→
OA

dt
, [2.30]

where
−→
OA = X�e1 + Y �e2 + x�x1(ϕ) + y�y1(ϕ). We obtain

�VR0(a, t) = Ẋ�e1 + Ẏ �e2 + (ẋ − yϕ̇)�x1 + (ẏ + xϕ̇)�y1 [2.31]

2. Second parameterization.

(a) Let us now use the second parameterization from the example in section 2.5. Using

relationship [2.28], this time with
−−→
O1A = x�x1(t) + y�y1(t), and the same calculation

as in the first parameterization, we obtain

�VR1(a, t) = ẋ�x1 + ẏ�y1 [2.32]

which is identical to [2.29] on the condition, of course, that in [2.29] we make

�x1 = �x1(ϕ) = �x1(ωt), �y1 = �y1(ϕ) = �y1(ωt), and in [2.32] we make �x1 = �x1(t),
�y1 = �y1(t).

Moreover, given that here the rotation tensor ¯̄Q01 does not depend on q, we can use

[2.27]:

�VR1(a, t) =
n∑

i=1

∂
−−→
O1A

∂qi
q̇i +

∂R1

−−→
O1A

∂t

=
∂
−−→
O1A

∂x︸ ︷︷ ︸
�x1

ẋ+
∂
−−→
O1A

∂y︸ ︷︷ ︸
�y1

ẏ + ¯̄Q01.
∂

∂t

(
¯̄Q10.

−−→
O1A︸ ︷︷ ︸

x�e1+y�e2

)
︸ ︷︷ ︸

�0
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We once again arrive at [2.32].

(b) The calculation of the velocity with respect to R0 is carried out in the same manner.

Using relationship [2.30], this time with
−→
OA = X�e1 + Y �e2 + x�x1(t) + y�y1(t), leads

to
�VR0(a, t) = Ẋ�e1 + Ẏ �e2 + (ẋ − ωy)�x1 + (ẏ + ωx)�y1

which is identical to [2.31], knowing that ϕ = ωt. �

Definition. In general, the vectors
∂
−−→
O1P

∂qi
, i ∈ [1, n], which appear in [2.27], form a

linearly independent set of vectors (except, perhaps, at some special points). In this case, the

parameterization is said to be regular and the linearly independent set of vectors is called the

local basis at P .

In general, the local basis at P depends on (q, t) and, therefore, on the position P . In the case

when P depends on the Cartesian coordinates P = P (x, y, z), the local basis is merely the basis

(�e1, �e2, �e3) of E and is independent of the position P .

• Below is a hypothesis that is slightly stronger than [2.26] and that is often but not always

satisfied:

Hypothesis. The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1 fixed in R1

does not depend on q. [2.33]

This hypothesis makes it possible to simplify [2.27] a little. Indeed, let us write−−→
O1P =

−−→
O′P − −−−→

O′O1, where O′ is any point other than O1 and independent of q. We thus have

∂
−−→
O1P

∂qi
=

∂
−−→
O′P
∂qi

− ∂
−−−→
O′O1

∂qi
where

∂
−−−→
O′O1

∂qi
= �0 as the points O1, O

′ do not depend on q. We can

thus rewrite [2.27] in a simpler form

�VR1(p, t) =
n∑

i=1

−→
∂P

∂qi
q̇i +

∂R1

−−→
O1P

∂t
[2.34]

where

−→
∂P

∂qi
denotes

∂
−−→
O′P
∂qi

, O′ being any point that is independent of q.

2.7. Angular velocity

Theorem and definition. Consider a reference frame R2 different from R1 and assume that the

position of the rigid body S(R2) defined by R2 depends on (q, t) (which is often true since, in

practical problems, R2 is defined by a rigid body belonging to the mechanical system studied).

The angular velocity vector �Ω12 of the reference frame R2 with respect to the reference

frame R1 is written as the sum of a linear form of q̇i and a constant term with respect to q̇i:

�Ω12 =
n∑

i=1

�ωi
12q̇i + �ωt

12 [2.35]

where �ωi
12 and �ωt

12, called the partial angular velocities of R2 with respect to R1, are defined as

∀i ∈ [1, n], �ωi
12 ≡ 1

2

3∑
j=1

�bj ×
(
¯̄Q01

∂

∂qi
( ¯̄Q10

�bj)

)
and �ωt

12 ≡ 1

2

3∑
j=1

�bj × ∂R1
�bj

∂t

[2.36]
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where (�b1,�b2,�b3) is an orthonormal basis fixed in R2 (refer again to Figure 1.8) and where we

recall that the partial derivative
∂R1

�bj
∂t

is defined in [1.41].

Note that the physical unit of �ωt
12 is rad/s, while the unit for �ωi

12 is rad/s divided by the

unit of q̇i.

PROOF. Let us recall expression [1.48] for the angular velocity vector of a reference frame

R2 with respect to another reference frame R1:

�Ω12 ≡ �ΩR1R2 ≡ 1

2

3∑
j=1

�bj × d1�bj
dt

As the position of the rigid body S(R2) defined by R2 is given by [2.21], we have

d1�bj
dt

≡ ¯̄Q01.
d

dt

(
¯̄Q10.�bj

)
= ¯̄Q01.

(
n∑

i=1

∂

∂qi

(
¯̄Q10.�bj

)
q̇i +

∂

∂t

(
¯̄Q10.�bj

))
�

Relationship [2.35] enables one to interpret �ωi
12 and �ωt

12 as the partial angular velocities of

S(R2): �ωi
12 is the angular velocity when all position parameters other than qi as well as time t

are kept constant, while �ωt
12 is the angular velocity when all position parameters are kept

constant and only t varies.

Let S be a system of rigid bodies whose position is defined by the parameters q1, . . . , qn, t
(see [2.21]) and consider a rigid body in the system, named S2, that defines a reference frame R2.

It may be that the position of S2 in R1 – more precisely, the vectors ¯̄Q10.�bj – does not depend on

a particular parameter qi or on t. In this case, the vector �ωi
12 or the vector �ωt

12 are zero.

2.8. Velocities in a rigid body

Let us return to section 1.9 concerning the velocities in a rigid body and add a few more results,

considering the fact that here the position P (q, t) in R1 of a current particle in the rigid body is

given by [2.21].

Lemma. Consider a reference frame R1, a rigid body S defining a reference frame RS , and

an orthonormal basis (�b1,�b2,�b3) fixed in RS . We have the following equalities that hold ∀t, ∀q
(however, in order to simplify the writing, the arguments q, t are left out):

∀i ∈ [1, n], ∀j ∈ [1, 3], ¯̄Q01.
∂

∂qi

(
¯̄Q10.�bj

)
= �ωi

1S ×�bj

∀j ∈ [1, 3],
∂R1

�bj
∂t

≡
[1.41]

¯̄Q01.
∂

∂t

(
¯̄Q10.�bj

)
= �ωt

1S ×�bj

[2.37]

where �ωi
1S , �ωt

1S are the partial angular velocities of S with respect to R1, defined in [2.35].

• If we add hypothesis [2.26], then expression [2.37]1 immediately simplifies to

∀i ∈ [1, n], ∀j ∈ [1, 3],
∂�bj
∂qi

= �ωi
1S ×�bj [2.38]

where �ωi
1S is derived from [2.36]: �ωi

1S ≡ 1

2

3∑
j=1

�bj × ∂�bj
∂qi

.
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FIRST PROOF. The demonstration will be carried out with the fixed indices i, j, i ∈ [1, n],
j ∈ [1, 3]. Upon applying [2.36], we have

�ωi
1S ×�bj =

[
1

2

3∑
k=1

�bk ×
(
¯̄Q01

∂

∂qi
( ¯̄Q10

�bk)

)]
×�bj

=
1

2
¯̄Q01

∂

∂qi
( ¯̄Q10

�bj) − 1

2

3∑
k=1

[
�bj .

¯̄Q01.
∂

∂qi
( ¯̄Q10

�bk)

]
�bk

using (�a ×�b) × �c = (�c.�a)�b − (�c.�b)�a

where

�bj .
¯̄Q01.

∂

∂qi
( ¯̄Q10

�bk) = ( ¯̄Q10.�bj).
∂

∂qi
( ¯̄Q10

�bk) because�bj .
¯̄Q01 = ¯̄Q10.�bj

=
∂

∂qi

[
( ¯̄Q10

�bj).(
¯̄Q10

�bk)
]

︸ ︷︷ ︸
=�bj .

¯̄Q01.
¯̄Q10.�bk=�bj .�bk

−( ¯̄Q10.�bk).
∂

∂qi
( ¯̄Q10

�bj)

= �0 −�bk.
¯̄Q01.

∂

∂qi
( ¯̄Q10

�bj)

Hence

�ωi
1S ×�bj =

1

2
¯̄Q01.

∂

∂qi
( ¯̄Q10

�bj) +
1

2

3∑
k=1

[
�bk.

¯̄Q01.
∂

∂qi
( ¯̄Q10

�bj)

]
�bk

=
1

2
¯̄Q01

∂

∂qi
( ¯̄Q10

�bj) +
1

2
¯̄Q01.

∂

∂qi
( ¯̄Q10

�bj) which is [2.37]1.

Relationship [2.37]2 can be proved in a similar manner by replacing ∂/∂qi with ∂/∂t. �

SECOND PROOF. The proof will be carried out with a fixed index j ∈ [1, 3]. As the vector �bj

is constant in RS , according to [1.61] we get
d1�bj
dt

= �ΩR1RS
×�bj , where

– owing to [2.35]: �ΩR1RS
=

n∑
i=1

�ωi
1S q̇i + �ωt

1S ,

– from definition [1.38]:

d1�bj
dt

≡ ¯̄Q01.
d

dt

(
¯̄Q10.�bj

)
= ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.�bj

)
q̇i +

¯̄Q01.
∂

∂t

(
¯̄Q10.�bj

)
From this, we can deduce

n∑
i=1

[
¯̄Q01.

∂

∂qi

(
¯̄Q10.�bj

)
− �ωi

1S ×�bj

]
q̇i +

[
¯̄Q01.

∂

∂t

(
¯̄Q10.�bj

)
− �ωt

1S ×�bj

]
= �0

that is, an equation of the form (omitting the fixed index j)

n∑
i=1

�Ai(q, t)q̇i + �At(q, t) = �0 [2.39]

where �Ai and �At are functions of (q, t), just as ¯̄Q01,
¯̄Q10,�bj , �ωi

1S and �ωt
1S are.

To obtain [2.37], let us show that the vectors �Ai and �At are zero. The reasoning presented

below is a little arduous as we must recall that q = q(t), q̇i = q̇i(t) and relationship [2.39] hold

for any instant t and for any mapping t �→ q(t).
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Let us arbitrarily fix an instant t and an n-tuple q = (q1, . . . , qn). As [2.39] is valid for any

mapping t �→ q(t), let us choose this such that, at a given instant t, its value q(t) is equal to the

value q that was just chosen and that the derivative q̇(t) is zero. Relationship [2.39] then gives
�At(q, t) = �0. As this relationship holds good for any arbitrarily chosen (q, t), we obtain [2.37]2.

Relationship [2.39] now reduces to

n∑
i=1

�Ai(q, t)q̇i = �0 [2.40]

Let us arbitrarily fix an instant t, an n-tuple q and an index i ∈ [1, n]. Once again, as [2.40]

is valid for any mapping t �→ q(t), let us choose the mapping for which, at the given instant, t,
its value q(t) is equal to the value q that was just chosen and for which the derivatives q̇i(t) are

all zero except q̇j(t). Relationship [2.40] then gives �Ai(q, t) = �0. As this relationship is valid for

(q, t) as well as for an arbitrarily chosen index i, we obtain [2.37]1. �
Theorem. ∀ reference frame R1, ∀ rigid body S defining a reference frame RS , ∀ particles

p, p′ belonging to the rigid body S, whose respective positions are P , P ′ in R0, we have the

following equalities that hold ∀t, ∀q:

∀i ∈ [1, n], ¯̄Q01.
∂

∂qi

(
¯̄Q10.

−−→
PP ′

)
= �ωi

1S × −−→
PP ′

∂R1

−−→
PP ′

∂t
≡

[1.41]

¯̄Q01.
∂

∂t

(
¯̄Q10.

−−→
PP ′

)
= �ωt

1S × −−→
PP ′

[2.41]

where �ωi
1S , �ωt

1S are the partial angular velocities of S defined in [2.35].

• If we add hypothesis [2.26], then the expression [2.41]1 can be simplified to

∀i ∈ [1, n],
∂
−−→
PP ′

∂qi
= �ωi

1S × −−→
PP ′ [2.42]

PROOF. One just has to write
−−→
PP ′ =

3∑
j=1

cj�bj , where the components cj are constants, and to

then apply [2.37]–[2.38]. �

2.9. Velocities in a mechanical system

Let us return to section 1.10 concerning the velocities in a mechanical system to add just one

comment on the Eulerian notation [1.65].

Let p be a particle of a mechanical system, S , whose position is P = posR0(p, t) in R0 over

the course of time. Using hypothesis [2.26], we have

∀t, �VR1S (P, t) = �VR1(p, t) =
[1.47]

dR1

−−→
O1P

dt
=

[2.27]

n∑
i=1

∂
−−→
O1P

∂qi
q̇i +

∂R1

−−→
O1P

∂t

On the other hand, for any point A ∈ E:

�VR1S (A, t) �= dR1

−−→
O1A

dt
=

n∑
i=1

∂
−−→
O1A

∂qi
q̇i +

∂R1

−−→
O1A

∂t

The equality occurs only when A is a point attached to the system S , that is, when A denotes

the position of the same particle of the system over the course of time.
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2.10. Parameterized velocity of a particle

The objectives set here and for the longer term are as follows:

– We will define a new function called the parameterized velocity with respect to R1.

– With the help of this parameterized velocity, we will establish the so-called kinematic

Lagrange’s formulae [2.52] and we will define the parameterized kinetic energy [2.54]

of the mechanical system with respect to R1, which is an essential ingredient in analytical

mechanics.

– This will enable us to calculate, in Chapter 5, the VP of the quantities of acceleration with

respect to R1, or more precisely, the coefficients denoted by Ci in [5.39], which constitutes

the left-hand side of Lagrange’s equations [6.2].

The reference frame R1 in which we calculate the VP of the quantities of acceleration is the

reference frame in which we write the principle of VP [5.1]. Now, in practice it turns out that

this reference frame R1 (whether Galilean or not) is such that the rotation tensor ¯̄Q01 does

not depend on q. Thus, unlike the discussion in section 2.6 here it is useless to consider the

case when ¯̄Q01 depends on q when studying the above-mentioned ingredients: namely, the

parameterized velocity, the kinematic Lagrange’s formulae, the parameterized kinetic energy and

the quantities of acceleration. We will, thus, study them by using hypothesis [2.26] from the

beginning. This hypothesis is reviewed below:

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on q.

2.10.1. Definition

Using hypothesis [2.26], we have expression [2.27] for the velocity �VR1
(p, t) and we will use

it to define a new function – improperly denoted by �VR1 – which depends on the new variables

(q, q̇, t):

Definition. Let p be a particle whose position in R1 is given by [2.21]: P = P (q, t).

The parameterized velocity of p with respect to R1, denoted �VR1(q, q̇, t), is defined as

∀(q, q̇, t), �VR1(q, q̇, t) =
n∑

i=1

∂
−−→
O1P

∂qi
(q, t) q̇i +

∂R1

−−→
O1P

∂t
(q, t) where

q ≡ (q1, . . . , qn)
q̇ ≡ (q̇1, . . . , q̇n)

[2.43]

and O1 is a fixed point in R1. If we adopt hypothesis [2.33], which is a little stronger than

hypothesis [2.26], then the above expression can be simplified a little to:

�VR1(q, q̇, t) =

n∑
i=1

−→
∂P

∂qi
(q, t)q̇i +

∂R1

−−→
O1P

∂t
(q, t) [2.43b]

The new function �VR1(q, q̇, t) is special and must be understood as follows:

– It is defined as a function of 2n+1 independent variables q, q̇, t. It is, therefore, important

to treat q, q̇, t in [2.43] as variables that are mutually independent.

Clearly, it would be more logical to replace q̇i with other letters, ri for example. However,

we have chosen not to do this systematically in order to avoid multiplying the number of

notations used. We will retain the notation q̇i, bearing in mind that here q̇i should not be

treated as the time derivative of qi, but instead as a variable independent of qi.
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– The variables q, q̇, t in [2.43] may take arbitrary values regardless of any motion or

velocity: q is not obtained through t �→ q(t) and q̇ is not obtained through t �→ dq
dt (t).

Thus, the parameterized velocity is not necessarily equal to the velocity of a particle with

respect to a reference frame. It is only when q is replaced by a function q(t) and q̇ by
dq
dt (t) that �VR1(q, q̇, t) is equal to the velocity �VR1(p, t) in [2.27].

In order to avoid multiplying the number of notations used, we have used the same symbol,
�VR1 , to designate both the classical velocity �VR1(p, t) and the parameterized velocity �VR1(q, q̇, t).
However, there is no possible confusion since the difference in arguments enables one to easily

distinguish between the two velocities.

Strictly speaking, we should write �VR1(p; q, q̇, t), with the particle p among the arguments.

However, the context is often clear enough for us to be able to drop variable p so as to simplify

the writing.

2.10.2. Practical calculation of the parameterized velocity

Being able to calculate the parameterized velocity will enable one to calculate the parameterized

kinetic energy Ec
R1S (q, q̇, t) defined further in [2.54].

By bringing together the two relationships [2.27] and [2.43], we can see that the real velocity
�VR1(p, t) and the parameterized velocity �VR1(q, q̇, t) are very close. In order to calculate a

velocity by means of one of these relationships, we start by calculating

n∑
i=1

∂
−−→
O1P

∂qi
(q, t) q̇i +

∂R1

−−→
O1P

∂t
(q, t) [2.44]

If we stop with this, we obtain the parameterized velocity �VR1(q, q̇, t). If we wish to obtain the

real velocity �VR1(p, t), we must carry out an additional operation, namely replacing q by q(t) and

q̇ by dq
dt (t). We thus calculate the parameterized velocity every time without explicitly (stating it).

Furthermore, in practice, when we calculate the real velocity, we systematically drop the

additional operation mentioned above. It becomes implicit, because not only does it complicate

the equations, but it is also so “evident” to the physicist’s mind that stating the operation adds no

real value.

In practice, the real and parameterized velocities have the same expression.

EXAMPLE. Let us consider a disc S of C and radius R, which moves in the plane O�x0�y0
while staying in frictionless contact with the axis O�x0, at the point I (Figure 2.7).

Figure 2.7. Disc rolling on an axis
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The following parameterization is chosen:

– primitive parameters: the coordinates x, y of center C, the angle of rotation ϕ of the disc,

defined by ϕ = ̂(�x0, �xS) measured around �z0, �xS being a vector that is attached to S;

– primitive constraint equation: y = R;

– retained parameters: q = (x, ϕ);

– complementary constraint equation: none (frictionless contact at point I).

Let us consider the particle p of S, located on the disc boundary and on the axis C�xS attached

to S: −−→
OP = x�x0 +R�y0 +R�xS(ϕ) with �xS(ϕ) = cosϕ�x0 + sinϕ�y0

Applying [2.44], with R1 = R0 and O1 = O, gives the parameterized velocity �VR1(q, q̇, t):

�VR1(q, q̇, t) = ẋ�x0 +Rϕ̇�yS(ϕ) with �yS(ϕ) = �z0 × �xS(ϕ)

The real velocity is obtained by replacing ẋ = ẋ(t) ≡ dx(t)
dt and ϕ = ϕ(t) in the previous

expression:
�VR1(p, t) = ẋ(t)�x0 +Rϕ̇(t)�yS(ϕ(t))

In practice, we never write this last expression, which is cumbersome, and it suffices to write
�VR1(p, t) = ẋ�x0 +Rϕ̇�yS(ϕ), which is the same expression as for the parameterized velocity. �

2.11. Parameterized velocities in a rigid body

The following relationship can be shown between the parameterized velocities in a rigid body,

using [2.41]2 and [2.42]:

Theorem and definition. ∀t, ∀ reference frame R1, ∀ rigid body S defining a reference frame

RS , ∀(q, q̇, t), ∀ particles p, p′ belonging to the rigid body S, with the respective positions

P = P (q, t), P ′ = P ′(q, t) in R0, we have

�VR1(p
′; q, q̇, t) = �VR1(p; q, q̇, t) +

�ΩR1RS
(q, q̇, t) × −−→

PP ′ [2.45]

where �ΩR1S(q, q̇, t), referred to as the parameterized angular velocity of S in R1, is defined

similarly to [2.35]:

�ΩR1RS (q, q̇, t) =

n∑
i=1

�ωi
1S(q, t) q̇i + �ωt

1S(q, t) [2.46]

Parameterized velocity field

The Eulerian notation for parameterized velocities is defined in a manner similar to [1.62]:

Eulerian notation. Let S be a rigid body and A a point such that A ∈ posR0(S, t). We denote

�VR1S(A; q, q̇, t) ≡ the parameterized velocity with respect to R1 of the particle of S
passing through point A at instant t

[2.47]

When using the Eulerian notation, the particle is not known by its name but by its position

at the instant considered. In general, the particle is not the same over time.
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Using the Eulerian notation [2.47], we can define the field of parameterized velocities
VR1S(.; q, q̇, t) of a rigid body S with respect to R1 in a manner that is similar to what is done

for real velocities.

Parameterized velocity fields on a rigid body

In the case of a rigid body, the following result, similar to [1.63], can be proved:

Theorem. ∀t, ∀R1, ∀ rigid body S defining a reference frame RS , ∀(q, q̇, t), ∀A,B ∈
posR0(S, t) ⊂ E,

�VR1S(B; q, q̇, t) = �VR1S(A; q, q̇, t) +
�ΩR1RS (q, q̇, t) × −−→

AB [2.48]

Thus, ∀t, the field of parameterized velocities VR1S(.; q, q̇, t), satisfies the well-known

velocity relationship in a rigid body, characterized by vector �ΩR1RS
(q, q̇, t) defined in [2.46].

Once again, it can be seen that when we calculate the real velocity using formula [1.63], we

always unknowingly go through the parameterized velocity [2.48]. As concerns the additional

operation, which consists of replacing q with q(t) and q̇ with dq
dt (t), once again we drop it from

the final written form here.

2.12. Parameterized velocities in a mechanical system

Field of parameterized velocities

The Eulerian notation of parameterized velocities in a mechanical system is defined in a manner

similar to [2.47] in a rigid body:

Eulerian notation. Let S be a mechanical system and A a point such that A ∈ posR0(S , t). We

denote

�VR1S (A; q, q̇, t) ≡ the parameterized velocity with respect to R1 of the particle of S
passing through point A at instant t

[2.49]

When using this Eulerian notation, the particle is not known by its name but by its position

at the instant considered. In general, the particle is not the same over time.

Using the Eulerian notation [2.49], we can define the field of parameterized velocities
VR1S (.; q, q̇, t) of a mechanical system S with respect to R1 in a manner similar to that defined

for a rigid body.

Summary

In summary, the real and parameterized velocities are calculated using similar formulae and, in

practice, we obtain the same expression for both of them.

This has significant consequences on the parameterized kinetic energy Ec
R1S (q, q̇, t), which

will be defined in [2.54] and which is an essential ingredient of Lagrange’s equations:

(i) the parameterized kinetic energy is also calculated using formulae similar to those used for

classical kinetic energy Ec
R1S (t), which are well known in Newtonian mechanics;

(ii) in practice, we obtain the same expression for both kinetic energies.
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2.13. Lagrange’s kinematic formula

The results established in this section are derived from the parameterized velocity [2.43], which

is defined using hypothesis [2.26], which we reproduce below:

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on q.

Lemma. The parameterized velocity �VR1(q, q̇, t) defined in [2.43] verifies the following

relations, valid for all values taken by (q, q̇, t):

∀i ∈ [1, n],
∂�VR1

∂q̇i
(q, q̇, t) =

∂
−−→
O1P

∂qi
(q, t)

and
∂�VR1

∂qi
(q, q̇, t) =

n∑
j=1

∂

∂qj

(
∂
−−→
O1P

∂qi
(q, t)

)
q̇j +

∂R1

∂t

(
∂
−−→
O1P

∂qi
(q, t)

) [2.50]

where, as in [2.27], O1 is a fixed point in R1.

PROOF. The first equality follows immediately from [2.43]. In order to prove the second

equality, let us rewrite [2.43] by replacing the dumb index i by j and then derive the result with

respect to qi:

∂�VR1

∂qi
(q, q̇, t) =

n∑
j=1

∂

∂qi

(
∂
−−→
O1P

∂qj
(q, t)

)
q̇j +

∂

∂qi

(
∂R1

−−→
O1P

∂t
(q, t)

)

According to hypothesis [2.22], the mapping (q, t) �→ −−→
O1P (q, t) belongs to class C2. It is,

thus, possible to interchange the order of the derivatives on the right-hand side to obtain the

second equality in [2.50]. �

Theorem.

∀i ∈ [1, n], ∀t, ∂�VR1

∂q̇i
(q(t), q̇(t), t) =

∂
−−→
O1P

∂qi
(q(t), t)

and
∂�VR1

∂qi
(q(t), q̇(t), t) =

dR1

dt

(
∂
−−→
O1P

∂qi
(q(t), t)

) [2.51]

PROOF. Let us apply [2.50] with q replaced by a function q(t) and q̇ by dq
dt (t). Relationship

[2.50]1 immediately gives [2.51]1, while [2.50]2 gives

∂�VR1

∂qi
(q(t), q̇(t), t) =

n∑
j=1

∂

∂qj

(
∂
−−→
O1P

∂qi
(q(t), t)

)
q̇j(t) +

∂R1

∂t

(
∂
−−→
O1P

∂qi
(q(t), t)

)

that is, [2.51]2, taking into account hypothesis [2.26]. �

The following result can be derived from [2.51] and it will be used to calculate the VP of the

quantities of acceleration in section 5.9:
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Theorem. Lagrange’s kinematic formula.
The projections of the acceleration vector onto the vectors ∂

−−→
O1P
∂qi

are given by

∀i ∈ [1, n],

�ΓR1(p, t) .
∂
−−→
O1P

∂qi
(q(t), t) =

d

dt

∂
(

1
2
�V 2
R1

(q, q̇, t)
)

∂q̇i
(q(t), q̇(t), t) −

∂
(

1
2
�V 2
R1

(q, q̇, t)
)

∂qi
(q(t), q̇(t), t)

[2.52a]

or, in shortened form:

∀i, �ΓR1 .
∂
−−→
O1P

∂qi
=

d

dt

∂
(

1
2
�V 2
R1

)
∂q̇i

−
∂
(

1
2
�V 2
R1

)
∂qi

[2.52b]

PROOF. We use formula [1.45]:

∀�a,�b, d

dt
(�a.�b) =

dR1�a

dt
. �b+ �a .

dR1
�b

dt

which gives

d

dt

[
�VR1

(p, t).
∂
−−→
O1P

∂qi
(q(t), t)

]
=

[2.51]a

d

dt

[
�VR1

(p, t).
∂�VR1

∂q̇i
(q(t), q̇(t), t)

]
=

dR1

dt
�VR1(p, t)︸ ︷︷ ︸

≡
[1.66]

�ΓR1(p, t)

.
∂
−−→
O1P

∂qi
(q(t), t) + �VR1(p, t).

dR1

dt

∂
−−→
O1P

∂qi
(q(t), t)︸ ︷︷ ︸

=
[2.51]b

∂�VR1

∂qi
(q(t), q̇(t), t)

Hence

�ΓR1
(p, t).

∂
−−→
O1P

∂qi
(q(t), t) =

d

dt

[
�VR1

(p, t).
∂�VR1

∂q̇i
(q(t), q̇(t), t)

]
− �VR1

(p, t).
∂�VR1

∂qi
(q(t), q̇(t), t)

What then remains is rewriting �VR1(p, t) =
�VR1(q(t), q̇(t), t). �

Note. The following important points must be kept in mind:

1. In accordance with definition [2.43], 1
2
�V 2
R1

(q, q̇, t), which appears in [2.52], must be

treated not as a composite function of t, but as a function of 2n+1 independent variables.

The expression for �V 2
R1

is given by [2.43]:

�V 2
R1

(q, q̇, t) =
∑
i

∑
j

∂
−−→
O1P

∂qi

∂
−−→
O1P

∂qj
q̇iq̇j + 2

∑
i

∂
−−→
O1P

∂qi

∂R1

−−→
O1P

∂t
q̇i +

(
∂R1

−−→
O1P

∂t

)2

[2.53]

2. It is, therefore, important to apply the Lagrange kinematic formula [2.52] by carrying out

the following operations in the given order:
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(a) Calculate the derivatives
∂
(

1
2
�V 2
R1

)
∂q̇i

,
∂
(

1
2
�V 2
R1

)
∂qi

with respect to variables q̇i, qi by

considering these variables to be independent.

(b) Next, in the expressions obtained, replace q with q(t) and q̇ with the derivative

q̇(t) = dq(t)
dt .

(c) Finally, calculate the derivative d
dt as the derivative of the composite function of t

thus formed.

The Lagrange kinematic formula shows that knowing just the function 1
2
�V 2
R1

(q, q̇, t) of 2n+1

variables q, q̇, t is enough to know the projections of the acceleration �ΓR1(p, t) on the vectors
∂
−−→
O1P
∂qi

.

– In space (three independent parameters), formula [2.52] completely determines �ΓR1(p, t)
through its three (covariant) components in the local basis at P (t).

– If the trajectory lies, a priori, on a surface (two independent parameters), formula [2.52]

only gives the projection of �ΓR1(p, t) on the tangent plane at P (t).

– If the trajectory is, a priori, part of a curve (one independent parameter), formula [2.52]

only gives the projection of �ΓR1(p, t) on the tangent at P (t).

2.14. Parameterized kinetic energy

For all practical purposes, let us introduce a new function that is called the parameterized kinetic

energy and that resembles the kinetic energy of the system S with respect to R1. This function is

based on the parameterized velocity �VR1(q, q̇, t), which is defined in [2.43] using hypothesis

[2.26]. The hypothesis is reproduced below for reference:

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on q.

Definition. The parameterized kinetic energy of the system S with respect to R1, denoted by

Ec
R1S (q, q̇, t), is defined as

∀(q, q̇, t), Ec
R1S (q, q̇, t) ≡ 1

2

∫
S

�V 2
R1

(q, q̇, t)dm [2.54]

The new function Ec
R1S (q, q̇, t) is special and we must understand it in the same way as the

parameterized velocity �VR1(q, q̇, t) defined in [2.43]:

– Ec
R1S (q, q̇, t) is defined as a function of 2n+1 independent variables q, q̇, t. It is, therefore,

important to treat q, q̇, t in [2.54] as variables that are mutually independent.

To be rigorous, one should replace q̇i with other letters, ri, for example. However, this has

not been done simply to avoid multiplying the number of notations used. We will retain

the notation q̇i, keeping in mind that q̇i here does not signify the time derivative of qi, but

denotes a variable independent of qi.

– The variables q, q̇, t in [2.54] may take arbitrary values, regardless of any motion or

velocity: q is not obtained through t �→ q(t) nor q̇ through t �→ dq
dt (t).

Thus, the parameterized kinetic energy is not necessarily equal to the kinetic energy of

the system S with respect to R1 at t. It is only when we replace q by the function q(t) and
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q̇ by dq
dt (t) that Ec

R1S (q, q̇, t) is equal to the kinetic energy, Ec
R1S (t), of the system S with

respect to R1 at t.

By extending the results in section 2.10.2, it appears that in order to calculate the

parameterized kinetic energy Ec
R1S (q, q̇, t), one has just to go back to the well-known formulae

in Newtonian mechanics for the classical kinetic energy Ec
R1S (t), and adapt these for the

parameterized kinetic energy.

As a matter of fact, when calculating the classical kinetic energy, we always begin by, quite

unknowingly, obtaining the parameterized kinetic energy. Only after obtaining the expression for

Ec
R1S (q, q̇, t) do we deduce the expression for Ec

R1S (t), replacing q with q(t) and q̇ with dq
dt (t).

In practice, this supplementary operation is dropped so as to simplify the mathematical

expressions, with the result that the two kinetic energies have the same expression.

We can get an explicit expression for the parameterized kinetic energy Ec
R1S (q, q̇, t) by means

of [2.53]:

2Ec
R1S (q, q̇, t) =

n∑
i=1

n∑
j=1

aij(q, t) q̇iq̇j + 2

n∑
i=1

bi(q, t) q̇i + c(q, t) [2.55]

with

aij =

∫
S

∂
−−→
O1P

∂qi
.
∂
−−→
O1P

∂qj
dm bi =

∫
S

∂
−−→
O1P

∂qi
.
∂R1

−−→
O1P

∂t
dm c =

∫
S

(
∂R1

−−→
O1P

∂t

)2

dm

[2.56]

Expression [2.55] leads to the following decomposition:

Definition. The parameterized kinetic energy Ec
R1S (q, q̇, t) is decomposed as follows:

Ec
R1S = E

c(2)
R1S + E

c(1)
R1S + E

c(0)
R1S [2.57]

where the functions E
c(2)
R1S , E

c(1)
R1S and E

c(0)
R1S , respectively, are defined as the parts of Ec

R1S which

are of second, first and zero degree, respectively, with respect to the derivatives q̇i:

E
c(2)
R1S ≡ 1

2

n∑
i=1

n∑
j=1

aij(q, t)q̇iq̇j E
c(1)
R1S ≡

n∑
i=1

bi(q, t)q̇i E
c(0)
R1S (q, t) ≡ 1

2
c(q, t) ≥ 0

[2.58]

In other words, E
c(2)
R1S is the part of Ec

R1S , which is quadratic in the q̇i, E
c(1)
R1S is the part that

is linear and E
c(0)
R1S is the part that is independent of the q̇i.

In the case when
∂R1

−−→
O1P

∂t
= �0, we have more precise information on the coefficients aij , bj , c

and the energies E
c(2)
R1S , E

c(1)
R1S , E

c(0)
R1S :

Theorem.
HYPOTHESES:

(i) Let us recall that we have adopted hypothesis [2.26]: the rotation tensor ¯̄Q01 of R1 with

respect to R0 does not depend on q.
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(ii) Let us assume, additionally, that
∂R1

−−→
O1P

∂t
= �0.

Then

∀i ∈ [1, n], bi = 0 , c = 0 ⇒ E
c(0)
R1S (q, t) = E

c(1)
R1S (q, t) = 0 ⇒ Ec

R1S = E
c(2)
R1S

∀i, j ∈ [1, n], aij = aij(q) independent of t ⇒ E
c(2)
R1S = E

c(2)
R1S (q, q̇) independent of t

[2.59]

PROOF. As hypothesis (ii) immediately implies [2.59]1, let us show that aij are independent

of t. As
−−→
O1P = ¯̄Q01.

−−−→
OP (1) (see [2.24]), we have

∂
−−→
O1P

∂qi
.
∂
−−→
O1P

∂qj
=

∂

∂qi

(
¯̄Q01.

−−−→
OP (1)

)
.
∂

∂qj

(
¯̄Q01.

−−−→
OP (1)

)
According to hypothesis (i), we can move ¯̄Q01 = ¯̄Q01(t), independent of q, outside the

derivatives:

∂
−−→
O1P

∂qi
.
∂
−−→
O1P

∂qj
=

∂
−−−→
OP (1)

∂qi

(
¯̄QT
01.

¯̄Q01

)
︸ ︷︷ ︸

¯̄I

.
∂
−−−→
OP (1)

∂qj
=

∂
−−−→
OP (1)

∂qi
.
∂
−−−→
OP (1)

∂qj

Furthermore, taking into account definition [1.41], hypothesis (ii) can be written as

�0 =
∂R1

−−→
O1P

∂t
≡ ¯̄Q01.

∂

∂t

(
¯̄Q10.

−−→
O1P

)
, that is �0 =

∂

∂t

(
¯̄Q10.

−−→
O1P

)
=

∂
−−−→
OP (1)

∂t
,

which signifies that
∂
−−−→
OP (1)

∂t
does not explicitly depend on t. �

In the particular case when we choose R0 = R1, hypothesis (ii) becomes
∂
−−→
O1P

∂t
= �0 and the

result for the coefficients aij is straightforward.
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Efforts

3.1. Forces

Forces can be divided into two categories based on the distance between the body exerting the

force and the particle upon which the force acts:

1. Contact forces are mutually exerted between the particles in contact from two different

bodies. These forces act on the surface of the contacting bodies and prevent the bodies

from penetrating each other.

2. At-a-distance forces. Unlike contact forces, an at-a-distance force arises from an agent

located at a non-zero distance from the particle upon which the force acts. Gravitational

force (thus weight) and magnetic force are examples of at-a-distance forces.

In order to write equations in mechanics, however, we prefer classifying forces according to the

way they are distributed:

1. A distributed force is a force field applied over a set of particles (not necessarily the same

set over time) whose position is a volume, a surface or a curve in space.

Depending on the case, we shall define a volume force, a surface force or a line force. In

all cases, we also define a mass force, for which the unit is N/kg.

2. In the case when a distributed force is applied over a domain that is considered to be

sufficiently small with regard to the problem studied, the distributed force is modeled

as a concentrated force. A concentrated force is a finite force applied on a particle (not

necessarily the same particle over time).

In the case of a discrete system (i.e., a system formed of a finite number of particles), any

force applied to a particle of the system is necessarily a concentrated force.

In order to introduce the notations used for forces, let us consider the forces exerted by a

system S ′ on a system S . These forces may be at-a-distance forces or constraint forces, either

through direct contact or through an intermediate device such as a spring and a connecting rod.

1. Let there be a concentrated force exerted by S ′ on a particle a of S , whose position in R0

is A = posR0(a, t). This force is denoted by �FS ′→S (A, t) , which is to be read as, “the

concentrated force (exerted by S ′ on S) acting at point A and at instant t”. The point A ∈ E

is called the point of application of the force.

Lagrangian Mechanics: An Advanced Analytical Approach,

First Edition. Anh Le van and Rabah Bouzidi. 
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If the variable of time is implied, we write �FS ′→S (A) . If there is no need to specify the

agent S ′ of the force, we write �F→S (A) . Further, if the context is clear enough, such that

we do not need to specify the system S , which is subjected to the force, we write �F (A) .

The point of application A may even be absent if it is clearly identified in the considered

problem.

2. Let there be a mass force exerted by S ′ on S (or a part Se of S). We then write �fS ′→S (A, t)

the value of the force field (or the force distribution) �fS ′→S (t) at a current point A ∈
posR0(Se, t).

As in the case of a concentrated force, we may use abbreviated notations whenever the

context allows this: �fS ′→S (A) , �f→S (A) or �f(A) .

Knowing the mass force �f , it is possible to derive the volume force (respectively, surface,

line force) using ρ�f (respectively, ρΣ �f , ρL �f ), where ρ (respectively, ρΣ, ρL) denotes the

density of the body (respectively, the mass per unit area, length).

EXAMPLES OF NOTATIONS.

1. Let us consider a disc S in contact with a plane S′ (Figure 3.1 (left)). At the contact point

A, there are two forces – one exerted by S′ on S, the other by S on S′ – both of which have

the same point of application A but are, in fact, exerted on two different particles belonging,

respectively, to the two bodies, and they are opposite.

In such a situation, the shortened notation �F (A, t) used to denote the contact force exerted

by S′ on S is ambiguous. It is thus necessary to use the notation �FS′→S(A, t) or �F→S(A, t),
which will clearly indicate that the force acts on S.

Figure 3.1. Examples of forces

2. Let us consider a rigid body S connected to a support S′ by a string (Figure 3.1 (right)).

The attachment point A of the string on S is the position of a particle of S, and the force

exerted on S may be denoted by �Fstring→S(A, t) or �FS′→S(A, t) or, in the abbreviated

form, �F (A, t) without any risk of ambiguity. �
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It is important to keep in mind that a force is applied on the matter (one or more particles) of

a system and that a force is not applied to a point (of space E). Thus, when we say, for example,

that a concentrated force is applied to a point A, it must be understood that the force is applied

to a particle with position A. Similarly, when we say that a volume force is applied on a region,

it is understood that the force is applied to the particles whose positions lie in the interior of this

region.

When adopting the above notations, for instance �FS ′→S (A, t), we have chosen to focus on

the point of application of the force, rather than the particle on which the force is exerted. These

notations are precise enough to write the equations in mechanics, for example to express the

moment field due to a system of forces.

3.2. Torque

Torques can be divided into two categories based on the distance between the body exerting the

torque and the particle upon which the torque acts:

1. Contact torques, which are mutually exerted between the particles in contact that belong to

different bodies. In the case of one rigid body rolling over another, it may prove necessary

to introduce contact torques to model the resistance to the rolling and the pivoting.

2. Action-at-a-distance torques, which, unlike contact torques, arise from an agent situated at

a non-zero distance from the particle upon which the torque acts. A magnetic field entails a

distributed at-a-distance torque within magnetic bodies that have their own magnetization.

In practice, as with forces, we prefer classifying torques according to their distribution mode:

1. A concentrated torque is a finite torque applied to a particle of a continuous system (the

particle is not necessarily the same over time).

2. A distributed torque is a torque field applied over a set of particles whose position

occupies a volume, a surface or a curve in space. Depending on the case, we define either

volume torque, surface torque or line torque and, in all cases, a mass torque, which has the

unit of Nm/kg.

The torque exerted on an isolated particle must be zero. A concentrated torque can only be

applied on a particle belonging to a continuous system. It cannot be applied on an isolated

particle.

The notations used for torques are similar to the notations used for forces. Let us consider the

torques exerted by a system S ′ on a system S . These torques may be at-a-distance or constraint

torques, either through direct contact or through an intermediate organ such as a spiral spring.

1. Let there be a torque exerted by S ′ on a particle a of S , whose position in R0 is A =

posR0(a, t). It is denoted by �CS ′→S (A, t) , which is read as “the concentrated torque

(exerted by S ′ on S) acting at point A and at instant t”. The point A ∈ E is called the point

of application of the torque. Even if the point of application of a torque on a rigid body has

no effect on the mechanics equations, specifying this point in the notations enables one to

clearly identify where the torque is physically applied.

If the time variable can be made implicit, we write �CS ′→S (A) . If there is no need to

specify the agent S ′ of the torque, we can write �CS ′→S (A) . If, moreover, the context is
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clear enough, such that we do not need to specify the system S that is subjected to the

torque, we write �C(A) . The point of application A may even be absent if it is clearly

identified in the considered problem.

2. Let there be a mass torque exerted by S ′ on S (or a part Se of S). We write �cS ′→S (A, t) ,

which is the value of the torque field (or the torque distribution) �cS ′→S (t) at a current point

A ∈ posR0(Se, t).

As in the case of a concentrated torque, we can use abbreviated notations whenever the

context allows this: �cS ′→S (A) , �c→S (A) ou �c(A) .

Knowing the mass couple �c, it is possible to derive the volume torque (respectively,

surface or line torque) using ρ�c (respectively, ρΣ�c, ρL�c).

EXAMPLE OF THE NOTATION. Let us return to the example of the disc S rolling on a plane

in Figure 3.1(a), and add here a concentrated torque that represents the resistance to the rolling

exerted by the plane on the disc (Figure 3.2). The point of application of the torque is the point of

contact A.

Figure 3.2. Example of torque

The contact torque exerted on the disc S can be denoted by �CS′→S(A, t) or �C→S(A, t), if

we judge that there is no need to specify the support S′. Since the contact point A is common to

both rigid bodies S and S′, the abbreviated notation �C(A, t) is not sufficient. �

As with forces, a torque is applied on the matter (one or more particles) of a system and is

not applied to a point (in space E). When we say that a concentrated torque is applied to a point

A, it must be understood that the torque is applied to a particle with position A.

Using the notations adopted earlier, for example �CS ′→S (A, t), we have chosen to highlight the

point of application of the torque, rather than the particle on which the torque is exerted. These

notations are sufficient to write equations in mechanics, for example to express the moment field

due to a system of torques.

3.3. Efforts

Very often, forces and torques are involved concomitantly in a mechanics problem. Consider, for

instance, two rigid bodies connected by a pin joint. The mechanical actions exerted by one body

on the other due to the pin joint are represented by a force and a torque. When establishing the

Lagrange’s equations, we shall have to calculate the virtual power of both forces and torques

alike. Thus, we are led to coin a new term that gathers “force” and “torque” together.
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Definition. Effort is the generic term that designates force or torque. [3.1]

The term “effort” is, therefore, used when we want to indicate either a force or a torque

without specifying which one.

REMARK. In the literature, the term “effort” is given another meaning as follows. By means

of machines such as levers, we can use a smaller force to lift a heavy weight. A load is the

weight that must be lifted or moved by the machines. An effort is defined as the force applied to

the machines for lifting or carrying a load. This meaning is not used in this book. �

We will use the symbol F to denote an effort or a set of efforts.

Let S be a system subjected to efforts exerted by another system S ′. These efforts may be

at-a-distance or constraint efforts, either through direct contact or through an intermediate device

such as a spring and a connecting rod. These efforts are generally made up of concentrated or

distributed forces or torques. The set of efforts exerted by S ′ on S at an instant t is denoted by

FS ′→S (t) , or, more simply, FS ′→S if the time variable can be made implicit.

The notation F→S (t) is used to designate “the set of efforts (or the efforts system) applied
to S at time t”, without specifying the origin of the efforts.

We have now categorized efforts based on their mode of distribution in space: concentrated

efforts, mass efforts (or volume, surface or line efforts). This is a general classification. In the

following section, we will categorize efforts based on two other, more specific, points of view: (i)

efforts external to or internal to a system and (ii) given efforts or constraint efforts.

3.4. External and internal efforts

It has been seen that forces or torques can be classified into contact efforts or at-a-distance efforts,

which can, themselves, be concentrated or distributed. Another possible classification is based on

whether or not the agent of the effort is part of the studied system, and this leads us to distinguish

between external and internal efforts.

3.4.1. External effort

Definition. [3.2]

1. An effort exerted on a system S is said to be external to S if it is exerted by a system that

is outside S , that is, it has no material part that is common to S .

2. The external efforts exerted on a system S are the efforts exerted upon S by the material

universe excepted for S . The external efforts exerted on S at an instant t are denoted by

Fext→S (t) .

The external efforts can be exerted on the whole of S , as is the case in general for at-a-

distance efforts such as gravity. They can also be exerted on one or more subsystems of S and

such a subsystem may be a finite union of particles of S , or a continuous subsystem occupying a

volume, a surface or a line (for example, the contact forces exerted on part of the boundary of S).
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3.4.2. Internal effort

Definition. An effort is said be internal to a system S , if it is exerted by a subsystem S1 of S on

another subsystem S2 of S , exterior to S1. [3.3]

The set of efforts internal to a system S at an instant t is denoted by Fint→S (t) . This set is

not always easy to determine as we will now see.

1. Let us assume that S is formed of a finite number of unconnected bodies Si, i = 1, 2, . . ..
The efforts FSi→Sj exerted by a body Si on another body Sj , or the efforts FSj→Si exerted

by Sj on Si, are efforts internal to S . In this regard, we introduce a new terminology:

Definition. Let us consider two subsystems S1 and S2 of a system S . [3.4]

The union of the efforts FS1→S2 exerted by S1 on S2 and FS2→S1 exerted by S2 on S1 at an

instant t is called the inter-efforts between S1 and S2 at t. It is denoted by FS1↔S2(t) .

In particular, if S is a discrete system, that is a finite union of particles, the set of internal

efforts is simple: this is the set of forces mutually exerted between the particles of the system.

2. Let us assume that S contains certain continuous bodies, that is bodies that are not reduced

to a particle. In this case, the efforts inside each continuous body count among efforts

internal to S . These are not the classical efforts that are known in the mechanics of rigid

bodies. Playing an important role in the mechanics of deformable bodies, they are not

representable by forces or torques but are represented by a more sophisticated entity called

the stress tensor. Fortunately, as will be seen in [5.2], the efforts internal to each body play

no role in rigid bodies and they can be ignored.

To conclude, the set of efforts Fint→S internal to S includes the inter-efforts between the

bodies in S and the efforts internal to each of these bodies. However, as the latter can be

discarded in the framework of the mechanics of rigid bodies, the internal efforts Fint→S to be

taken into account are reduced to the inter-efforts between the rigid bodies of the system.

• The set of efforts F→S (t) applied to S includes all the efforts, internal and external, applied

to S . We thus have the following partition of the set of efforts F→S exerted on the system S :

F→S = Fext→S ∪ Fint→S ∅ = Fext→S ∩ Fint→S [3.5]

3.5. Given efforts and constraint efforts

We now present another manner – different from [3.5] – to divide the set of efforts on S , which is

more commonly used in analytical mechanics. This consists of distinguishing between the given

efforts and the constraint efforts.

Definition. An effort is a given effort if it is, a priori, a function of (qi)1≤i≤N , (q̇i)1≤i≤N and t,
which are considered to be independent variables. [3.6]



Efforts 63

EXAMPLES.

– The weight exerted on any system is a given force.

– Consider a rigid body belonging to a given system and a linear spring connecting the rigid

body to a fixed support external to the system (respectively, another rigid body belonging

to the same system). The force exerted by the spring is a given force as it is a function of

the position of the rigid body (respectively, a function of the (relative) positions of the two

rigid bodies).

– Similarly, the torque exerted by a spiral spring is a given effort. �

Definition. [3.7]

A constraint effort is an effort caused by a mechanical joint. The mechanical joint may be

– an internal connection between two rigid bodies in the same system S ;

– or an external connection between a rigid body in the system S and the exterior.

Although the efforts due to springs are both constraint efforts and given efforts, let us adopt

the following convention to simplify the discussion:

Convention. It is agreed that efforts due to springs are considered as given efforts but not as

constraint efforts. [3.8]

This allows us to state the following assumption, which is verified in practice:

Assumption. [3.9]

– Constraint efforts are not given efforts.

– All efforts that are exerted on the rigid bodies of a system, other than constraint efforts,

are given.

Constraint efforts are, therefore, unknown quantities of the problem akin to the motion of the

system.

It is, thus, possible to partition the set of efforts applied on system S into given efforts and

constraint efforts:

F→S = Fgiven→S ∪ Fconstraint→S ∅ = Fgiven→S ∪ Fconstraint→S [3.10]

As in the previous section, this partition does not include the internal efforts that exist within

each rigid body.

It is seen that constraint efforts often arise from the contact between rigid bodies, while given

efforts are at-a-distance efforts.

Gathering [3.5] and [3.10] leads to the following double equality:

F→S = Fext→S ∪ Fint→S = Fgiven→S ∪ Fconstraint→S [3.11]
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3.6. Moment field

Let us consider a system S which is, in general, made up of a finite union of particles and

continuous subsystems. The efforts F(t) considered on S will always be made up of the following

forces and torques:

– a finite number of concentrated forces: �Fi(t) ≡ �F (Bi, t), applied at the point Bi, i =
1, . . . , I ,

– a mass force �f(t), defined over a subset Se of S ,

– a finite number of concentrated torques: �Cj(t) ≡ �C(B′
j , t), applied at the point B′

j , j =
1, . . . , J ,

– mass torque �c(t), defined over a subset S ′
e of S .

Definition and theorem.
Let us reason at a fixed instant t and consider the field M(t) defined by

M(t) : E → E

A �→
�M(A, t) =

∑
i

−−→
ABi × �Fi(t) +

∫
B∈posR0 (Se,t)

−−→
AB × �f(B, t)dm

+
∑
j

�Cj(t) +

∫
posR0

(S ′
e,t)

�c(B, t)dm

[3.12]

where dm denotes the mass element surrounding the current integration point B; this is equal to

dm = ρdV, ρdS or ρd� depending on whether S occupies a volume, a surface or a line in space.

The above-defined mapping M(t) is called the moment field of the efforts F(t). We also say

that the efforts F(t) generate the moment field M(t).

The vector �M→S (A, t) is called the moment of the efforts F(t) about A at time t.
The resultant force of the efforts F(t), evaluated at instant t, is

�R(t) =
∑
i

�Fi(t) +

∫
posR0

(Se,t)

�f(A, t)dm [3.13]

PROOF. By writing [3.12] for two arbitrary points A and A′ in E and subtracting the obtained

equalities, we get

�M→S (A, t) − �M→S (A
′, t) =

−−→
AA′ ×

(∑
i

�Fi(t) +

∫
posR0

(Se,t)

�f(B, t)dm

)
[3.14]

As a result, the moments about different points are related by

�M→S (A, t) = �M→S (A
′, t) +

−−→
AA′ × �R(t)

where vector �R(t) is defined by [3.13], after relabeling the integration variable B in the

integrand of [3.14] into A. �

• The mass force �f(t) (respectively, the mass torque �c(t)) may be defined over a volume, a

surface, a line or a union of these entities. The integrals in [3.12] and [3.13] may thus be sums of

the volume, surface or line integrals.
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• We assumed mass efforts for the sake of definiteness. However, it is indeed possible to

consider other types of distribution of efforts. If, for instance, there is a volume (or a surface or

line) force, all we need to do is add to the first integral in [3.12] a similar integral with dV (or,

respectively, dS or d�) instead of dm. Once again, the integrals in [3.12] and [3.13] may be sums

of volume, surface or line integrals. In the general case when concentrated, mass, volumetric,

surface and line forces coexist, the resultant force of the efforts, for instance, can be written using

the evident notations:

�R(t) =
∑
i

�Fi(t)+

∫
posR0

(Se,t)

�fm(A, t)dm+

∫
V

�fv(A, t)dV +

∫
S

�fs(A, t)dS+

∫
L

�f �(A, t)d�

The integral is a volume integral over V , a surface integral over S or a curvilinear integral along

L.

• The moments of the efforts about different points are related through the relationship:

∀A,B ∈ E, �M(B, t) = �M(A, t) +
−−→
BA × �R(t) [3.15]

The moment field M(t) is entirely defined by the resultant force �R(t) and the moment of the

efforts �M(A, t) about a point A, i.e. by the six scalar components:

3 for the resultant force

⎧⎨⎩ Rx

Ry

Rz

⎫⎬⎭ or

⎧⎨⎩ X
Y
Z

⎫⎬⎭ and 3 for the moment

⎧⎨⎩Mx(A)
My(A)
Mz(A)

⎫⎬⎭ or

⎧⎨⎩ L(A)
M(A)
N(A)

⎫⎬⎭
The moment field M(t) may be written in the following equivalent form:

M(t) =

[
�R(t)
�M(A, t)

]
A

[3.16]

• In a similar way to what was done for efforts, we write:

◦ MS ′→S (t) the moment field exerted by a system S ′ on another system S at instant t.

◦ Mext→S (t) the moment field of all external efforts exerted on S at instant t.

◦ Mint→S (t) the moment field of all efforts internal to S at instant t.

◦ MS1↔S2(t) the moment field of the inter-efforts between two systems S1 and S2 at t.

◦ Finally, when there is no need to specify the origin of the efforts, we write M→S (t) ,

which designates the moment field of external as well as internal efforts applied to S .

• Let us recall a well-known result in mechanics:

Action and reaction theorem (or the principle of mutual actions). Let S1 and S2 be two

disjoint systems (that is, they have no material part in common). At any instant, the moment

field of the efforts exerted by S1 on S2 and the moment field of the efforts exerted by S2 on S1
are opposite:

∀t, MS1→S2(t) = −MS2→S1(t) [3.17a]
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The above relationship is an equality between moment fields, and is equivalent to equalities

between the resultant force and the moments about any point:

∀t, . �RS1→S2(t) = −�RS2→S1(t)

. ∀A, �MS1→S2(A, t) = − �MS2→S1(A, t)
[3.17b]

In other words, the sum of the moment fields of the inter-efforts between the rigid bodies in S
is zero:

∀t, MS1↔S2(t) = MS1→S2(t) +MS2→S1(t) = 0 [3.18]
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Virtual Kinematics

In this chapter, we will introduce different concepts related to the so-called “virtual kinematics”:

the virtual velocity of a particle, the virtual velocity field of a rigid body or a system, virtual

angular velocity as well as the composition of virtual velocities.

Virtual kinematics is constructed on the model of real kinematics, as can be observed by

comparing this chapter with Chapters 1 and 2. However, the term “virtual” is used as a reminder;

although a virtual quantity is analogous to a real quantity, it can take arbitrary values that have

nothing to do with the real motion of the mechanical system being studied. The concept of

virtual velocity, which is not a physical entity, is the basic ingredient of analytical mechanics.

This concept makes it possible to define the “virtual power”, which we will see in Chapter 5 and

which comes into play in the principle of virtual powers (PVP) [5.1]. The PVP in turn enables us

to establish the Lagrange’s equations.

In the following, use will be made of the parameterization [2.19] to define the position of

any system with respect to the common reference frame R0. We use R1 to designate an arbitrary

reference frame. As in Chapter 2, it is assumed that in the most general case, the rotation tensor
¯̄Q01 of R1 in R0 depends on the position parameters q and t, which is expressed by [2.23]:
¯̄Q01 = ¯̄Q01(q, t).

A virtual quantity will be represented by a symbol that is the same as the symbol for its real

counterpart, but supplemented with an asterisk (∗).

4.1. Virtual derivative of a vector with respect to a reference frame

Consider a vector quantity (e.g. the position vector of a particle) whose observation result with

respect to the common reference frame R0 is a vector �W ∈ E that is a function of q, t (in R0

we write �W rather than �W (0)). The time derivative, with respect to a reference frame R1, of

the vector �W is defined by [1.38]. Taking into account the dependence with respect to (q, t), the

derivative is written as

dR1
�W

dt
= ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇i +

∂R1
�W

∂t
[4.1]

Based on the above model, we introduce the virtual derivative of the vector �W with respect
to a given reference frame R1:
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Definition. The virtual derivative, with respect to a reference frame R1, of a vector �W , denoted

by
d∗R1

�W

dt
or in abbreviated form

d∗1 �W
dt

, is defined as

d∗R1

�W

dt
≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇∗i ∈ E, [4.2]

where (q̇∗1 , . . . , q̇
∗
n) is an arbitrary n-tuple of Rn.

The virtual derivative [4.2] is defined in a manner that is similar to the definition for the real

derivative [4.1]:

– we cancel the term
∂R1

�W

∂t in [4.1],

– and we replace the q̇i with any scalars, denoted by q̇∗i by analogy. However, despite the

notation, q̇∗i is not the time derivative of a certain function q∗i (t) – it is just an arbitrary
quantity.

The virtual derivative in [4.2] is associated with the parameterization [2.19]. However, for the

sake of brevity, this will not be repeated at every instance.

The flowchart in calculating the virtual derivative is the same as in [1.39].

If λ(q, t) is a scalar function of q, t, the virtual derivative of λ is defined in a similar manner:

Definition. The virtual derivative of λ, denoted by
d∗λ
dt

, is, by definition:

d∗λ
dt

≡
n∑

i=1

∂λ

∂qi
q̇∗i [4.3]

Theorem.

d∗R1

�W

dt
= �0, ∀q̇∗i ⇔ ¯̄Q10. �W possibly depends on t, but not on q. [4.4]

A particular case where the right-hand side of the equivalence is true occurs when �W is fixed in
R1 (see definition [1.35]).

PROOF.

d∗R1

�W

dt
= �0, ∀q̇∗i ⇔

n∑
i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇∗i = �0, ∀q̇∗i according to definition [4.2]

⇔ ∀i, ∂

∂qi

(
¯̄Q10. �W

)
= 0 �
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Theorem. ∀ reference frame R1, ∀�U, �V , �W ∈ E, ∀λ ∈ R,

d∗R1

dt
(�U + �V ) =

d∗R1

�U

dt
+

d∗R1

�V

dt
[4.5]

d∗R1

dt
(λ �W ) =

d∗λ
dt

�W + λ
d∗R1

�W

dt
[4.6]

d∗

dt
(�U.�V ) =

d∗R1

�U

dt
.�V + �U.

d∗R1

�V

dt
[4.7]

Note that the index R1 of the reference frame appears on the right-hand side but not on the

left-hand side of [4.7]. Indeed, as �U.�V is a scalar, its virtual derivative, defined by [4.3], does

not depend on any reference frame.

PROOF.

– As equality [4.5] is straightforward, let us prove [4.6]:

d∗R1

dt
(λ �W ) ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.λ �W

)
q̇∗i

where
∂

∂qi

(
¯̄Q10.λ �W

)
=

∂λ

∂qi
¯̄Q10. �W + λ

∂

∂qi

(
¯̄Q10. �W

)
. Hence, using ¯̄Q01.

¯̄Q10 = ¯̄I:

d∗R1

dt
(λ �W ) ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.λ �W

)
q̇∗i =

n∑
i=1

∂λ

∂qi
q̇∗i �W + λ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇∗i

– let us now prove [4.7]:

d∗

dt
(�U.�V ) =

n∑
i=1

∂

∂qi

(
�U.�V

)
q̇∗i according to definition [4.3]

=
n∑

i=1

∂

∂qi

(
¯̄Q10.�U. ¯̄Q10.�V

)
q̇∗i knowing that �U.�V =

(
¯̄Q10.�U

)
.
(
¯̄Q10.�V

)
=

n∑
i=1

∂

∂qi

(
¯̄Q10.�U

)
q̇∗i .
(
¯̄Q10.�V

)
+
(
¯̄Q10.�U

)
.

n∑
i=1

∂

∂qi

(
¯̄Q10.�V

)
q̇∗i

= �V . ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.�U

)
q̇∗i + �U. ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.�V

)
q̇∗i

using �a.
(
¯̄Q10.�b

)
=
(
¯̄Q01.�a

)
.�b

Note that all derivatives on the right-hand sides of the above equalities are standard derivatives

in E. �

Theorem. Let �W = α�x1 + β�y1 + γ�z1 ∈ E, where b1 = (�x1, �y1, �z1) is a vector basis of E,

fixed in R1. Then

d∗R1

�W

dt
=

d∗α
dt

�x1 +
d∗β
dt

�y1 +
d∗γ
dt

�z1 [4.8]

PROOF. Apply relationships [4.5] and [4.6]. �
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Dependence of the virtual derivative with respect to the reference frame

Definition [4.2] clearly shows that the virtual derivative
d∗R1

�W

dt
with respect to a reference frame

R1 depends a priori on R1, which justifies the index R1 in the notation. Although the

multiplication of the vectors
∂

∂qi

(
¯̄Q10. �W

)
by the arbitrary q̇∗i means that the value of the

virtual derivative becomes arbitrary and independent of the reference frame, the analytical
expression [4.2] of the virtual derivative does indeed depend on the reference frame R1. This

point will be illustrated by the examples in later sections.

However, under hypothesis [2.26], which was introduced for real velocities, we have the

following property of independence:

Theorem.
HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

Then, the virtual derivative [4.2] does not depend on R1 and is written without the reference

frame index:

d∗ �W
dt

=
n∑

i=1

∂ �W

∂qi
q̇∗i [4.9]

PROOF. Straightforward. If ¯̄Q01 does not depend on q, then this is the same for ¯̄Q10 = ¯̄Q−1
01

and it can be taken out of the derivative in [4.2]:

d∗R1

�W

dt
≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇∗i = ¯̄Q01.

¯̄Q10︸ ︷︷ ︸
=¯̄I

.
n∑

i=1

∂ �W

∂qi
q̇∗i �

4.2. Virtual velocity of a particle

Definition. The virtual velocity (VV) of the particle p, with respect to R1 and at an instant t,
associated with (or resulting from) the parameterization [2.19], denoted by �V ∗

R1
(p), is defined

as

�V ∗
R1

(p) ≡ d∗R1

−−→
O1P

dt
≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇∗i [4.10]

where O1 is a fixed point in R1, the position vector
−−→
O1P (q, t) is given by [2.21] and (q̇∗1 , . . . , q̇

∗
n)

is an arbitrary n-tuple of Rn.

The virtual velocity is associated with the parameterization [2.19], but this will not be

repeated systematically, for brevity.

REMARK. In definition [4.10], (q̇∗1 , . . . , q̇
∗
n) is an arbitrary n-tuple in Rn.

– To emphasize the arbitrary nature of this n-tuple, we can say that [4.10] gives (the

expression of) the most general VV of the particle p or, more briefly, the VV.

– If we work with a given n-tuple (q̇∗1 , . . . , q̇
∗
n), we will talk of a VV.
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If we are looking at values, we can talk about the virtual velocities or a virtual velocity:

– when (q̇∗1 , . . . , q̇
∗
n) is given all the values in Rn, this generates the set of all virtual

velocities,

– each value taken by the n-tuple (q̇∗1 , . . . , q̇
∗
n) corresponds to one virtual velocity of the

particle p.

In this book, we will work with one of the above meanings, but we will not always distinguish

between them in a systematic manner. We will use “the virtual velocity” or “a virtual velocity”

interchangeably, knowing that the specific meaning is provided by the context. �

Using assumption [2.26], which was introduced for the real velocities, we can immediately

transform [4.10] into another, simpler expression:

Theorem.
HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

Then

�V ∗
R1

(p) =

n∑
i=1

∂
−−→
O1P

∂qi
q̇∗i [4.11]

Analogy between real velocity and virtual velocity

The term virtual velocity is used to highlight the analogy with real velocity:

[4.10] is analogous to [2.25]: �VR1(p, t) =
¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇i +

∂R1

−−→
O1P

∂t

[4.11] is analogous to [2.27]: �VR1(p, t) =
n∑

i=1

∂
−−→
O1P

∂qi
q̇i +

∂R1

−−→
O1P

∂t

However, apart from this analogy, the VV has absolutely no connection with the real velocity.

The velocity of a particle p with respect to a reference frame R1 at an instant t is a well-defined

vector �VR1(p, t), while the VV �V ∗
R1

(p) may be an arbitrary vector corresponding to an arbitrary

n-tuple (q̇∗1 , . . . , q̇
∗
n).

The real velocity is not always a particular virtual velocity. The real velocity is an element of

the set of virtual velocities only if
∂R1

−−→
O1P

∂t
= ¯̄Q01.

∂
−−−→
OP (1)

∂t
= �0, i.e., if

∂
−−−→
OP (1)

∂t
= �0.

With regard to the physical units, if the q̇∗i have the same units as the q̇i, then the virtual

velocity has the same unit as a real velocity.

Moving from the real velocity to the virtual velocity

With the help of the above-mentioned analogy, it can be seen how to obtain the VV when we

know the analytical expression for the real velocity: [4.12]

– from the expression for the real velocity, we remove the term
∂R1

−−→
O1P

∂t
, that is, we remove

all terms that are not coefficients of a q̇i,

– and we replace the q̇i by arbitrary scalars, which have been denoted by q̇∗i .
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Example and counter-example

Theorem [4.11] requires the hypothesis that ¯̄Q01 depends only on time, not on q. This hypothesis

is often verified in practice; however, attention should be drawn on the fact that there are some

cases where it is not verified. In order to see the importance of this hypothesis, let us return to

the example presented in section 2.6 and calculate the virtual velocities �V ∗
R1

(a) and �V ∗
R0

(a) for

the particle a, using two different parameterizations, ibid, of which one verifies hypothesis [2.26]

and the other does not.

Recall that for both parameterizations considered, the primitive parameters of the problem are

the same: the four coordinates X,Y, x, y and the two angles ϕ, θ.

1. First parameterization: The constraint equation ϕ = ωt is classified as a complementary

equation, with the result that the retained parameters are q = (X,Y, x, y, ϕ, θ). The position

of the particle a in R0 and at instant t is A = A(X,Y, x, y, ϕ).

(a) Using relationship [4.10] with the point O1, which is fixed in R1, being taken equal

to O and
−−→
O1A = x�x1(ϕ) + y�y1(ϕ), we obtain the virtual velocity with respect to R1

for the particle a:
�V ∗
R1

(a) = ẋ∗�x1 + ẏ∗�y1 [4.13]

The same result is obtained if we start from the real velocity [2.29] and transform this

into the virtual velocity using the procedure described earlier.

On the other hand, as the rotation tensor ¯̄Q01 depends on ϕ, hypothesis [2.26] is not

satisfied and we cannot use [4.11]. Indeed, relationship [4.11] gives

�V ∗
R1

(a) =
n∑

i=1

∂
−−→
O1A

∂qi
q̇∗i =

∂
−−→
O1A

∂x︸ ︷︷ ︸
�x1

ẋ∗ +
∂
−−→
O1A

∂y︸ ︷︷ ︸
�y1

ẏ∗ +
∂
−−→
O1A

∂ϕ︸ ︷︷ ︸
x�y1−y�x1

ϕ̇∗

= (ẋ∗ − yϕ̇∗)�x1 + (ẏ∗ + xϕ̇∗)�y1 : which is false.

(b) For the sake of comparison, let us calculate the virtual velocity with respect to R0:

�V ∗
R0

(a) ≡ ¯̄Q00.

n∑
i=1

∂

∂qi

(
¯̄Q00.

−→
OA
)
q̇∗i =

¯̄Q00=
¯̄I

n∑
i=1

∂
−→
OA

∂qi
q̇∗i [4.14]

where
−→
OA = X�e1 + Y �e2 + x�x1(ϕ) + y�y1(ϕ). We obtain

�V ∗
R0

(a) = Ẋ∗�e1 + Ẏ ∗�e2 + (ẋ∗ − yϕ̇∗)�x1 + (ẏ∗ + xϕ̇∗)�y1. [4.15]

2. Second parameterization: In this parameterization, we decide to classify ϕ = ωt as a

primitive and not as a complementary equation and we will see the differences that result

from this. The retained parameters are, thus, q = (X,Y, x, y, θ) and t, and the dependence

on t occurs via ϕ = ωt. The position of the particle a, in R0 and at instant t, is A =
A(X,Y, x, y, t).

(a) Relationship [4.10], this time with
−−→
O1A = x�x1(t) + y�y1(t), and using the same

calculation as in the first parameterization, leads to

�V ∗
R1

(a) = ẋ∗�x1 + ẏ∗�y1 [4.16]

which is identical to [4.13], provided that, of course, one makes �x1 = �x1(ϕ(t)),
�y1 = �y1(ϕ(t)) in [4.13], and �x1 = �x1(t), �y1 = �y1(t) in [4.16].
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As the rotation tensor ¯̄Q01 does not depend on q here, we can use [4.11]:

�V ∗
R1

(a) =
n∑

i=1

∂
−−→
O1A

∂qi
q̇i =

∂
−−→
O1A

∂x︸ ︷︷ ︸
�x1

ẋ∗ +
∂
−−→
O1A

∂y︸ ︷︷ ︸
�y1

ẏ∗

We thus arrive once again at [4.16].

(b) The calculation of the virtual velocity with respect to R0 is carried out in the same

way. Relationship [4.14], this time with
−→
OA = X�e1 + Y �e2 + x�x1(t) + y�y1(t), leads

to
�V ∗
R0

(a) = Ẋ∗�e1 + Ẏ ∗�e2 + ẋ∗�x1 + ẏ∗�y1 [4.17]

This expression is different from [4.15], which proves that the virtual velocity

depends, a priori, on the chosen parameterization. �

Dependence of the virtual velocity on time

According to [4.10], the VV of a particle depends, a priori, on t via
−−→
O1P (q(t), t) and

¯̄Q01(q(t), t) = ¯̄Q−1
10 (q(t), t), such that, strictly speaking, it should be denoted by �V ∗

R1
(p, t).

Expression [4.11] leads to the same observation: it can be seen that the VV of a particle depends,

a priori, on t via
−−→
O1P (q(t), t) and we should once again write �V ∗

R1
(p, t). We can, further, verify

the dependence on t through the above example.

That being said, however, the VV is not, in general, a continuous time function as it is the

product of functions of ¯̄Q01 and
−−→
O1P , which are continuous in time, with the arbitrary quantities

q̇∗i , which may be discontinuous in time.

This discontinuity in time does not pose any problems for the theory. As will be seen in

Chapter 6, in order to establish the Lagrange’s equations, the q̇∗i must be arbitrary at every instant
t, but there is no need for it to be continuous in time, unlike the real q̇i. The virtual velocity field

(VVF) at one instant t may have no continuity with the VVF at the next instant.

To summarize, even if the VV does indeed depend on t, this dependence is discontinuous and

has no effect on the theory. This is why we decide to make implicit the argument t in �V ∗
R1

(p, t) to

simply write �V ∗
R1

(p).

Dependence of the virtual velocity on the reference frame

The expressions [4.13]–[4.17] obtained in the above example clearly show that the virtual velocity

depends, a priori, on the reference frame with respect to which it is calculated. This justifies the

index R1 in the notation �V ∗
R1

(p) in relationships [4.10] and [4.11].

One should distinguish between the expression �V ∗
R1

(p) and its value:

1. The expression [4.10] for �V ∗
R1

(p) does indeed depend on the reference frame R1 (compare,

e.g., [4.13] and [4.15]).

2. Regarding the value of �V ∗
R1

(p), the case is different. As the q̇∗i in [4.10] are arbitrary, when

the q̇∗i are given all the values in the set of real numbers R, the virtual velocity vector spans

the whole vector space E. Thus, for example:

– when ẋ∗, ẏ∗ in [4.13] take all the values in R, the vector �V ∗
R1

(a) takes all the values

in E,

– when Ẋ∗, Ẏ ∗, ẋ∗, ẏ∗, ϕ̇∗ in [4.15] take all values in R, the vector �V ∗
R0

(a) also takes

all values in E.
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As we always obtain the same set E, regardless of the reference frame being considered,

we say that the value of �V ∗
R1

(p) is independent of the reference frame R1.

It is important to retain the index R1 in the notation �V ∗
R1

(p) for the virtual velocity. As will

be seen later, this allows one to write the composition formula for virtual velocities similar to the

formula for real velocities, for example [4.49]: V ∗
R1S

= V ∗
R1S(R2)

+ V ∗
R2S

.

Below is a case when the virtual velocity does not depend on the reference frame with respect

to which we calculate the virtual velocity:

Theorem. The virtual velocity �V ∗
R1

(p) has the same expression for all the reference frames R1

that verify the hypothesis [2.33], which is a little stronger than [2.26]:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 do not depend on q.

The expression for the virtual velocity is similar to [4.11] but no longer depends on R1. The

virtual velocity will be written without the reference frame index and without the point O1:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i [4.18]

where

−→
∂P

∂qi
designates

∂
−−→
O′P
∂qi

, O′ being any point independent of q.

PROOF. As it is assumed that the rotation tensor ¯̄Q01 does not depend on q, the virtual velocity

is given by [4.11]: �V ∗
R1

(p) =
n∑

i=1

∂
−−→
O1P

∂qi
q̇∗i .

Let us write
−−→
O1P =

−−→
O′P −−−−→

O′O1, where O′ is any point other than O1 and independent of q.

We thus have
∂
−−→
O1P

∂qi
=

∂
−−→
O′P
∂qi

− ∂
−−−→
O′O1

∂qi
where

∂
−−−→
O′O1

∂qi
= �0 as the points O1, O

′ do not depend

on q. We can, thus, rewrite [4.11] in the form:

�V ∗
R1

(p) =

n∑
i=1

∂
−−→
O′P
∂qi

q̇∗i

The virtual velocity in a reference frame that is different from R1 has the same expression, as

the vector
−−→
O′P on the right-hand side remains the same. �

EXAMPLE. In the example presented earlier, if we use the second parameterization assuming

that the point O1 is fixed in R0, the hypothesis from [4.18] is verified. The coordinates X,Y are

thus constant and the retained parameters are reduced to (x, y, θ) and
−→
OA = x�x1(t) + y�y1(t). In

place of [4.17], we obtain: �V ∗
R0

(a) = ẋ∗�x1 + ẏ∗�y1.

In comparison to [4.16], we see that

�V ∗
R1

(a) = �V ∗
R0

(a) = ẋ∗�x1 + ẏ∗�y1

The expression for the virtual velocity is the same in both reference frames R1 and R0. It

depends on R1 inasmuch as it contains the vectors �x1, �y1, but it does not depend on R1 in the

sense of the above theorem statement. In this instance, when we replace R1 with R0 we arrive at

the same expression for virtual velocity. �



Virtual Kinematics 75

4.3. Virtual angular velocity

We will bring into play a reference frame R2 other than R1 and as in section 2.7 it is assumed that

the position of the rigid body S(R2) defined by R2 depends on (q, t) (which is true in practice

because, in the applications of the theory, R2 is defined by a rigid body of the system studied).

Theorem and definition. Composite virtual derivative of a vector. Consider a vector quantity

whose observation result with respect to the common reference R0 is vector �W ∈ E, a function

of q, t. We have:

d∗1 �W
dt

=
d∗2 �W
dt

+ �Ω∗
12 × �W with �Ω∗

12 ≡ �Ω∗
R1R2

≡ 1

2

3∑
j=1

�bj × d∗R1

�bj

dt
, [4.19]

where (�b1,�b2,�b3) is an orthonormal basis of E, fixed in R2 (Figure 1.8. The vector �Ω∗
12 is

called the virtual angular velocity of R2 with respect to R1(at instant t and associated with
parameterization [2.19]).

The skew-symmetric tensor ¯̄Ω∗
12 associated with �Ω∗

12 is called the virtual angular velocity
tensor of R2 with respect to R1 (at t and associated with parameterization [2.19]). It is related

to the rotation tensors ¯̄Q01,
¯̄Q02 and ¯̄Q12 through

¯̄Ω∗
12 = ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20 [4.20]

The virtual angular velocity is associated with parameterization [2.19], but this will not be

repeated systematically, for brevity.

PROOF.

• Proof of [4.19]. By denoting �W =
3∑

j=1

βj
�bj , we have, according to [4.5] and [4.6]

d∗1 �W
dt

=
3∑

j=1

d∗1
dt

(βj
�bj) =

3∑
j=1

(
d∗βj

dt
�bj + βj

d∗1�bj
dt

)

The term

3∑
j=1

βj
d∗1�bj
dt

can be transformed as follows:

3∑
j=1

βj
d∗1�bj
dt

=

3∑
j=1

(
�W.�bj

) d∗1�bj
dt

= �W × (

3∑
j=1

d∗1�bj
dt

×�bj) +

3∑
j=1

(
�W.

d∗1�bj
dt

)
�bj

where according to [4.7], �W.
d∗1�bj
dt

=
d∗( �W.�bj)

dt
−�bj

d∗1 �W
dt

. Hence

3∑
j=1

βj
d∗1�bj
dt

= �W ×
3∑

j=1

(
d∗1�bj
dt

×�bj

)
+

3∑
j=1

d∗βj

dt
�bj −

3∑
j=1

(
�bj

d∗1 �W
dt

)
�bj
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On the one hand, according to [4.8],

3∑
j=1

d∗βj

dt
�bj =

d∗2 �W
dt

, on the other hand, as the basis

(�b1,�b2,�b3) is orthonormal, we have

3∑
j=1

(
�bj

d∗1 �W
dt

)
�bj =

d∗1 �W
dt

, hence [4.19].

• Proof of [4.20]. Let us start from definition [4.2] for the virtual derivative of a vector

with respect to a reference frame and let us use [1.23]a to write ¯̄Q01 = ¯̄Q02.
¯̄Q21,

¯̄Q10 =
¯̄Q12.

¯̄Q20:

d∗1 �W
dt

≡ ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10. �W

)
q̇∗i

= ¯̄Q02
¯̄Q21.

n∑
i=1

∂

∂qi

(
¯̄Q12

¯̄Q20. �W
)
q̇∗i (ordinary derivatives with respect to qi)

= ¯̄Q02
¯̄Q21.

n∑
i=1

(
∂ ¯̄Q12

∂qi
. ¯̄Q20. �W + ¯̄Q12.

∂

∂qi
( ¯̄Q20. �W )

)
q̇∗i

= ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20. �W + ¯̄Q02.

n∑
i=1

∂

∂qi
( ¯̄Q20

�W )q̇∗i

= ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20. �W +

d∗2 �W
dt

that is

d∗1 �W
dt

=
d∗2 �W
dt

+ ¯̄Ω∗
12. �W by denoting ¯̄Ω∗

12 ≡ ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20

What remains is to verify whether

¯̄Ω∗
12 ≡ ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20 = ¯̄Q02

¯̄Q21.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20

is indeed skew-symmetric. By differentiating the identity ¯̄Q21
¯̄Q12 = ¯̄I with respect to qi,

we find
∂ ¯̄Q21

∂qi
¯̄Q12 +

¯̄Q21
∂ ¯̄Q12

∂qi
= ¯̄0, hence

∂ ¯̄Q21

∂qi
¯̄Q12 = − ¯̄Q21

∂ ¯̄Q12

∂qi
=( ¯̄Q21

∂ ¯̄Q12

∂qi
)T , i.e.

¯̄Q21
∂ ¯̄Q12

∂qi
is skew-symmetric. From this, it follows that the tensor ¯̄Ω∗

12 is skew-symmetric,

by noting that if a tensor ¯̄A is skew-symmetric, then ∀ ¯̄B, the tensor ¯̄BT ¯̄A ¯̄B is also

skew-symmetric (here, ¯̄A = ¯̄Q21
∂ ¯̄Q12

∂qi
and ¯̄B = ¯̄Q20). �

To get an explicit expression for �Ω∗
12 in [4.19], let us write [�x2, �y2, �z2] instead of [�b1,�b2,�b3].

We then have

�Ω∗
12 =

1

2

(
�x2 × d∗1�x2

dt
+ �y2 × d∗1�y2

dt
+ �z2 × d∗1�z2

dt

)
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Theorem. The virtual angular velocity vector �Ω∗
12 of R2 with respect to R1 can be written as a

linear form of the q̇∗i :

�Ω∗
12 =

n∑
i=1

�ωi
12(q, t)q̇

∗
i [4.21]

where the �ωi
12 are the partial angular velocities of R2 with respect to R1 defined by [2.36] (these

are the real velocities related to the real angular velocity �Ω12).

PROOF. According to definition [4.2], we have

d∗1�bj
dt

≡ ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.�bj

)
q̇∗i

The proof is achieved by inserting this expression into definition [4.19] for �Ω∗
12. �

As was seen in section 2.7, some vectors �ωi
12 in [4.21] may be zero.

Analogy between real angular velocity and virtual angular velocity

The term virtual angular velocity in [4.19] is used to emphasize the analogy with the real angular

velocity [1.48]. However, apart from this analogy, the virtual angular velocity has no connection

with the real angular velocity, inasmuch as the q̇∗i in [4.21] are arbitrary quantities.

From real angular velocity to virtual angular velocity [4.22]

Expressions [2.35] and [4.21] clearly demonstrate how to obtain the virtual angular velocity �Ω∗
12

when the analytical expression for the real angular velocity �Ω12 is known:

– in the expression [2.35] for the real angular velocity, the term �ωt
12 (i.e. all terms that are not

coefficients of a q̇i) is deleted

– and the q̇i are replaced by arbitrary scalars, denoted by q̇∗i .

This procedure is analogous to the procedure used to obtain �V ∗
12 from �V12.

Moving from the real angular velocity tensor ¯̄Ω12 [1.49] to the virtual angular velocity tensor
¯̄Ω∗
12 [4.20] is done in a similar manner:

¯̄Ω12 = ¯̄Q01.
d ¯̄Q12

dt
.

¯̄Q20 = ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇i +

∂ ¯̄Q12

∂t

)
. ¯̄Q20 � ¯̄Ω∗

12 = ¯̄Q01.

(
n∑

i=1

∂ ¯̄Q12

∂qi
q̇∗i

)
. ¯̄Q20

EXAMPLES.

1. Assume that the retained parameters in the problem are the Euler angles ψ, θ, ϕ defined

in [2.3]. The angular velocity of the reference frame RS defined by the rigid body S with

respect to R0 is
�ΩR0RS

= ψ̇�z0 + θ̇�n+ ϕ̇�zS

From this, we deduce that the virtual angular velocity of RS with respect to R0 is

�Ω∗
R0RS

= ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�zS [4.23]
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2. Now assume that the primitive parameters of the problem are the Euler angles ψ, θ, ϕ and

that there exists a primitive constraint equation that is written as ϕ = ωt, where ω is a

given constant. The retained parameters are, therefore, ψ, θ, t, with the dependence on time

t occurring via ϕ = ωt.

In this case, the angular velocity of the reference frame RS defined by the rigid body S
with respect to R0 is

�ΩR0RS = ψ̇�z0 + θ̇�n+ ω�zS

From this, it can be derived that the virtual angular velocity of RS with respect to R0 is

�Ω∗
R0RS

= ψ̇∗�z0 + θ̇∗�n

3. Let us return to the example of the rotating bar S considered in section 2.5 and calculate

the virtual angular velocities of the bar using two different parameterizations ibid.

Recall that the primitive parameters of the bar are the same for the two parameterizations

under consideration: the four coordinates X,Y, x, y and the two angles ϕ, θ.

(a) First parameterization: Let us classify the constraint equation ϕ = ωt as a

complementary equation, such that the retained parameters for the bar are

q = (X,Y, x, y, ϕ, θ).

i. The angular velocity of the reference frame RS defined by the bar S with respect

to R1 is �ΩR1RS
= θ̇�z0. There follows the virtual angular velocity of RS with

respect to R1:

�Ω∗
R1RS

= θ̇∗�z0 [4.24]

ii. For comparison’s sake, let us calculate the virtual angular velocity with respect

to R0. From �ΩR0RS
= (ϕ̇ + θ̇)�z0, one finds that the virtual angular velocity of

RS in R0 is

�Ω∗
R0RS

= (ϕ̇∗ + θ̇∗)�z0 [4.25]

(b) Second parameterization: In this parameterization, the constraint equation ϕ = ωt is

classified as a primitive and not as a complementary equation. The retained parameters

are thus q = (X,Y, x, y, θ) and t, with the dependence on t occurring via ϕ = ωt.

i. The angular velocity of the reference frame RS defined by the bar S with respect

to R1 is the same as in the first parameterization: �ΩR1RS
= θ̇�z0. Therefore, the

same goes for the virtual angular velocity:

�Ω∗
R1RS

= θ̇∗�z0 [4.26]

ii. To calculate the virtual angular velocity with respect to R0, let us start from the

real angular velocity, which here is written as �ΩR0RS = (ω + θ̇)�z0. From this, it

is found that the virtual angular velocity of RS with respect to R0 is

�Ω∗
R0RS

= θ̇∗�z0 [4.27]

This expression is different from the expression that resulted from the first

parameterization, which proves that the virtual angular velocity depends, a
priori, on the chosen parameterization. �
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Dependence of the virtual angular velocity on time

According to [4.19], the virtual angular velocity �Ω∗
12 contains the vectors

d∗R1

�bj

dt
≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.�bj

)
q̇∗i [4.28]

where�bj and ¯̄Q01 = ¯̄Q−1
10 depend, a priori, on time. Thus, �Ω∗

12 depends a priori on t and should be

denoted by �Ω∗
12(t). If we examine [4.20], it can be seen that the virtual angular velocity depends,

a priori, on t via ¯̄Q01(t),
¯̄Q12(t),

¯̄Q20(t) and we should once again write �Ω∗
12(t).

Nonetheless, similar to what happens to virtual velocities, it is seen that even if the virtual

angular velocity does depend on t, this dependence has no effect on the theory. This is why we

decide to drop the argument t in �Ω∗
12(t) and simply write �Ω∗

12.

Dependence of the virtual angular velocity on the reference frame

Expressions [4.24]–[4.27] obtained in the above example clearly show that the virtual angular

velocity �Ω∗
R1R2

of R2 with respect to R1, defined in [4.19], depends, a priori, on the two reference

frames R1, R2.

As concerns the dependence on R1, it is possible to make the same observations as for

the virtual velocities, namely that one should distinguish between the expression for the virtual

angular velocity �Ω∗
R1R2

and its value:

1. The expression [4.19] for �Ω∗
12 does indeed depend on the reference frame R1 (for example,

compare [4.24] and [4.25]).

2. Things are different for the value of �Ω∗
12. When we give the q̇∗i all the values in the set of

real numbers R (recall that the q̇∗i in [4.21] or [4.28] are arbitrary), it may be that the set of

values taken by the vector �Ω∗
R1R2

is independent of R1. For example:

– when θ̇∗ in [4.24] takes all the values in R, the vector �Ω∗
R1R2

spans the entire vector

axis R�z0,

– when θ̇∗, ϕ̇∗ in [4.25] take all the values in R, the vector �Ω∗
R1R2

spans the same vector

axis.

To express this fact, we say that the value of �Ω∗
R1R2

may be independent of the reference

frame R1.

It is important to retain the index R1 in the notation �Ω∗
R1R2

for the virtual velocity. As we will

see later on, this enables one to write the composition formulae of the virtual angular velocities

analogous to those for the real angular velocities, for example [4.45]: �Ω∗
13 = �Ω∗

12 +
�Ω∗
23.

Here are the cases where the expression for the virtual angular velocity does not depend on

the reference frame with respect to which the virtual angular velocity is calculated:

Theorem.

1. HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend

on q.

Then, the virtual angular velocity �Ω∗
12 is written as

�Ω∗
12 =

1

2

3∑
j=1

�bj ×
(

n∑
i=1

∂�bj
∂qi

q̇∗i

)
[4.29]
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The virtual angular velocity �Ω∗
12 no longer depends on R1, in the sense that if R1 is

replaced by any other reference frame, we still arrive at the same expression for the virtual

angular velocity. It depends only on R2.

2. HYPOTHESIS: The rotation tensor ¯̄Q12 does not depend on q.

Then
�Ω∗
12 = �0 [4.30]

FIRST PROOF OF [4.30].

1. Let us assume that ¯̄Q01 does not depend on q. Relationship [4.28] becomes

d∗R1

�bj

dt
= ¯̄Q01.

¯̄Q10︸ ︷︷ ︸
=¯̄I

.

n∑
i=1

∂�bj
∂qi

q̇∗i ,

which is the same relationship that would be obtained by applying [4.9]. By inserting this

relationship into [4.19], we obtain [4.29].

2. If ¯̄Q12 does not depend on q, relationship [4.20] immediately gives ¯̄Ω∗
12 = ¯̄0, thus �Ω∗

12 = �0.

SECOND PROOF OF [4.30] (a longer proof). We can also prove �Ω∗
12 = �0 by starting from the

above-obtained [4.29], provided that we also adopt hypothesis [2.26]. As the rotation tensors ¯̄Q01

and ¯̄Q12 do not depend on q, it is the same for the tensor ¯̄Q02 = ¯̄Q01.
¯̄Q12.

As ¯̄Q02 does not depend on q, relationship [4.29] can be transformed as follows:

�Ω∗
12 =

1

2

3∑
j=1

�bj ×
(

¯̄Q02.
n∑

i=1

∂

∂qi
( ¯̄Q20.�bj)q̇

∗
i

)

As the vectors �bj are fixed in R2, the vectors ¯̄Q20
�bj are constant vectors of E (see definition

[1.35]). Consequently,
∂

∂qi
( ¯̄Q20.�bj) = �0. �

EXAMPLE. In the preceding example, if we use the second parameterization, hypothesis [4.29]

is verified. Relationships [4.26] and [4.27] show that the expression for the virtual angular velocity

is the same in both reference frames R1 and R0. �

The virtual derivation with respect to R1 of a vector constant in R2

The following theorem is an important particular case of [4.19]:

Theorem. The virtual derivation formula with respect to R1 of a vector constant in R2.

∀R1, R2, ∀ �W ∈ E constant in R2,
d∗1 �W
dt

= �Ω∗
12 × �W [4.31]

PROOF. We have just to apply [4.19] observing that, since �W is constant in R2, we have

d∗2 �W
dt

= �0 according to [4.4]. �
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4.4. Virtual velocities in a rigid body

The results given in this section are valid for a rigid body.

Theorem. ∀t, ∀R1, ∀ rigid body S defining a reference frame RS , ∀ particles p, p′ belonging

to the rigid body S, whose respective positions in R0 are P , P ′, the VV [4.10] verifies the

following relationship

�V ∗
R1

(p′) = �V ∗
R1

(p) + �Ω∗
R1RS

× −−→
PP ′ [4.32]

where the virtual angular velocity vector �Ω∗
R1RS

of RS with respect to R1 is given by [4.19] or

[4.21].

PROOF. The reasoning is similar to that used in [1.61] for real velocities. Let O1 be a point of

E fixed in R1. We have

�V ∗
R1

(p′) − �V ∗
R1

(p) = ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.(

−−−→
O1P

′ − −−→
O1P︸ ︷︷ ︸

−−→
PP ′

)
)
q̇∗i according to definition [4.10]

=
d∗R1

−−→
PP ′

dt
according to definition [4.2]

As the particles p, p′ belong to the rigid body S, their respective positions in RS , P (S) and

P ′(S)
, are fixed points in E over time. Thus, ∀t,

−−−−−−→
P (S)P ′(S)

is a constant vector of E. Further,

according to [1.22], we have
−−−−−−→
P (S)P ′(S)

= ¯̄QS0.
−−→
PP ′ and, thus, ¯̄QS0.

−−→
PP ′ is a constant vector in

E. In other words, the vector
−−→
PP ′ is constant in RS according to definition [1.35].

We thus have
d∗R1

−−→
PP ′

dt
= �Ω∗

R1RS
× −−→
PP ′ by applying [4.31]. �

4.4.1. The virtual velocity field (VVF) associated with a parameterization

The notation �V ∗(p) is natural and easy to understand. The only problem it poses is that it contains,

as an argument, a particle. Because of this, we cannot speak of velocity fields, whose arguments

are points in the affine space E. The following new notation, which is said to be Eulerian, is a

little more complex, but enables us to overcome this problem.

Eulerian (or spatial) notation. Consider a rigid body S and a point A ∈ posR0(S, t). We

write

�V ∗
R1S(A) ≡ the virtual velocity with respect to R1

of the particle of S passing through point A at instant t
[4.33]

When using the Eulerian notation, the particle is not known by its name, but by its position

at the instant considered. In general, the particle is not the same over the course of time.

Let p be a particle of S whose position in R0, over the course of time, is P = posR0
(p, t).

We have the trivial equality

∀t, �V ∗
R1S(P ) = �V ∗

R1
(p) ≡

[4.10]

¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇∗i

On the contrary, for any point A ∈ posR0(S, t):

�V ∗
R1S(A) �= ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1A

)
q̇∗i
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The equality only holds when A is a point attached to the rigid body S , i.e., when it

designates the position of a same particle in the rigid body over time.

• With the help of the Eulerian notation [4.33], we can define the following:

Definition. The VVF of a rigid body S (with respect to R1 and at instant t), associated with (or

resulting from) the parameterization [2.19], is defined as

V ∗
R1S

: posR0(S, t) → E

A �→ �V ∗
R1S

(A)
[4.34]

The VVF is associated with parameterization [2.19], but this will not be repeated

systematically, for brevity.

REMARK. Similar to the remark after definition [4.10], definition [4.34] contains (q̇∗1 , . . . , q̇
∗
n),

which is an arbitrary n-tuple in Rn.

– To emphasize this arbitrary character, we can say that [4.34] defines (the expression for)

the most general VVF of the rigid body S, or, more concisely the VVF.

– If we work with a given n-tuple (q̇∗1 , . . . , q̇
∗
n), we speak of a VVF.

If we are looking at values, we can speak of virtual velocity fields or of a virtual velocity field:

– when (q̇∗1 , . . . , q̇
∗
n) is given all the values in Rn, this generates the set of VVFs,

– each value taken by the n-tuple (q̇∗1 , . . . , q̇
∗
n) corresponds to one VVF of the rigid body S.

In this book, we will have to work with one of the above meanings. However, we will not

distinguish between them at all times. We will use “the VVF” or “a VFF” interchangeably,

knowing that the precise meaning will be provided by the context. �

4.4.2. Virtual velocity field (VVF) in a rigid body

Theorem. ∀t, ∀R1, ∀ rigid body S defining a reference frame RS , ∀A,B ∈ posR0(S, t) ⊂ E,

�V ∗
R1S(B) = �V ∗

R1S(A) +
�Ω∗
R1RS

× −−→
AB [4.35]

Thus, ∀t, the VVF V ∗
R1S

(defined over posR0(S, t)) is completely determined by the virtual

velocity at one point (here, point A) and the virtual angular velocity �Ω∗
R1RS

. (If the rigid body

S is rectilinear, the virtual angular velocity �Ω∗
R1RS

is determined to within an arbitrary vector

collinear to S.)

PROOF. The proof is similar to that of [1.63] for the real velocities. Let t be a fixed instant,

A,B two given points ∈ posR0(S, t) ⊂ E. At the instant t,

• the point A is the position P (q, t) of a particle p of the rigid body S with respect to R0,

• the point B is the position P ′(q, t) of a particle p′ of the rigid body S with respect to R0.

We thus have at the instant t

�V ∗
R1S(A) = �V ∗

R1
(p) �V ∗

R1S(B) = �V ∗
R1

(p′) [4.36]
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The proof is achieved by applying [4.32] at instant t and with the particles p, p′ of S that

were just defined. �

The equalities [4.36] hold only at the instant t, but this is sufficient for the proof.

Let us reiterate a comment that was already made with respect to the real velocity field. For

mathematical convenience, we may define the virtual velocity field over the entire space E and

not only over posR0(S, t). To do this, we carry out a classical operation in rigid body mechanics,

which consists of “extending” the rigid body S “to infinity”, so as to be able to state the previous

theorem with the VVF of a rigid body S defined over all of E. However, this was not done.

4.5. Virtual velocities in a system

4.5.1. VVF associated with a parameterization

The Eulerian notation [4.33] can easily be generalized to a system:

Eulerian notation. Consider a system S and a point A ∈ posR0(S , t). We write

�V ∗
R1S (A) ≡ the virtual velocity with respect to R1

of the particle of S passing through point A at instant t
[4.37]

When using Eulerian notation, the particle is not known by its name, but by its position at

the instant considered. In general, the particle is not the same over the course of time.

As with real velocities, note that there exists a case when the notation �V ∗
R1S (A) is ambiguous.

This is when A is the contact point I between two rigid bodies Si and Sj in S (refer again to

Figure 1.9). In this case, we must distinguish between the two virtual velocities �V ∗
R1Si

(I) and

�V ∗
R1Sj

(I) of the two particles of Si and Sj respectively, passing through the same point I at the

instant t considered. These particles are infinitely close but are not identical.

In general, the point I is attached to neither Si nor Sj and

�V ∗
R1Si

(I) �= �V ∗
R1Sj

(I)

We can see the importance of the second index, specifying the rigid body, in the notation for

the virtual velocity vector.

• Let p be a particle of S of position P = posR0(p, t) in R0 over time. We have the trivial

equality

∀t, �V ∗
R1S (P ) = �V ∗

R1
(p) ≡

[4.10]

¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇∗i

On the contrary, for any point A ∈ posR0(S , t) that is not attached to the system S :

�V ∗
R1S (A) �= ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1A

)
q̇∗i

The equality holds only when A is a point that is attached to the system S , i.e., when A
denotes the position of a same particle of the system over time.

• By means of the Eulerian notation [4.37], it is possible to define the following:
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Definition. The VVF of a system S (with respect to R1 and at an instant t), associated with (or

resulting from) the parameterization [2.19], is defined as

V ∗
R1S : posR0(S , t) → E

A �→ �V ∗
R1S (A)

[4.38]

The VVF is associated with parameterization [2.19], but this will not be repeated throughout

the text, for brevity.

It should be noted that for a system S made up of several rigid bodies, the VVF V ∗
R1S does not

satisfy a relation of the type [4.35].

4.5.2. VVF on each rigid body of a system

The following result can be readily derived from [4.35]:

Theorem. The VVF [4.38], restricted to each rigid body S of a system S , satisfies relation

[4.35] at any instant t. [4.39]

4.5.3. Virtual velocity of the center of mass

We present below a result that is specific to the center of mass of a system:

Theorem and definition. Let S be a system of mass m and of mass center G. We have

∀R1, ∀ VVF V ∗
R1

,

∫
S

�V ∗
R1

(p)dm = m�V ∗
R1S (G) [4.40]

where �V ∗
R1S (G) is defined by (O1 being a fixed point in R1)

�V ∗
R1S (G) =

d∗R1

−−→
O1G

dt
≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1G

)
q̇∗i [4.41]

• If we adopt the following hypothesis:

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

Then, expression [4.41] for �V ∗
R1S (G) becomes

�V ∗
R1S (G) ≡

n∑
i=1

∂
−−→
O1G

∂qi
q̇∗i [4.42]

• As a matter of fact, if S is a rigid body, then the mass center G is a point attached to the

rigid body and expressions [4.41] and [4.42] for �V ∗
R1S (G) are not new, they are a consequence of

[4.10] and [4.11], respectively. On the contrary, if S is a system composed of several rigid bodies,

then the center G is not attached to S and expressions [4.41] and [4.42] must be understood as

specific definitions designed for G.

FIRST PROOF. According to [4.10], we have∫
S

�V ∗
R1

(p)dm =

∫
S

¯̄Q01(q, t).
n∑

i=1

∂

∂qi

(
¯̄Q10(q, t).

−−→
O1P

)
q̇∗i dm
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On the right-hand side, the integration variable P sweeps over the position of the system S
defined by (q, t) and it is independent of (q, t). The integral sign can, thus, be entered into the

sum

n∑
i=1

and then under the derivative
∂

∂qi
as follows

∫
S

�V ∗
R1

(p)dm = ¯̄Q01.
n∑

i=1

∫
S

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
dm q̇∗i = ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

∫
S

−−→
O1Pdm︸ ︷︷ ︸
m

−−→
O1G

)
q̇∗i

Hence [4.40] and [4.41]. Finally, expression [4.42] follows immediately from [4.41] taking

account of the hypothesis in the theorem statement. �

SECOND PROOF. The previous proof is a little long because we are working with the general

expression [4.10] for the VV �V ∗
R1

(p). The proof is simplified if, from the start, we use hypothesis

[2.26]. Indeed, the VV �V ∗
R1

(p) is then given by [4.11] and we have∫
S

�V ∗
R1

(p)dm =

∫
S

n∑
i=1

∂
−−→
O1P

∂qi
q̇∗i dm

The same argument as in the previous proof allows one to put the integral sign behind the sum

and then under the derivative with respect to qi:∫
S

�V ∗
R1

(p)dm =
n∑

i=1

∂

∂qi

∫
S

−−→
O1Pdm︸ ︷︷ ︸
m

−−→
O1G

q̇∗i = m
n∑

i=1

∂
−−→
O1G

∂qi
q̇∗i : this is [4.42].�

4.6. Composition of virtual velocities

4.6.1. Composition of virtual velocities of a particle

Theorem and definition. ∀R1, R2, ∀ particle p, ∀t:

�V ∗
R1

(p) = �V ∗
R1S(R2)

(P ) + �V ∗
R2

(p) or in shortened form: �V ∗
1 (p) =

�V ∗
12(P ) + �V ∗

2 (p)

[4.43]

where we recall that �V ∗
R1S(R2)

(P ) ≡ �V ∗
12(P ) is the virtual velocity with respect to R1 of the

particle of S(R2) (that is, the particle attached to R2), which coincides with P (t) at the instant

t. As in [1.70], this velocity is called the background virtual velocity.

PROOF. Let us choose a point O1 ∈ E fixed in R1 and a point O2 ∈ E fixed in R2. We have

�V ∗
R1

(p) =
d∗1

−−→
O1P

dt
=

d∗1
−−−→
O1O2

dt
+

d∗1
−−→
O2P

dt

On the one hand,
d∗1

−−−→
O1O2

dt
= �V ∗

R1
(o2), where o2 denotes the particle located at O2 at any

instant. On the other hand, relationship [4.19] gives
d∗1

−−→
O2P

dt
=

d∗2
−−→
O2P

dt
+�Ω∗

12×
−−→
O2P = �V ∗

R2
(p)+

�Ω∗
12 × −−→

O2P . Hence
�V ∗
R1

(p) = �V ∗
R1

(o2) + �Ω∗
12 × −−→

O2P + �V ∗
R2

(p)
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Let us introduce the particle p2 of S(R2), whose movement in R0 is τ �→ P2(τ), such that

at the instant t P2(t) = P (t); in other words, such that the particle p2 passes through P at t.

According to [4.32], we have: �V ∗
R1

(o2) + �Ω∗
12 × −−→

O2P = �V ∗
R1

(p2). �

Theorem.
HYPOTHESIS [2.33] adopted both for R1 and R2: The rotation tensors ¯̄Q01 of R1 with

respect to R0 and ¯̄Q02 of R2 with respect to R0, as well as the points O1 and O2, fixed in R1

and R2 respectively, do not depend on q.

Then, [4.43] becomes

�V ∗
R1

(p) = �V ∗
R2

(p) =
[4.18]

n∑
i=1

−→
∂P

∂qi
q̇∗i ⇔ �V ∗

R1S(R2)
(P ) = �0 [4.44]

PROOF. The hypothesis adopted allows one to apply theorem [4.18]: the virtual velocity
�V ∗
R1

(p) (respectively �V ∗
R2

(p)) does not depend on R1 (respectively R2). Hence,

�V ∗
R1

(p) = �V ∗
R2

(p). It results from [4.43] that �V ∗
R1S(R2)

(P ) = �0. �

SECOND PROOF. We can directly prove the second equality in [4.44]; namely, �V ∗
R1S(R2)

(P ) =

�0, without using [4.43]. To do this, let a be the particle of S(R2) passing through P at the instant

t considered, and let A be its position (in R0) at any instant. The point A is located at the point P
at the instant t. We have

�V ∗
R1S(R2)

(P ) = �V ∗
R2

(a) (equality valid only at the considered instant t)

=

n∑
i=1

∂
−−→
O1A

∂qi
q̇∗i according to [4.11], which holds as ¯̄Q01 is assumed to be

independent of q.

Let us write
−−→
O1A =

−−−→
O1O2 +

−−→
O2A. According to the hypothesis in the theorem,

−−−→
O1O2 and

−−→
O2A do not depend on q and, therefore, neither does

−−→
O1A. Consequently, ∀i, ∂

−−→
O1A

∂qi
= �0 and

thus �V ∗
R1S(R2)

(P ) = �0. Note that all this reasoning is carried out at a given instant t. �

In Chapter 5, it will be seen that the virtual power [5.14] of the inter efforts between two rigid

bodies S1 and S2 involves the virtual velocity field V ∗
R2S1

, where R2 is the reference frame defined

by the rigid body S2. The hypothesis in the previous theorem is not verified for this virtual power;

the VVF V ∗
R2S1

is not zero and it plays an essential role in the VP of the inter efforts. Moreover,

it is clear that in this kind of situation, the reference frame index, R2, is absolutely necessary in

the notation V ∗
R2S1

.

4.6.2. Composition of virtual angular velocities

Theorem. Composition of the virtual angular velocities.

∀R1, R2, R3, �Ω∗
13 = �Ω∗

12 +
�Ω∗
23 [4.45]
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PROOF. Let us apply [4.19] to the three pairs of reference frames (R1, R2), (R2, R3) and

(R1, R3):

∀ �W ∈ E,
d∗1 �W
dt

=
d∗2 �W
dt

+�Ω∗
12× �W

d∗2 �W
dt

=
d∗3 �W
dt

+�Ω∗
23× �W

d∗1 �W
dt

=
d∗3 �W
dt

+�Ω∗
13× �W

[4.46]

Taking the sum of the first two equalities yields

d∗1 �W
dt

=
d∗3 �W
dt

+ (�Ω∗
12 + �Ω∗

23) × �W [4.47]

By identifying [4.47] with the last equality in [4.46], we get �Ω∗
13 × �W = (�Ω∗

12 +
�Ω∗
23) × �W ,

hence [4.45], taking into account the fact that vector �W is arbitrary. �

• If the rotation tensor ¯̄Q12 does not depend on q, then �Ω∗
12 = �0 according to [4.30] and

relationship [4.45] becomes �Ω∗
13 = �Ω∗

23.

• By making R3 = R1 in [4.45], we immediately get the following:

Corollary. The virtual angular velocity vector of R2 with respect to R1 is the negative of the

virtual angular velocity vector of R1 with respect to R2:

�Ω∗
12 = −�Ω∗

21 [4.48]

4.6.3. Composition of VVFs in rigid bodies

The composition of virtual velocities in a rigid body is obtained using the results that we just

established for a particle and by applying this to each particle of the rigid body.

Theorem and definition. ∀R1, R2, ∀ rigid body S,

V ∗
R1S = V ∗

R1S(R2)
+ V ∗

R2S or in shortened form: V ∗
1S = V ∗

12 + V ∗
2S [4.49]

V ∗
R1S(R2)

is called the VVF of R2 relative to (or, with respect to) R1, or the background VVF.

An immediate consequence of [4.49] is

�Ω∗
1S = �Ω∗

12 + �Ω∗
2S [4.50]

which is merely [4.45].

FIRST PROOF. Let us apply theorem [4.43] to a particle p of S, noting that if p is a particle of

S, then ∀Ri, ∀t, �V ∗
Ri
(p) = �V ∗

RiS
(P ):

∀R1, R2, S, ∀ particle p of S, ∀t : �V ∗
R1S(P ) = �V ∗

R1S(R2)
(P ) + �V ∗

R2S(P )

At the instant t considered, this relationship is true ∀ particle p of S. In other words, it is true

∀P (t), that is ∀A, hence V ∗
1S = V ∗

12 + V ∗
2S . �

NOTE. The virtual field V ∗
R1S(R2)

can be derived from the real field VR1S(R2) using the

procedure described in section 4.2. The name given to V ∗
R1S(R2)

is, therefore, consistent. �
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Theorem. ∀t, ∀R1, R2, the virtual velocity field V ∗
R1S(R2)

and V ∗
R2S(R1)

are opposite:

V ∗
R1S(R2)

= −V ∗
R2S(R1)

or, in shortened form V ∗
12 = −V ∗

21 [4.51]

(Through [4.48] it is already known that the principal vectors of these fields, �Ω∗
12 and �Ω∗

21,

are opposite.)

PROOF. All we need to do is apply [4.49] taking S equal to the rigid body S(R1) defined by

R1. �

SECOND PROOF. Starting from [4.43]. This relation gives: ∀ particle p, ∀t :{
�V ∗
R1

(p) = �V ∗
R1S(R2)

(P ) + �V ∗
R2

(p)
�V ∗
R2

(p) = �V ∗
R2S(R1)

(P ) + �V ∗
R1

(p)

Adding these equalities gives

�0 = �V ∗
R1S(R2)

(P ) + �V ∗
R2S(R1)

(P )

At the instant t considered, this equality is true for any particle p, that is, for any point P (t),
hence V ∗

12 = −V ∗
21. �

By iterating the theorem [4.49], we arrive at the following:

Corollary 1. For any integer m ≥ 2, we have the following relationship that generalizes [4.49]:

∀R1, R2, · · · , Rm, ∀ rigid body S, V ∗
1S = V ∗

12 + V ∗
23 + · · · + V ∗

mS [4.52]

This entails the following relationship, which generalizes [4.50]:

�Ω∗
1S = �Ω∗

12 + �Ω∗
23 + · · · + �Ω∗

mS [4.53]

Corollary 2. If the hypothesis in [4.44] is satisfied, then

V ∗
R1S = V ∗

R2S [4.54]

A consequence of this is

�Ω∗
1S = �Ω∗

2S i.e. �Ω∗
12 = �0 (which is consistent with [4.30])

PROOF. Just apply relationship [4.44] to [4.49]. �

4.7. Method of calculating the virtual velocity at a point

Let S be a system composed of a finite numbers of rigid bodies and let A be a point in posR0(S , t).
To calculate the virtual velocity �V ∗

R1S (A), we distinguish between two cases:

1. If A is a point attached to S , that is, if it is the position of the same particle a of the system

over time, then

∀t, �V ∗
R1S (A) = �V ∗

R1
(a) = ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1A

)
q̇∗i
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2. If A is not attached to S , then �V ∗
R1S (A) �= ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1A

)
q̇∗i ! We must calculate

�V ∗
R1S (A) with the help of relationship [4.35], going by another point B whose virtual

velocity is known. At a given instant t, let Sj be the rigid body of S such that A ∈
posR0(Sj , t), we then apply the quoted relationship to Sj :

�V ∗
R1S (A) = �V ∗

R1Sj
(A) = �V ∗

R1Sj
(B) + �Ω∗

R1Sj
× −−→
BA

The center of mass G of system S is an exception. Whether or not G is attached to S , it is

always possible to calculate �V ∗
R1S (G) using relationship [4.41]:

�V ∗
R1S (G) ≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1G

)
q̇∗i

It has been seen that in the case when A is the contact point I between two rigid bodies Si

and Sj of S (Figure 1.9), we must distinguish between the two virtual velocities �V ∗
R1Si

(I) and

�V ∗
R1Sj

(I) of the two particles Si and Sj respectively, passing through the same point I at the

instant t considered.

In general, the point I is not attached to either Si or Sj and we calculate each of the two

virtual velocities �V ∗
R1Si

(I) and �V ∗
R1Sj

(I) according to method no. 2 above. In general, we find

�V ∗
R1Si

(I) �= �V ∗
R1Sj

(I)
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Virtual Powers

In this chapter, we will study the virtual powers (VP) of efforts and quantities of acceleration,

which are grosso modo the product of efforts and the virtual velocities described in Chapter 4.

These VP are the ingredients of the principle of virtual powers (PVP), which are an essential tool

in analytical mechanics. We will also study the concept of “potential”, the counterpart of which

in Newtonian mechanics is potential energy.

5.1. Principle of virtual powers

PVP is a very general principle in mechanics, valid for any mechanical system. It is equivalent

to Newton’s laws of motion and yet it makes it easier to establish the equations of motion of a

mechanical system. It is commonly used in analytical mechanics.

The PVP brings into play scalar functions that are called virtual powers (VP), which will be

defined and studied in detail in this chapter. The PVP can be stated as follows:

Principle of virtual powers. ∃ a reference frame Rg called a Galilean (or inertial) reference

frame such that ∀ system S , ∀t, ∀ VVF with respect to Rg, the virtual power, with respect to Rg

and at instant t, of the external and internal efforts in this VVF is equal to the VP, at instant t, of

the quantities of acceleration with respect to Rg and in the same VVF:

P∗
Rg

(Fext→S , t) + P∗
Rg

(Fint→S , t) = P∗
Rg

(ρ�ΓRgS , t) [5.1]

The PVP holds for any mechanical system and any VVF. In the analytical mechanics

framework, it will be applied to

– systems composed of rigid bodies, some of which may be reduced to particles,

– and the virtual velocity fields associated with parameterization [2.19]. As seen in [4.39],

these VVF, defined by [4.34] or [4.38] and calculated using the virtual velocities [4.10] or

[4.11], satisfy relation [4.35].

In this chapter, we will study the ingredients of the PVP, namely:

– the VP of external and internal efforts,

– and the VP of the quantities of acceleration.

Lagrangian Mechanics: An Advanced Analytical Approach,

First Edition. Anh Le van and Rabah Bouzidi. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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In Chapter 6, we will see how the PVP allows one to obtain the equations governing the

motion of systems of rigid bodies. These equations are called Lagrange’s equations.

• The VP mentioned in the PVP [5.1] are defined with respect to a Galilean reference frame

Rg. However, we sometimes need to consider the VP relative to a non-Galilean (or non-inertial)

reference frame. This may be the case:

– in the proof for the VP [5.14] of inter-efforts between two rigid bodies. We calculate the

VP in a reference frame attached to a rigid body, which is often not Galilean,

– in definition [7.79] of a perfect joint (given in Chapter 7). It is better for the perfect character

to be defined relative to any reference frame, not only a Galilean one.

Thus, for generality, in the rest of this chapter we will study the VP relative to any reference

frame R1, which is not necessarily Galilean. Of course, in order to obtain the VP in a Galilean

reference frame Rg, one has just to apply the results obtained in this chapter by making R1 = Rg.

5.2. VP of efforts internal to each rigid body

PVP [5.1] involves the set of efforts exerted upon system S , both external and internal (refer to

section 3.4):

1. The external efforts, Fext→S , are exerted by the exterior of the system on the rigid bodies of

the system.

2. The internal efforts Fint→S include

(a) the inter-efforts between the rigid bodies in the system,

(b) and the efforts within each solid body in the system (a solid body is a body that is not

reduced to a particle).

The efforts within a solid rigid body are not the classical efforts known in rigid body mechanics.

Their schematization arises from the continuum mechanics. In the framework of rigid body

mechanics, the following principle is accepted, which makes it possible to ignore these efforts:

Principle of zeroness of the VP of efforts internal to a rigid body. ∀ reference frame, ∀t, ∀
rigid body S, ∀ virtual velocity fields satisfying [4.35], the VP of the internal efforts (VP that

we will not seek to define) is zero. [5.2]

Consequently, we will only consider the following efforts in the sequel:

1. The exterior efforts Fext→S , exerted by the exterior of the system on the rigid bodies of the

system.

2. And the interior efforts Fint→S , which reduce to the inter-efforts between the rigid bodies

of the system.

5.3. VP of efforts

The efforts considered in the sequel include all the efforts exerted on system S , except for those

efforts that are internal to each rigid body, which, according to principle [5.2], do not come into

play in rigid body mechanics.
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Definition. Consider

– a set of forces applied on system S , denoted by Forces→S . This set is generally made up of

concentrated or distributed forces. Using the notations in section 3.3, concentrated forces

includes the forces �F (i)(t) applied at points Ai, and distributed forces are represented by

a mass force �f(A, t) distributed in the region V occupied by S ,

– a reference frame R1 and a VFF V ∗
R1S over S .

The virtual power, with respect to R1 and at instant t, of the set of forces Forces→S in the

VVF V ∗
R1S is, by definition:

P∗
R1

(Forces→S , t) ≡
∑
i

�F (i)(t) · �V ∗
R1S (Ai) +

∫
A∈V

�fV (A, t) · �V ∗
R1S (A)dm

Considering that a concentrated force is a special distributed force, the VP, with respect to

R1 and at instant t, of the forces in the VVF V ∗
R1S , can be expressed in the following shortened

form:

P∗
R1

(Forces→S , t) ≡
∫

S

�f(A, t) · �V ∗
R1S (A)dm [5.3]

To define the VP of torques, we restrict ourselves to a single rigid body and work with the

VFFs that satisfy [4.35] on this rigid body.

Definition. Consider

– a set of torques applied on a rigid body S, denoted by Torques→S . This set is generally

made up of concentrated or distributed torques. With the notations in section 3.3, the

concentrated torques consist of torques �C(i)(t), the distributed torques are represented by

a mass torque �c(A, t), distributed in the region V occupied by S ,

– a VVF �V ∗
R1S

, which satisfies [4.35] on S. We denote �Ω∗
R1RS

the virtual angular velocity

(or one virtual angular velocity, if the rigid body S is rectilinear).

The virtual power, with respect to R1 and at instant t, of the set of torques Torques→S in the

VVF V ∗
R1S

is, by definition

P∗
R1

(Torques→S , t) ≡
(∑

i

�C(i)(t) +

∫
A∈V

�c(A, t)dm

)
.�Ω∗

R1RS

By considering that a concentrated torque is a special distributed torque, we can express the

VP, with respect to R1 and at instant t, of the torques in the VVF �V ∗
R1S

in the shortened form:

P∗
R1

(Torques→S , t) ≡
∫
S

�c(A, t)dm · �Ω∗
R1RS

=

∫
S

�c(A, t) · �Ω∗
R1RS

dm [5.4]

REMARK. If the rigid body S is rectilinear, the virtual angular velocity �Ω∗
R1RS

is determined

within a component parallel to the rigid body. It is for this reason that in the statement, we spoke

of one virtual angular velocity �Ω∗
R1RS

in the case of a rectilinear rigid body.

Furthermore, a rectilinear rigid body S cannot undergo torques that are collinear to it. Thus,

the torques must be orthogonal to S. Therefore, the indeterminate part of �Ω∗
R1RS

does not come

into play in the VP [5.4] and the VP under consideration is indeed well determined. �
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5.4. VP of efforts exerted on a rigid body

5.4.1. General expression

The following theorem shows that, like real power, the VP of efforts exerted on a rigid body can

be expressed in a special form.

Theorem. Consider

– a rigid body S defining a reference frame RS , a system of efforts F→S applied on S and

made up of forces or torques that are either concentrated or distributed. The moment field

of the efforts is M→S(t) of resultant �R→S(t) (see section 3.6),

– a VVF V ∗
R1S

, which satisfies [4.35] on S. The virtual angular velocity (or one virtual

angular velocity, if the rigid body S is rectilinear) is �Ω∗
R1RS

.

The VP, with respect to R1 and at instant t, of the effort system F→S in the VVF V ∗
R1S

is equal

to the product (symbolized by ◦) of the moment field of the efforts and the VVF:

P∗
R1

(F→S , t) = �R→S(t) · �V ∗
R1S(A) +

�M→S(A, t) · �Ω∗
R1RS

= M→S(t) ◦ V ∗
R1S [5.5]

PROOF. Starting from definition [5.3] and [5.4], we have

P∗
R1

(F→S , t) =

∫
S

�f(B, t) · �V ∗
R1S(B)dm+

∫
S

�c(B, t)dm · �Ω∗
R1RS

At the instant t considered, choosing a given point A and making use of relationship [4.35] –
�V ∗
R1S(B) = �V ∗

R1S(A) +
�Ω∗
R1RS

× −−→
AB – lead to

P∗
R1

(F→S , t) =

∫
S

�f(B, t)dm︸ ︷︷ ︸
�R→S

·�V ∗
R1S(A)+

(∫
S

−−→
AB × �f(B, t)dm+

∫
S

�c(B, t)dm

)
︸ ︷︷ ︸

�M→S(A, t)

·�Ω∗
R1RS

�

Thus, if two effort systems applied to the same rigid body yield the same moment field, then

they have the same VP.

5.4.2. VP of zero moment field efforts exerted upon a rigid body

The following result follows immediately from theorem [5.5]:

Corollary. Let S be a rigid body subjected to efforts F→S whose moment field is zero:
�M→S(t) = 0, ∀t. We have

∀ reference frame R1, ∀t, P∗
R1

(F→S , t) = 0 [5.6]

5.4.3. Dependence of the VP of efforts on the reference frame

Theorem. Let S be a rigid body subjected to efforts F→S (forces or torques, concentrated or

distributed) whose moment field is M→S(t). We have

∀t, ∀ reference frames R1, R2, P∗
R2

(F→S , t) = P∗
R1

(F→S , t) +M→S(t) ◦ (V ∗
R2S − V ∗

R1S)︸ ︷︷ ︸
V ∗
R2S(R1)

[5.7]
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PROOF. On writing relationship [5.5] in the reference frames R1 and R2 respectively, and by then

subtracting the relationships obtained, we arrive at

P∗
R2

(F→S , t) = P∗
R1

(F→S , t) + �M→S(t) ◦ (V ∗
R2S − V ∗

R1S)

According to [4.49], we have V ∗
R2S

− V ∗
R1S

= V ∗
R2S(R1)

. �

Theorem. [5.8]

The VP P∗
R1

(F→S , t) has the same expression for all reference frames R1 that verify the

following hypothesis:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 do not depend on q.

The expression for the VP does not depend on R1. Thus, the VP will be written without the
reference frame index: P∗(F→S , t) .

PROOF. The adopted hypothesis enables us to apply theorem [4.18]: the virtual velocity
�V ∗
R1

(p) of the current particle p does not depend on R1. Consequently, the VP P∗
R1

(F→S , t)
given by [5.5] does not depend on R1 either. �

If we also adopt hypothesis [2.33] for R2, then the VP P∗
R2

(F→S , t) with respect to R2 does

not depend on R2. By inserting this in [5.7], we get M→S(t)◦V ∗
R2S(R1)

= 0, which is predictable,

given that we know from [4.44] that V ∗
R2S(R1)

= 0.

5.5. VP of efforts exerted on a system of rigid bodies

The results obtained in the previous section for a rigid body can easily be generalized to the case

of a system formed of several rigid bodies (some of which may be reduced to particles).

5.5.1. General expression

Theorem. Consider

– a system of efforts (forces and torques) F→S applied to a system S = ∪
s
Ss that is made

up of several rigid bodies Ss. These efforts may be external and/or inter-efforts for S . The

moment field of the efforts applied to a rigid body Ss is M→Ss(t),

– a VVF V ∗
R1S that satisfies [4.35] on each rigid body Ss (see [4.39]). The restriction of this

VVF on each rigid body Ss is V ∗
R1Ss

, the virtual angular velocity (or one virtual angular

velocity, if the rigid body Ss is rectilinear) is �Ω∗
R1Ss

.

The VP, with respect to R1 and at instant t, of the effort system F→S in the VVF V ∗
R1S is

P∗
R1

(F→S ) =
∑
s

M→Ss(t) ◦ V ∗
R1Ss

[5.9]

PROOF. The VP of the effort system is the sum of the VP of the efforts F→Ss on each rigid body

Ss that makes up the system:

P∗
R1

(F→S , t) =
∑
s

P∗
R1

(F→Ss , t)

where the VP P∗
R1

(F→Ss , t) on each rigid body number s is given by [5.5]. �
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5.5.2. Dependence of the VP of the efforts on the reference frame

Theorem. Let S = ∪
s
Ss be a system composed of several rigid bodies Ss, subjected to an effort

system F→S (forces or torques, concentrated or distributed) whose moment field is M→S(t).
The VP with respect to two distinct reference frames R1 and R2 and in two VVFs V ∗

R1S and

V ∗
R2S , respectively, are related through

∀t, ∀ reference frames R1, R2, P∗
R2

(F→S , t) = P∗
R1

(F→S , t) +

(∑
s

M→Ss(t)

)
◦ V ∗

R2S(R1)

[5.10]

PROOF. On writing relationship [5.9] in the reference frames R1 and R2, and then subtracting the

relationships obtained, we arrive at

P∗
R2

(F→S , t) = P∗
R1

(F→S , t) +
∑
s

(
M→Ss(t) ◦ (V ∗

R2Ss
− V ∗

R1Ss
)
)

According to [4.49], we can write V ∗
R2Ss

− V ∗
R1Ss

= V ∗
R2S(R1)

. �

The following result is obtained in the same manner as in the case of a single rigid body

(theorem [5.8]):

Theorem. [5.11]

The VP P∗
R1

(F→S , t) has the same expression for all reference frames R1 that verify the

following hypothesis:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 do not depend on q.

The expression of the VP does not depend on R1. Thus, the VP will be written without the
reference frame index: P∗(F→S , t) .

5.5.3. VP of zero moment field efforts exerted on a system of rigid bodies

The following result follows immediately from the previous theorem:

Corollary. [5.12]

We take the same data as in [5.9] and we additionally assume:

HYPOTHESIS: The moment field of the effort system F→S ≡ ∪
s
F→Ss is zero:

∀t,
∑
s

M→Ss(t) = 0.

Thus, the VP in a reference frame of the effort system F→S exerted on S is independent of
this reference frame (but unlike the case with a rigid body, this VP may be non-zero).

The corollary [5.12] shows that in practice, in order to calculate the VP of the efforts whose

moment field is zero, one had better work in a reference frame in which the calculations are

simpler.

5.5.4. VP of inter-efforts between the rigid bodies of a system

Theorem. The VP, with respect to a reference frame R1, of the inter-efforts between the rigid

bodies in a system S = ∪
s
Ss is independent of R1. [5.13]
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PROOF. As the sum of the moment fields of the inter-efforts between the rigid bodies of S is zero

(see [3.18]), corollary [5.12] can be applied. �

In [5.2], we postulated the zeroness of the VP of internal efforts of a rigid body. In the case

of a system made up of several rigid bodies, the inter-efforts between the bodies in the system are

efforts internal to the system. However, their VP is not, a priori, zero. The previous theorem only

stipulates that their VP is independent of the reference frame relative to which it is calculated.

5.5.5. The specific case of the inter-efforts between two rigid bodies

Theorem. Let S1 and S2 bet two rigid bodies that exert, between themselves, the interaction

efforts FS1↔S2 , made up of efforts FS1→S2 and FS2→S1 , whose respective moment fields are

MS1→S2 and MS2→S1 = −MS1→S2 (which implies that the moment field of inter-efforts

MS1↔S2 = MS1→S2 +MS2→S1 is zero).

The VP (independent of the reference frame) of the inter-efforts between S1 and S2 is

P∗(FS1↔S2 , t) = MS2→S1(t) ◦ V ∗
R2S1

[5.14]

where R2 is the reference frame defined by the rigid body S2. This VP is written without the
reference frame index as it is independent of the reference frame with respect to which it is

calculated.

FIRST PROOF. It results from MS1↔S2 = 0 and corollary [5.12] that the VP P∗(FS1↔S2 , t)
is independent of the reference frame and that it may, thus, be calculated with respect to any

reference frame. As it turns out that the calculation is simple in R1 or R2. We choose to apply

[5.9] in one of these two reference frames, say R2:

P∗(FS1↔S2 , t) = P∗
R2

(FS1↔S2 , t) = MS2→S1(t) ◦ V ∗
R2S1

+MS1→S2(t) ◦ V ∗
R2S2︸ ︷︷ ︸
=0

�

The proof shows that the efforts FS1→S2 have a zero VP with respect to R2 and what

remains is only the VP with respect to R2 of the efforts FS2→S1 .

SECOND PROOF. Given that the VP of the inter-efforts is independent of the reference frame,

let us calculate this by placing ourselves in an arbitrary reference frame R3 and by writing (t is

omitted for brevity):

P∗(FS1↔S2) = P∗
R3

(FS1↔S2)
= MS1→S2 ◦ V ∗

R3S2
+MS2→S1 ◦ V ∗

R3S1
according to [5.9]

= MS2→S1 ◦ (V ∗
R3S1

− V ∗
R3S2

) as MS1→S2 = −MS2→S1

= MS2→S1
◦ V ∗

R2S1
using [4.49] : V ∗

R3S1
= V ∗

R3S(R2)
+ V ∗

R2S1

and by noting that V ∗
R3S(R2)

= V ∗
R3S2

since the rigid body S(R2) defined by R2 extends the

rigid body S2 to infinity (see [1.56] sqq.). �

Observe that formula [4.49] for the composition of the VVF of rigid body has been used at

different places:

– in the proofs of [5.7] and [5.10] to obtain V ∗
R2S

= V ∗
R2S(R1)

+ V ∗
R1S

, that is V ∗
R2S(R1)

=
V ∗
R2S

− V ∗
R1S

,



98 Lagrangian Mechanics

– in the second proof above to obtain V ∗
R3S1

= V ∗
R3S(R2)

+ V ∗
R2S1

, that is V ∗
R2S1

= V ∗
R3S1

−
V ∗
R3S(R2)

,

and that the expressions obtained do not all have the same form.

In theorem [5.14], the reference frame R2 is defined by the rigid body S2, which is one of the

bodies in the studied system. Thus, the hypothesis in theorem [4.44] is not verified and we do not
have V ∗

R2S1
= 0. The VVF V ∗

R2S1
plays an essential role in the VP of inter-efforts between S1

and S2.

5.6. Summary of the cases where the VV and VP are independent of the reference
frame

It would be helpful, at this point, to review the different cases where the VV and VP are

independent of the reference frame with respect to which they are calculated.

1. For the VV, it has been seen that hypothesis [2.26] (which states that the rotation tensor ¯̄Q01

of R1 with respect to R0 does not depend on q) makes it possible to simplify the expression

for the VV of a particle and to arrive at expression [4.11] :

�V ∗
R1

(p) =
n∑

i=1

∂
−−→
O1P

∂qi
q̇∗i

However, hypothesis [2.26] is not sufficient for independence with respect to the reference

frame. It was necessary to adopt another, stronger, hypothesis, namely

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 does not depend on q, in order for the VV �V ∗
R1

(p) to be independent of the
reference frame R1. The VV of a particle is then written without the reference frame index
and is given by [4.18]:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i

2. As the VP is, grosso modo, the product of a force and a VV, hypothesis [2.33] has the same

effect on the VPs as on the VVs. Using this hypothesis, it has been shown in [5.8] and [5.11]

that the VP of efforts exerted on a rigid body or a system of rigid bodies is independent of
the reference frame R1 in which it is calculated. This makes it possible to write it without
the reference frame index:

P∗(F→S , t) for a rigid body S or P∗(F→S , t) for a system of rigid bodies S

The Lagrange’s equations will be established in later chapters taking R1 equal to a Galilean

reference frame Rg . Further, we will agree to choose R0 = Rg, so that hypothesis [2.33] is

automatically satisfied.

3. A hypothesis different from [2.33], namely that the moment field of efforts exerted is zero,

also makes the VP independent of the reference frame. We have thus proved the following

results:

(a) Theorem [5.6]: If the moment field of efforts exerted on a rigid body is zero, the VP

of these efforts is zero with respect to any reference frame.
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(b) Theorem [5.11]: If the moment field of efforts exerted on a system of rigid bodies S is

zero, the VP of these efforts is independent of the reference frame (but not necessarily

zero). This VP is, thus, written without the reference frame index: P∗(F→S , t).

(c) Theorem [5.14]: In particular, the VP of inter-efforts between two solids S1 and S2

is independent of the reference frame. This VP is, thus, written without the reference
frame index: P∗(FS1↔S2

, t).

5.7. VP of efforts expressed as a linear form of the q̇∗i

In view of [5.9], it can be observed that the VP of efforts exerted on a system of rigid bodies is

a linear form of the q̇∗i , as with the VVF. This property will be proven again, in a direct manner,

in order to arrive at expression [5.16] below for the VP. This is the expression we will retain in

Chapter 6 to form the right-hand side of Lagrange’s equations.

Theorem and definition. Consider

– a system S = ∪
s
Ss made up of one or more rigid bodies Ss,

– a system of efforts (forces and torques) F→S applied to S and made up of forces or torques,

concentrated or distributed in the mass. As in [5.3] and [5.4], we write, in shortened form,

the forces using the symbol �f and the torques using the symbol �c,

– a VVF V ∗
R1S , which we know satisfies [4.35] on each rigid body Ss in S . According to

[4.21], the angular velocity vector �Ω∗
R1Rs

(Rs being the reference frame defined by the

rigid body Ss) is

∀s = 1, . . . , n �Ω∗
R1Rs

=
n∑

i=1

�ωi
1sq̇

∗
i [5.15]

As it was observed in section 2.7, some vectors �ωi
1s in the previous expression may be

zero.

Then the VP, with respect to R1 and at instant t, of the effort system F→S in the VVF V ∗
R1S

takes the form

P∗
R1

(F→S ) =
n∑

i=1

Qiq̇
∗
i [5.16]

where the coefficient Qi, called the ith generalized force associated with the efforts F→S , is

defined as

Qi ≡
∫

S

�f(P, t). ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
dm+

∑
s

∫
Ss

�c(P, t)dm .�ωi
1s [5.17]

• If the following hypothesis is adopted:

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

Then, [5.17] becomes

Qi =

∫
S

�f(P, t).
∂
−−→
O1P

∂qi
dm+

∑
s

∫
Ss

�c(P, t)dm .�ωi
1s [5.18]
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PROOF. According to definitions [5.3] and [5.4], we have

P∗
R1

(F→S ) =

∫
S

�f(P, t) · �V ∗
R1

(p)dm+
∑
s

∫
Ss

�c(P, t)dm · �Ω∗
R1Rs

where �V ∗
R1

(p) is given by [4.10] and �Ω∗
R1Rs

by [5.15]. Hence [5.17].

Using hypothesis [2.26], �V ∗
R1

(p) is given by [4.11] and we obtain [5.18]. �

• Practical ways for calculating the generalized force Qi:

– In certain simple cases, Qi can directly be calculated using definition [5.17] or relationship

[5.18].

– When the integration over Ss is complicated, it is better to calculate the VP of efforts

using formula [5.9], and then to identify Qi as the coefficient of q̇∗i .

• Let us recall that the efforts – apart from those internal to each rigid body – are classified in

two equivalent ways:

1. either as external efforts and internal efforts according to definitions [3.2] and [3.3]:

(a) the external efforts Fext→S are exerted by the exterior of the system of rigid bodies on

the system,

(b) the internal efforts Fint→S comprise the inter-efforts between the rigid bodies of the

system.

2. or as given efforts and constraint efforts, in accordance with hypothesis [3.9]. The constraint

efforts include, on the one hand, the efforts between a rigid body of the system and the

exterior and, on the other hand, the inter-efforts between the bodies of the system.

This classification is summarized in the double equality [3.11]:

F→S = Fext→S ∪ Fint→S = Fgiven→S ∪ Fconstraint→S

The VP of efforts [5.16] can thus be decomposed in two equivalent manners:

1. either P∗
R1

(F→S ) = P∗
R1

(Fext→S )+P∗
R1

(Fint→S ), according to F→S = Fext→S ∪ Fint→S ,

2. or P∗
R1

(F→S ) = P∗
R1

(Fgiven→S ) + P∗
R1

(Fconstraint→S ), according to F→S = Fgiven→S ∪
Fconstraint→S .

As a matter of fact, this second decomposition is the one that is preferred in analytical

mechanics. We are thus led to the following definition:

Definition. The generalized forces Qi are decomposed as follows

∀i ∈ [1, n], Qi = Di + Li [5.19]

In this expression:

– Di is calculated by [5.17] or [5.18] but with the given efforts only, it is called the ith
generalized given force.

– Li is calculated using [5.17] or [5.18] but using constraint efforts only, it is called the ith
generalized constraint force.
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With this decomposition, the VP of efforts are written as the sum of two terms:

P∗
R1

(F→S ) =

n∑
i=1

Qiq̇
∗
i = P∗

R1
(Fgiven→S ) + P∗

R1
(Fconstraint→S )

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P∗

R1
(Fgiven→S ) =

n∑
i=1

Diq̇
∗
i

P∗
R1

(Fconstraint→S ) =
n∑

i=1

Liq̇
∗
i

.

5.8. Potential

5.8.1. Definition

Below is a case where it is possible to give an explicit expression to part of the given generalized

force Di:

Definition. Consider a system of efforts F acting on the system S and possibly also on the

exterior of S (for example, the pair of forces at the ends of a spring connecting a rigid body of

the system and the exterior).

The system of efforts F is derivable, in the reference frame R1, from a potential VR1 (or

admits, in R1, of a potential VR1 ), in the VVF V ∗
R1S , if there exists a real function VR1(q, t)

such that

∀ CVV V ∗
R1S , P∗

R1
(F) = −

n∑
i=1

∂VR1

∂qi
q̇∗i [5.20]

In other words, the generalized forces corresponding to the system of efforts F are

∀i ∈ [1, n], Qi(F) = −∂VR1

∂qi
[5.21]

In general, efforts exerted on a system do not have a potential. When a potential exists, it is

only defined within an additive time function f(t).
In Newtonian mechanics, we use the concept of potential energy and, to a lesser extent, that

of potential. The two concepts are quite close to one another and their definitions are both based

on real velocities. In analytical mechanics, potential is a concept based on the VVF; it is similar,

but is not always identical to the concept of potential energy used in Newtonian mechanics.

Efforts that are a priori unknown may develop a zero or non-zero VP depending on the choice

of VVF. For instance, as will be seen in Chapter 7 devoted to perfect joints, the VP of certain

constraint efforts is zero using one parameterization but non-zero in another. If the VP is zero,

then there exists a potential that is constant. This shows that the existence of a potential depends
fundamentally on the choice of the VVF.

5.8.2. Examples of potential

5.8.2.1. Constant concentrated force

Theorem. Consider a reference frame R1 endowed with a coordinate system (O1; �x1, �y1, �z1)

and a concentrated force �F (t) acting on a particle p whose position is P . The force �F (t) may

possibly depend on time, but will not depend on q.
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HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

The force �F (t) is derivable in R1 from the potential

VR1(q, t) = −−−→
O1P . �F (t) + const , [5.22]

where const denotes an arbitrary constant.

PROOF. Using hypothesis [2.26], we can apply [4.11] to calculate the VP with respect to R1

of the force �F (t):

P∗
R1

(�F ) = �F (t).�V ∗
R1

(p) = �F (t).
n∑

i=1

∂
−−→
O1P

∂qi
q̇∗i

=
n∑

i=1

∂(
−−→
O1P . �F (t))

∂qi
q̇∗i as �F (t) does not depend on q. �

REMARK. Hypothesis [2.26] is indispensable to get [5.23]. Without this hypothesis, according

to [4.10] we would have:

P∗
R1

(�F ) = �F (t).�V ∗
R1

(p) = �F (t). ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q01.

−−→
O1P

)
q̇∗i

Since ¯̄Q01 = ¯̄Q01(q, t), it is, a priori, impossible to find a function VR1(q, t) for the last side

to be recast as

n∑
i=1

∂VR1(q, t)

∂qi
q̇∗i . �

5.8.2.2. Field of constant forces

The following result generalizes the previous result in the case of a distributed force.

Theorem. Let us consider a reference frame R1 endowed with a coordinate system

(O1; �x1, �y1, �z1) and a system S of mass m and mass center G, which is subjected to a field

of mass force �f(t) that may possibly depend on time, but not on q.

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

The field of forces �f(t) is derivable in R1 from the potential

VR1(q, t) = −m
−−→
O1G.�f(t) + const [5.23]

PROOF. Using hypothesis [2.26], we may apply [4.40] and [4.42] to calculate the VP, in R1,

of the force field �f(t):

P∗
R1

(�f) =

∫
S

�V ∗
R1

(p). �f(t)dm = �f(t).

∫
S

�V ∗
R1

(p)dm = m�f(t).�V ∗
R1S (G)

= m�f(t).
n∑

i=1

∂
−−→
O1G

∂qi
q̇∗i

=
n∑

i=1

∂(m
−−→
O1G.�f(t))

∂qi
q̇∗i as �f(t) does not depend onq. �



Virtual Powers 103

REMARK. Hypothesis [2.26] is indispensable to get [5.23]. Without this hypothesis, according

to [4.40] and [4.41] we would arrive at

P∗
R1

(�f) =

∫
S

�V ∗
R1

(p). �f(t)dm = �f(t).

∫
S

�V ∗
R1

(p)dm = m�f(t).�V ∗
R1S (G)

= m�f(t). ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q01.

−−→
O1G

)
q̇∗i

Since ¯̄Q01 = ¯̄Q01(q, t), it is, a priori, impossible to find a function VR1
(q, t) to recast the last

term in the form

n∑
i=1

∂VR1(q, t)

∂qi
q̇∗i . �

5.8.2.3. The gravity field

The case of the gravity field can be treated as a particular form of theorem [5.23].

Corollary. Consider a reference frame R1 endowed with a coordinate system (O1; �x1, �y1, �z1)

and a system S of mass m and mass center G, subjected to a gravity field �f = −g�z1 where g is

a constant scalar.

HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on q.

This gravity field is derivable in R1 from the potential

VR1 = mgzG + const , [5.24]

where zG ≡ −−→
O1G.�z1 is the elevation of mass center G relative to the coordinate system

(O1; �x1, �y1, �z1). We often choose the constant equal to zero, such that VR1 is zero when the

center G is located on the zero elevation.

5.8.2.4. Restoring force on a particle

Theorem. Consider a reference frame R1, endowed with a coordinate system (O1; �x1, �y1, �z1)
and a particle p that moves along the axis O1�x1. The position of p in R0 is denoted by P =

posR0(p, t) and
−−→
O1P = x�x1. The position of p in R1 is defined by the abscissa x. It is assumed

that the particle is subjected to the force �F = �F (x, t) = −k(t)x�x1 where k(t) is a given

function.

The force �F is derivable in R1 from the potential

VR1(x, t) =
1

2
k(t)x2 + const [5.25]

PROOF. Definition [5.17] gives

Qx = �F . ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
= −k(t)x �x1.

¯̄Q01.
n∑

i=1

∂

∂qi

(
x ¯̄Q10.�x1

)
= −k(t)x

(
¯̄Q10.�x1

)
.

n∑
i=1

∂

∂qi

(
x ¯̄Q10.�x1

)
on applying [A1.4] :

∀�a,�b, �a. ¯̄Q01.�b = �b. ¯̄QT
01.�a = �b. ¯̄Q10.�a

= −k(t)x �e1.
n∑

i=1

∂

∂qi
(x �e1) on applying [1.31] : ¯̄Q10.�x1 = �e1

= −k(t)x because

n∑
i=1

∂

∂qi
reduces to

∂

∂x
�
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5.8.2.5. Force due to a spring

We will show that the efforts due to springs, which are given efforts, as was stated in section

3.5, admit of a potential. Consider a rigid body S2 connected to another rigid body S1 by a

linear spring whose mass is negligible (Figure 5.1). The attachment points where the spring is

connected to S1 and S2 are A and B, respectively. The efforts F1→2 exerted upon S2 consist of a

concentrated force at B, directed along
−−→
BA : �F = −k(� − �0)�i , where k is a positive constant

(called the stiffness of the spring), �0 and � are, respectively, the unstretched length and the current

length of the spring and�i is the unit vector parallel to the spring, whose direction is from A to B.

Figure 5.1. Force exerted by a spring on a rigid body

Theorem.
HYPOTHESIS:

(i) The attachment point A is attached to S1.
(ii) The attachment point B is attached to S2.

[5.26]

Then, the force exerted by the spring on S2 is derivable, in the reference frame R1 defined
by S1, from the potential:

VR1 =
1

2
k(� − �0)

2 + const , [5.27]

where the constant is often chosen to be equal to zero such that VR1 is zero when the spring is

unstretched.

FIRST PROOF. Definition [5.3] and relationship [5.5] give the VP for the force exerted by the

spring on S2

P∗
R1

(F1→2) = �F .�V ∗
R1S2

(B) [5.28]

Hypothesis [5.26]b, combined with [1.58], entails that the particle b defined by posR0(b, t) =

B, ∀t is a particle of S2, hence �V ∗
R1S2

(B) = �V ∗
R1

(b, t). Then, according to definition [4.10] and

hypothesis [5.26]a:

�V ∗
R1S2

(B) = �V ∗
R1

(b, t) = ¯̄Q01.
n∑

i=1

∂

∂qi

(
¯̄Q10.

−−→
AB
)
q̇∗i [5.29]
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With �F = −k(� − �0)�i and
−−→
AB = ��i, the VP [5.28] can be written as

P∗
R1

(F1→2) = −k(� − �0)�i.
¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.��i

)
q̇∗i

= −k(� − �0)
(
¯̄Q10.�i

)
.

n∑
i=1

∂

∂qi

(
� ¯̄Q10.�i

)
q̇∗i on applying [A1.4] :

∀�a,�b, �a. ¯̄Q01.�b = �b. ¯̄QT
01.�a = �b. ¯̄Q10.�a

= −k(� − �0)�i
(1).

n∑
i=1

∂

∂qi

(
��i(1)

)
q̇∗i by writing�i(1) = ¯̄Q10.�i

= −k(� − �0)�i
(1).

n∑
i=1

[
�
∂�i(1)

∂qi
+

∂�

∂qi
�i(1)

]
q̇∗i [5.30]

as
∂(��i(1))

∂qi
= �

∂�i(1)

∂qi
+

∂�

∂qi
�i(1). Furthermore, by differentiating the equality�i(1).�i(1) = �i.�i = 1

with respect to qi, one finds�i(1).
∂�i(1)

∂qi
= 0. Hence

P∗
R1

(F1→2) = −k(� − �0)
n∑

i=1

∂�

∂qi
q̇∗i = −

n∑
i=1

∂

∂qi

[
1

2
k(� − �0)

2

]
q̇∗i � [5.31]

SECOND PROOF. The above proof is a little long as it works on the general expression [4.10]

for the VV �V ∗
R1S2

(B). It can be simplified a little if we adopt hypothesis [2.26], namely that the

rotation tensor ¯̄Q01 does not depend on q. This hypothesis is restrictive; it is satisfied, in particular,

if S1 is a support fixed in R0.

Using this hypothesis, the VV �V ∗
R1S2

(B) is given by [4.11] and relationship [5.29] is replaced

by �V ∗
R1S2

(B) = �V ∗
R1

(b, t) =
n∑

i=1

∂
−−→
AB

∂qi
q̇∗i .

Relationship [5.30] becomes simpler: P∗
R1

(F1→2) = −k(� − �0)�i.

n∑
i=1

∂

∂qi

(
��i
)
q̇∗i , where

∂(��i)

∂qi
= �

∂�i

∂qi
+

∂�

∂qi
�i.

Furthermore, by differentiating the equality�i.�i = 1 with respect to qi, we obtain�i.
∂�i

∂qi
= 0.

We thus arrive at the same expression [5.31]. �

5.8.2.6. Inter-efforts due to a spring

The spring considered in the above example exerts an external force on a rigid body. We now

consider a spring connecting two rigid bodies belonging to the same system, such that the forces

due to the spring are the inter-efforts between these two bodies. We will show that these inter-

efforts also admit of a potential.

According to [5.14], the VP of the interaction efforts between two rigid bodies S1 and S2 is

independent of the reference frame. Consequently, if the potential of the inter-efforts exists, it is

also independent of the reference frame and it can be denoted by V without the reference frame
index.

Moreover, it was assumed that the position of the system S1

⋃
S2 in a reference frame R1

depends on the position parameters q. The fact that potential V does not depend on R1 suggests



106 Lagrangian Mechanics

that it is a function of position q via quantities, which do not depend on R1 but only on the shape
of S1

⋃
S2 (that is, the relative position of S1 and S2). The reader can verify that this is indeed

the case in the following examples.

• Consider two rigid bodies S1, S2 connected by a linear spring of zero mass. The attachment

points of the spring on S1 and S2 are, respectively, A and B (Figure 5.2). The constraint inter-

efforts include the efforts of S1 on S2 and the efforts of S2 on S1 via the spring. The respective

moment field of these constraint inter-efforts are:

◦ M2→1, whose resultant force is �F2→1 = k(� − �0)�i (k is a positive constant) and moment

at A is �M2→1(A) = �0. �0 and � are, respectively, the unstretched and the current length of

the spring,�i is the unit vector parallel to the spring, which points from A to B.

◦ M1→2 = −M2→1, whose resultant force is �F1→2 = −k(� − �0)�i and moment at B is

�M1→2(B) = �0. The last moment also is the moment at A as the resultant �F1→2 passes

through A, so that we indeed have M1→2 +M2→1 = 0.

Figure 5.2. Constraint inter-efforts due to a spring

Theorem.
HYPOTHESIS: The attachment points A and B are attached, respectively, to the rigid bodies

S1 and S2.

Then, the inter-efforts between S1 and S2 due to the spring are derivable (in any reference

frame) from the potential:

V =
1

2
k(� − �0)

2 + const [5.32]

where the constant is often chosen to be equal to zero, so that V is zero when the spring is

unstretched.

PROOF. On applying relationship [5.14], we can obtain the power (with respect to any

reference frame) of the inter-efforts between S1 and S2 due to the spring

P∗(F1↔2) = �F1→2.�V
∗
R1S2

(B) + �M1→2(B).�Ω∗
R1R2

= �F1→2.�V
∗
R1S2

(B),
[5.33]

where R1, R2 are the reference frames defined by S1, S2, respectively.
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The rest of the proof is identical to that for [5.28]. �

• We obtain a similar result for a torsion (or spiral) spring.

Theorem. Consider two rigid bodies S1 and S2 connected by a torsion spring. The relative

motion of S1 and S2 is a rotation around a common axis oriented by a unit vector�i. The relative

rotation is θ�i, such that when θ = 0 the spring is unstretched. The moment fields of the inter-

efforts between the two rigid bodies are:

• M2→1, whose resultant is �R2→1 = �0 and moment at any point A is �M2→1(A) = cθ�i ,

where c is a positive constant (called the torsion stiffness of the spring),

• M1→2 = −M2→1, whose resultant is �R1→2 = �0 and moment at any point A is

�M1→2(A) = −cθ�i .

Then, the inter-efforts between S1 and S2 due to the torsion spring are derivable from the

potential

V =
1

2
cθ2 + const , [5.34]

where the constant is often chosen to be equal to zero for V to be zero when the spring is

unstretched.

PROOF. One has, at any point A

P∗(F1↔2) = �F1→2.�V
∗
R1S2

(A) + �M1→2(A).�Ω
∗
R1R2

according to [5.14]

= �M1→2(A).�Ω∗
R1R2

[5.35]

Let us calculate the virtual angular velocity �Ω∗
R1R2

using definition [4.21]. The relative (real)

angular velocity between S1 and S2 is �ΩR1R2 = θ̇�i, where the relative angle θ and the vector�i
depend, a priori, on the position parameters q and possibly on time t: θ = θ(q, t),�i =�i(q, t) (just

as with the length � of the linear spring). We thus have

θ̇ =
n∑

i=1

∂θ

∂qi
q̇i +

∂θ

∂t

Hence

�ΩR1R2
=

n∑
i=1

∂θ

∂qi
�i(q, t)q̇i +

∂θ

∂t
�i(q, t)

By comparing this relationship with [2.35] or [2.46], we obtain �ωi(q, t) =
∂θ

∂qi
�i(q, t) and

�ωt =
∂θ

∂t
�i(q, t). Hence, using definition [4.21]

�Ω∗
R1R2

=
n∑

i=1

�ωiq̇
∗
i =

n∑
i=1

∂θ

∂qi
�i(q, t)q̇∗i

(In particular, if one of the parameters qi is equal to θ, we find �Ω∗
R1R2

= θ̇∗�i !) Finally,

relationship [5.35] can be written as

P∗(F1↔2) = −cθ

n∑
i=1

∂θ

∂qi
q̇∗i = −

n∑
i=1

∂

∂qi

(
1

2
cθ2
)
q̇∗i �

• The following result extends [5.32] to the case of a nonlinear spring.
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Theorem. Let S1 and S2 be two rigid bodies connected by a spring, as in Theorem [5.32],

except that this time the spring is nonlinear. The force exerted by S1 on S2 is given by

�F1→2 = −k(λ)�i , where k(λ) is a known function (not necessary linear) of the spring

elongation λ
.
= � − �0, having the same sign as λ.

Then, the inter-efforts between S1 and S2 due to the spring are derivable from the potential

V =

∫
k(λ)dλ [5.36]

PROOF. Relationship [5.33], which was written for a linear spring, remains valid here

P∗(F1↔2) = �F1→2.�V
∗
R1S2

(B)

The VV �V ∗
R1S2

(B) is still given by [5.29]. However, as the expression for the

tensile-compressive force has changed, relationship [5.31] now becomes

P∗(F1↔2) = −k(λ)
n∑

i=1

∂�

∂qi
q̇∗i = −k(λ)

n∑
i=1

∂λ

∂qi
q̇∗i �

5.9. VP of the quantities of acceleration

Quantity of acceleration was defined in section 1.13. Here, it is taken equal to �ΓR1S (P, t)dm

= ρ�ΓR1S (P, t)dΩ, where dm (respectively, dΩ) is the mass (respectively, the volume) of an

infinitesimal element within the system S and ρ is the density of the system. Since its unit is

kg m / s2 = N, a quantity of acceleration can be thought of as a fictitious force. The virtual

power of such a force is defined as follows:

Definition. At an instant t, in a VVF �V ∗
R1S , the VP of the quantities of acceleration with respect

to R1 of S , denoted by P∗
R1

(ρ�ΓR1S ), is defined as

P∗
R1

(ρ�ΓR1S ) ≡
∫

S

�ΓR1S (P, t) · �V ∗
R1S (P ) dm [5.37]

Theorem.
HYPOTHESIS [2.26]: The rotation tensor ¯̄Q01 of R1 with respect to R0 does not depend on

q.

Then, the VP of the quantities of acceleration P∗
R1

(ρ�ΓR1S ), at an instant t and in a VVF

V ∗
R1S , takes the form

P∗
R1

(ρ�ΓR1S ) =
n∑

i=1

Ciq̇
∗
i [5.38]

where the coefficients Ci are

Ci =
d

dt

(
∂Ec

R1S

∂q̇i

)
(q(t), q̇(t), t) − ∂Ec

R1S

∂qi
(q(t), q̇(t), t)

or, in shortened form Ci =
d

dt

(
∂Ec

R1S

∂q̇i

)
− ∂Ec

R1S

∂qi

[5.39]

and the parameterized kinetic energy Ec
R1S (q, q̇, t) is defined by [2.54].
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PROOF. Using the adopted hypothesis, the VV of the particle p with respect to R1 is given by

[4.11]. Inserting this relationship into definition [5.37] gives

P∗
R1

(ρ�ΓR1S ) ≡
∫

S

�ΓR1
(p, t) · �V ∗

R1
(p)dm =

n∑
i=1

∫
S

�ΓR1
(p, t) · ∂

−−→
O1P

∂qi
dm q̇∗i =

n∑
i=1

Ciq̇
∗
i

by denoting

Ci ≡
∫

S

�ΓR1(p, t) · ∂
−−→
O1P

∂qi
dm [5.40]

On applying the Lagrange kinematic formula [2.52], which was established using hypothesis

[2.26], we have

Ci =

∫
S

⎡⎣ d

dt

∂
(

1
2
�V 2
R1

(q, q̇, t)
)

∂q̇i
−

∂
(

1
2
�V 2
R1

(q, q̇, t)
)

∂qi

⎤⎦ dm

Assuming that one can interchange integrals and derivatives with respect to qi, q̇i, t, the above

relationship becomes

P∗
R1

(ρ�ΓR1S ) =

n∑
i=1

[
d

dt

(
∂Ec

R1S

∂q̇i

)
− ∂Ec

R1S

∂qi

]
q̇∗i �

If the coefficient q̇∗i in [5.38] has the dimension of a velocity, the coefficient Ci has the

dimension of a force and it may be called the ith generalized quantity of acceleration.

The coefficients Ci in [5.39] were obtained through application of the Lagrange kinematic

formula [2.52]. Their expression is, therefore, governed by the same rules of calculation used in

[2.52].

Note.
The following important points must be kept in mind:

1. In accordance with definition [2.43], �V 2
R1

(q, q̇, t) (which appears in [2.54]) must not be

treated as a composite function of t, but as a function of 2n + 1 independent variables.

The expression for �V 2
R1

is given by [2.53].

Using definition [2.54], the parameterized kinetic energy, Ec
R1S (q, q̇, t), must also be

considered as a function of 2n + 1 independent variables. The expression for this

parameterized kinetic energy is given by [2.55].

2. Thus, it is important to calculate coefficients Ci in [5.39] by carrying out the following

operations in order:

(a) Calculate the derivatives
∂Ec

R1S

∂q̇i
,
∂Ec

R1S

∂qi
with respect to q̇i, qi, considering q̇i and

qi to be independent variables.

(b) Next, in the expressions obtained, replace q by q(t) and q̇ by the derivative q̇(t) =
dq(t)
dt .

(c) Finally, calculate the derivative d
dt as the derivative of the composite function of t

thus formed.
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3. It should be emphasized that the parameterized kinetic energy, Ec
R1S (q, q̇, t), must

be considered as a function of 2n + 1 independent variables (q, q̇, t). Thus, before

deriving Ec
R1S (q, q̇, t) (the first operation listed above), we must take care not to use

any complementary constraint equation that may exist in parameterization [2.19], or an

equation obtained elsewhere (by Lagrange or others), in order to eliminate a qi or a q̇i
from the expression of Ec

R1S (q, q̇, t).



6

Lagrange’s Equations

In this chapter, we will establish the so-called Lagrange’s equations for a system S , made up

of rigid bodies, some of which may be reduced to particles. This system is subjected to various

mechanical efforts (given or constraint efforts, derivable or not from a potential) and to various

mechanical joints (external or internal, holonomic or non-holonomic, perfect or not).

A Galilean reference frame Rg is assumed to be known. The Lagrange’s equations will be

obtained by means of the principle of virtual powers (PVPs) discussed in Chapter 5 and written in

the reference frame Rg . As the PVP is equivalent to the Newton’s laws, the Lagrange’s equations

are the equivalent of the equations arising from Newton’s laws, rather than being complementary

to them. Lagrange’s equations are often combinations of equations derived from Newton’s laws.

Lagrange’s equations in the particular (and common) case of perfect joints will be examined

in Chapter 8.

6.1. Choice of the common reference frame R0

The common reference frame R0 has been defined in [1.24] as a particular reference frame that

is arbitrarily chosen, in which we report all the observed positions of particles (and, in addition,

it is agreed that we denote the positions in R0 without the index 0).

Up to now the reference frame R0 has been freely chosen among all existing reference frames

in the problem considered. In this chapter, we decide to adopt the following convention, which

will determine the choice of R0:

Convention on the choice of the common reference frame R0. As the Galilean reference

frame Rg is known, we choose the common reference R0 equal to Rg:

R0 = Rg [6.1]

This choice simplifies the presentation in the sequel since the rotation tensor of Rg with

respect to R0 is then equal to the identify tensor, ¯̄Q0g = ¯̄I , with the result that the reference

frames (Rg, R0) automatically satisfy both hypotheses [2.26] and [2.33], which were seen several

times in the previous chapters and which are stated once again in the following:

1. HYPOTHESIS [2.26]: The rotation tensor ¯̄Q0g depends explicitly on time alone and

not on q.

2. HYPOTHESIS [2.33]: The rotation tensor ¯̄Q0g and the point Og fixed in Rg do not depend

on q. This hypothesis includes [2.26].
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As was seen in [4.18], hypothesis [2.33], which is now satisfied, implies that the VV �V ∗
Rg

(p)
of a particle is, indeed, independent of the reference frame Rg. The VV is then written without
the reference frame index:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i

where
−→
∂P
∂qi

denotes ∂
−−→
O′P
∂qi

, O′ being any point independent of q, for example the origin Og .

On the other hand, according to [5.8] and [5.11], hypothesis [2.33] implies that the VP of a

system of efforts F→S exerted on the system S is independent of the reference frame Rg with

respect to which it is calculated, which makes it possible to write it without the reference frame
index: P∗(F→S , t).

In particular, the VP of the constraint efforts exerted by the mechanical joints on system S is

independent of the reference frame Rg with respect to which it is calculated and it is denoted by

P∗(Fconstraint→S , t).

The hypotheses [2.26] and [2.33] are required to establish the Lagrange’s equations. By

looking more closely at this, it can be seen that hypothesis [2.26] is sufficient to prove the

Lagrange’s equations [6.2] in a Galilean reference frame, whereas the stronger hypothesis [2.33]

is required to prove the Lagrange’s equations [6.19] in a non-Galilean reference frame.

REMARK. Let us add another comment on hypotheses [2.26] and [2.33].

– In the previous chapters, we differentiated between these hypotheses by choosing either

one or the other, depending on the case, as the former was slightly weaker than the latter.

This might be laborious, but necessary in order to prove the most general results possible

for the real velocities, the VVs and the PVs. These results were general in the sense that

they required the minimal hypothesis.

– From now onwards, we will move on to the applications of the previous chapters, namely,

Lagrange’s equations, the first integrals and the equilibrium. From the beginning, we decide

to adopt convention [6.1], which is simple and includes both hypotheses. �

6.2. Lagrange’s equations

Consider a system S made up of one or more rigid bodies. Its a priori position in R0 is described

by parameterization [2.19] with n retained position parameters q ≡ (q1, . . . , qn). The position P
of a current particle of the system, in R0 and at the instant t, is P = P (q, t) (see [2.21]).

We will describe the motion of the system relative to a reference frame Rg, which is assumed

to be Galilean. The parameterized kinetic energy Ec
RgS (q, q̇, t) of the system S in Rg is defined

by [2.54]. The system is subjected to:

– given efforts (for example, the weight of the system or the forces due to elastic springs),

which yield the generalized forces Di,∈ [1, n] (see definition [5.19]);

– and constraint efforts, which yield the generalized forces Li,∈ [1, n].

The set of these efforts thus produces the generalized forces Qi = Di + Li, i ∈ [1, n].

Theorem.
HYPOTHESIS: The reference frame Rg is Galilean and we choose R0 = Rg according to

convention [6.1].

We then have the following equations, called the Lagrange’s equations of the system S :

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
= Qi = Di + Li [6.2]
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PROOF. The Lagrange’s equations are obtained from the PVP [5.1].

– As the PVP holds for any VVF, it can be applied by restricting ourselves to VVFs V ∗
RgS

given by [4.11]. We will, thus, apply the PVP [5.1] writing “∀ VVFs V ∗
RgS given by [4.11]”

instead of “∀ VVFs”.

– We admit that the considered set of VVFs V ∗
RgS can be obtained by assigning arbitrary

values to the n-tuple (q̇∗1 , . . . , q̇
∗
n). Thus, the PVP will be applied, writing “∀(q̇∗i )1≤i≤n”

instead of “∀ VVFs V ∗
RgS given by [4.11]”.

Let us use results [5.2], [5.16] and [5.38] established in 5, recalling that hypothesis [2.26], which

enabled us to prove [5.38], is satisfied here because of convention [6.1]. Bringing together these

results, the PVP can be written as

∀t, ∀(q̇∗i )1≤i≤n,

n∑
i=1

Ciq̇
∗
i =

n∑
i=1

Qiq̇
∗
i i.e.

n∑
i=1

(Ci − Qi)q̇
∗
i = 0 [6.3]

Hence

∀t, ∀i ∈ [1, n], Ci = Qi �

The Lagrange’s equations obtained, as well as the number of these equations, are dependent

on the parameterization used. Thus, in order to be precise, we should say that [6.2] are Lagrange’s

equations of system S endowed with the parameterization [2.19] instead of writing that they are

the “Lagrange’s equations of the system S”.

The Lagrange’s equations [6.2] are general and hold in all cases: the chosen

parameterization may be total, reduced or independent (see definition [2.18]), the constraint

equations may be holonomic or not, the efforts may be given or unknown, and the mechanical

joints may be perfect or not (the concept of a perfect joint will be defined in Chapter 7).

In accordance with what was seen in Chapter 5, we should comply with the following rules

when establishing the Lagrange’s equations:

1. The left-hand side Ci ≡ d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
must be calculated according to the rules

stipulated in section 5.9.

The parameterized kinetic energy Ec
RgS (q, q̇, t) must be considered as a function of 2n+1

independent variables (q, q̇, t).

Further, we must not use any possible complementary constraint equation that exists in

parameterization [2.19], nor any equations obtained elsewhere (through Lagrange or any

other means) to replace a qi or a q̇i in Ec
RgS by other position parameters. If we were

to modify the expression of Ec
RgS in this way, we would obtain incorrect Lagrange’s

equations.

We must calculate the derivatives
∂Ec

RgS

∂q̇i
,
∂Ec

RgS

∂qi
with respect to q̇i, qi by considering

these to be independent variables.

2. The generalized forces Qi are relative to all the efforts exerted on the rigid bodies of

the system, both the given efforts as well as the constraint efforts (the constraint efforts

physically enforce the primitive and complementary constraint equations).
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While complementary constraint equations cannot be used to modify the expression for

Ec
RgS (q, q̇, t) before calculating the derivatives

∂Ec
RgS

∂q̇i
,
∂Ec

RgS

∂qi
, they may freely be used after

obtaining these derivatives.

• Let us specify the expression of the generalized force Di in Lagrange’s equations [6.2] by

decomposing the given efforts into two categories:

– those that are derivable from a potential VRg , which yield the generalized forces

−∂VRg

∂qi
, i ∈ [1, n] (see definitions [5.20]–[5.21]);

– those that are not derivable from a potential, which yield the generalized forces denoted

D′
i, i ∈ [1, n].

This leads us to express the generalized forces corresponding to the given efforts as

Di = −∂VRg

∂qi
+D′

i [6.4]

whence the Lagrange’s equations [6.2] become

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
= D′

i + Li [6.5]

As with the kinetic energy, the complementary constraint equations must not be used to

modify the expression for potential VRg (q, t) before calculating the derivative
∂VRg

∂q̇i
. These

complementary constraint equations can only be used after differentiation.

Establishing Lagrange’s equations thus requires the calculation of four ingredients:

1. the parameterized kinetic energy Ec
RgS (q, q̇, t),

2. the potential VRg (q, t),

3. the generalized forces D′
i corresponding to given efforts that do not admit of a potential,

4. and the generalized forces Li corresponding to the unknown constraint efforts.

The kinetic energy Ec
RgS and the potential VRg are obtained as described in Chapter 5. Let us

examine the generalized forces D′
i and Li:

– Knowing the expression for the given efforts not derivable from a potential, their VP can

be easily calculated and from this we can derive the D′
i coefficients.

– The calculation of the Li coefficients is not so straightforward. Here, the existing

mechanical joints must first be analyzed and the constraint efforts Fconstraint→S acting on

the system must be identified. We then calculate the VP of the constraint efforts and from

this we derive the Li coefficients. Generally speaking, the Li coefficients depend on the

constraint efforts. However, depending on the chosen parameterization, it may be that

certain constraint efforts do not appear among the Li coefficients.

The result of this operation can be summarized as follows:

∀i ∈ [1, n], Li = function of (all or certain) constrait efforts Fconstraint→S [6.6]
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There does exist a case where one does not have to study the joints in detail and where the

calculation of the Li coefficients becomes a systematic and simple procedure. This is the

case of perfect joints, which will be studied in Chapters 7–8.

• Since the kinetic energy Ec
RgS has the form [2.55] and the potential VRg is a function of

(q, t), the left-hand-side term in [6.5] is a function of (q(t), q̇(t), q̈(t), t).
Consequently, the Lagrange’s equations [6.5] yield n second-order time differential equations,

which are, in general, nonlinear and coupled.

• It will be seen from the examples that the Lagrange’s equations and the equations resulting

from Newton’s laws are equivalent in the sense that the Lagrange’s equations are linear

combinations of Newton’s equations or vice versa.

6.3. Review and the need to model joints

Let us review the unknowns and the equations involved when studying the motion of the system S .

If no constraint effort exists in the problem under consideration (in other words, if the only

efforts that come into play are given efforts), then the generalized constraint forces L1, . . . , Ln

are zero. In this case, the Lagrange’s equations [6.5] form n equations for n unknowns q and the

problem is (theoretically) closed. This is what happens in celestial mechanics, where only

gravitational force (the at-a-distance force given by the gravitational law) is present.

On the other hand, if we are examining a single rigid body that is connected to the exterior or

several rigid bodies that are connected to each other and/or to the exterior, then constraint efforts

are inevitable and the situation becomes more complex:

Summary of the equations and the unknowns.

(i) We have the following unknowns:

– the n position parameters q ≡ (q1, . . . , qn),

– and the constraint efforts present in expressions [6.6] for the generalized constraint

forces Li. Let us denote the number of such efforts by nf�.

Thus, there are a total of n+ nf� unknowns.

(ii) There are n+ � equations, which consist of

– exactly n Lagrange’s equations [6.5] (no more and no less, with the parameterization

used),

– � complementary constraint equations whose number depends on the chosen

parameterization. These equations, which may or may not be holonomic, are

assumed to be independent.

In general, in a dynamic problem, it turns out that the number of complementary constraint

equations is smaller than the number of constraint efforts present in [6.6]: � ≤ nf� .

It can be seen from this summary that in general nf� − � equations are lacking. Consequently,

the mechanical principles alone – the PVP or Newton’s laws – are not enough to solve motion

problems. To obtain the lacking nf� − � relationships, we must study the physical nature of the
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contacts at the mechanical joints and choose a modelization of the joints so as to obtain additional

relationships, which are called the contact laws.

One particular model that is of great interest in mechanics is that of the perfect joint: in the

case of perfect joints, the equality � = nf� occurs systematically and, as a consequence, the

Lagrange’s equations and complementary constraint equations are sufficient to yield as many

equations as unknowns.

To summarize this: in the general case, there are n+ nf� unknowns (n kinematic unknowns,

q and nf� unknown constraint efforts) and n+ nf� equations to be solved:⎧⎨⎩ · n Lagrange’s equations [6.5],
· � complementary constraint equations,
· nf� − � contact laws.

[6.7]

Furthermore, we may also have to verify some inequalities imposed by unilateral joints. For

example, in the case of a point contact, the normal contact force N must satisfy the condition

N ≥ 0; if it is assumed that there is no slipping, we must also verify an inequality of the type

‖�T‖ ≤ fN , where �T is the tangential contact force and f is the coefficient of friction.

REMARKS.

1. For the system to be able to move, the number of constraint equations must be strictly

smaller than the number n of the position parameters (the difference between the number

of position parameters and the number of constraint equations gives the degrees of freedom

of the system). As the number of complementary constraint equations is always smaller

than the number of constraint equations, it follows that we must have � < n .

2. If all the constraint equations are holonomic and their number is greater than n, then we

have a static problem (isostatic or hyperstatic), where the system does not move. Statics

and equilibrium problems will be studied in Chapter 10.

3. To solve hyperstatic problems, where there is a deficit of equations, we must use the

mechanics of deformable bodies. The principles of mechanics alone will not provide a

sufficient number of field equations and we must use additional relationships, called

constitutive laws for the materials being considered (laws that relate stresses to strains). �

Definition. A function t �→ q(t) of class C2 is a motion of S if it satisfies all the equations

[6.7], for a certain set of values for the existing constraint efforts. [6.8]

We will accept the principle that the set of motions as defined in [6.8] is the set of all possible
physical motions of S . In other words, any motion as defined in [6.8] in fact defines a possible

physical motion of the mechanical system S . Conversely, any possible physical motion of S is

defined from a motion in [6.8].

6.4. Existence and uniqueness of the solution

The summary given above shows that there are as many equations as unknowns and we may,

thus, hope to be able to solve the mechanical problem. The question that arises now is whether

there does indeed exist a solution to the equations system [6.7] and, if so, whether the solution is

unique.

• To respond to these questions, let us carry out a preliminary transformation that is not of

much use from the mechanical point of view, but that is necessary for the mathematical analysis.
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Given the explicit expression [2.55] for the parameterized kinetic energy Ec
RgS (q, q̇, t), it can

be observed that in the ith Lagrange’s equation [6.5], the derivatives
∂Ec

RgS

∂qi
,
∂VRg

∂qi
and the

generalized forces D′
i, Li do not contain the second derivatives q̈j . Only the derivative

d

dt

∂Ec
RgS

∂q̇i

contains the second derivatives q̈j via the term

n∑
j=1

aij(q, t)q̈j .

Therefore, the Lagrange’s equations [6.5] are second-order differential equations, linear with

respect to the second derivatives q̈j , and they take the form

∀i ∈ [1, n],
n∑

j=1

aij(q, t)q̈j + function of (q, q̇, t) = Li

and thus, by recasting these equations in matrix form:

[a(q, t)]{q̈} + column vector function of ({q}, {q̇}, t) = {L}
where [a(q, t)] is the n × n square matrix whose (i, j) component is aij , {q} (respectively, {L})

is the column vector whose ith component is qi (respectively, Li).

According to [2.56], the matrix [a(q, t)] is symmetric. It is positive because

∀{q̇}, {q̇}T [a(q, t)]{q̇} =
n∑

i=1

n∑
j=1

aij(q, t) q̇iq̇j =

∫
S

(
n∑

i=1

∂
−−→
O1P

∂qi

)2

dm ≥ 0

If we remove singular cases and retain only the so-called “regular” cases, where the matrix

[a(q, t)] is positive definite, this matrix is invertible.

Therefore, if there are no constraint efforts (i.e. if the Li are zero), then the Lagrange’s

equations can be written in the form of n differential equations, resolved in the second

derivatives q̈:

q̈ = F (q, q̇, t) [6.9]

where, according to the hypotheses already adopted, the function F is continuous over its domain.

When the Lagrange’s equations contain unknown constraint efforts, it is often possible to use

the set of equations [6.7] in order to eliminate the constraint efforts and thus arrive at equations

of the form [6.9].

The fact that the Lagrange’s equations generally lead to equations of the form [6.9] is a very

important point from the mathematical point of view.

• Once the form [6.9] is obtained, the problem of the existence and uniqueness of the solution

is stated as follows:

– Take an initial instant t0 and the initial conditions q0, q̇0, such that (t0, q0, q̇0) belongs to

the domain of F .

– Is there a solution t �→ q(t) for equation [6.9], defined on a time interval (open, semi-open

or closed) containing t0, and verifying q(t0) = q0 and q̇(t0) = q̇0? If so, is this solution

unique?

The above-mentioned time interval may or may not be given. If it is not given, we seek to

obtain the largest possible time interval.

Mathematical analyses of equation [6.9] have led to sufficient conditions for the existence and

uniqueness of a local solution to the previous initial-value problem (Cauchy–Lipschitz conditions)

and even for the extension of this local solution. We will retain only two important results:
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– If there are no inequalities to be verified in addition to equations [6.7], then in the

overwhelming majority of cases, the above-stated initial-value problem has a unique
solution that can be extended in a more or less large time interval, and sometimes in the

infinite time interval t ≥ t0.

– If there are inequalities that must be verified (this is the case with problems with unilateral

joints or friction), then it often happens that there is no solution or that the solution exists

but is not unique.

6.5. Equations of motion

In practice, as the unknown constraint efforts appear as linear variables in Lagrange’s equations,

one can always manage to eliminate these efforts in favor of the kinematic unknowns q. It is

assumed here that this operation is carried out and we thus arrive at a system of n equations for n
unknowns q.

Definition. An equation of motion for the system S is an equation that contains only (q, q̇, q̈, t)
and no constraint efforts. This is a differential equation in q(t).

The equations of motion take the form

Φi(t, q, q̇, q̈) = 0, i ∈ [1, n]

Once the equations of motion are solved, one can calculate the constraint efforts as functions

of (q, q̇, q̈, t).

6.6. Example 1

We work in a Galilean reference frame Rg = R0 endowed with the coordinate system

(O; �x0, �y0, �z0) and we consider a disk S of center C, of radius R, homogeneous and of mass m
(Figure 6.1). The disk is moving in the plane O�x0�y0 and remains in contact with axis O�x0 at

point I . It is subjected to the gravity field −g�y0 and a constant torque Γ�z0. The contact efforts at

I are T�x0 + N�y0 (N is the normal contact force, T is the tangential contact force) and Γr�z0
(Γr is the torque due to the rolling resistance).

Figure 6.1. Disk rolling along an axis
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The a priori position of the disk in R0 is defined by the coordinates (x, y) of the center C and

the angle of rotation ϕ of the disk, equal to the angle between �x0 and a radius
−→
CA attached to the

disk. The contact between the disk and the axis O�x0 is expressed through the constraint equation

y = R (a holonomic relationship). The disk has, thus, 2 degrees of freedom.

We choose the following parameterization:

PARAMETERIZATION.

• The primitive parameters are (x, y, ϕ).

• We put the constraint equation y = R in primitive category, which enables us to eliminate y
in the calculations.

• The retained parameters for the problem are, therefore, q = (x, ϕ).

• There is no complementary constraint equation.

The parameterized kinetic energy of the disk S with respect to R0 is

Ec
0S =

1

2
m(ẋ2 + ẏ2) +

1

2
Iϕ̇2 =

y=R

1

2
mẋ2 +

1

2
Iϕ̇2,

where I ≡ 1
2mR2 is the moment of inertia of S about axis C�z0. The weight of the system is

derivable from the potential

V0 = mgy + const =
y=R

const,

where const denotes an arbitrary constant. The VP of the given torque Γ is

P∗(Γ�z0) = Γ�z0.�Ω
∗
0S with �Ω∗

0S = ϕ̇∗�z0,
= Γϕ̇∗

which gives (D′
1, D

′
3) = (0,Γ).

What now remains to be calculated is the VP of the constraint efforts (that is, the contact

forces N,T and the torque Γr due to the rolling resistance):

P∗(Fconstraint→S) = (T�x0 +N�y0).�V
∗
0S(I) + Γr�z0.�Ω

∗
0S

Note, in passing, that the reference frame R0 appears in the indices of the VV �V ∗
0S(I) and

virtual angular velocity �Ω∗
0S . However, the right-hand side does not actually depend on R0 as the

hypothesis [2.33] is satisfied.

The VV at I is calculated using [4.35]: �V ∗
0S(I) =

�V ∗
0S(C) + �Ω∗

0S × −→
CI , where the VV at the

center C is given by [4.11]:

�V ∗
0S(C) =

−→
∂C

∂x
ẋ∗ +

−→
∂C

∂ϕ
ϕ̇∗ with

−−→
OC = x�x0 + y�y0 = x�x0 +R�y0

= ẋ∗�x0

Hence �V ∗
0S(I) = (ẋ∗ +Rϕ̇∗)�x0. Consequently, the VP of the constraint efforts is

P∗(Fconstraint→S) = (T�x0 +N�y0).�V
∗
0S(I) + Γr�z0.�Ω

∗
0S

= T ẋ∗ + (Γr + TR)ϕ̇∗

which gives (L1, L2) = (T,Γr + TR).
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Lagrange’s equations [6.5] are, thus, written as

Lx : mẍ = T
Lϕ : Iϕ̈ = Γ + Γr + TR

where the symbol Lx, for instance, denotes Lagrange’s equation corresponding to qi = x.

We only have two Lagrange’s equations for four unknowns: two kinematic unknowns x, ϕ
and two unknown constraint efforts T,Γr, i.e. two equations are lacking for us to be able to solve

the problem. The lacking equations are given by the contact laws at point I , for example:

– It may be assumed that the contact surface is rough enough at I for the slipping to be zero

at any instant, which is expressed by the constraint equation ẋ + Rϕ̇ = 0 (non-holonomic

equation). We can also assume that there is no friction, such that T = 0 at any instant.

– It may be assumed that the torque due to the rolling resistance is governed by the law

Γr = hN , where h is the rolling resistance coefficient (the counterpart of the coefficient

of friction), provided that N is known. Simply, it may be assumed that there is no rolling

resistance, h = 0, such that Γr = 0 at any instant.

These contact hypotheses will be specified in the following example.

6.7. Example 2

We return to the previous example of the disk in contact with an axis, assuming that there is no slip

at the contact point I at any instant and no rolling resistance, Γr = 0. The problem is represented

by Figure 6.1, where the torque Γr is removed.

The problem has two constraint equations: the geometric contact condition at I , y = R
(holonomic relationship) and the no-slip condition ẋ + Rϕ̇ = 0 (semi-holonomic relationship).

The holonomic relationship may be classified either as a primitive equation or a complementary

equation. On the other hand, as the non-holonomic equation cannot be used to eliminate a position

parameter, it must be classified as a complementary equation.

We will write the equations considering two different parameterizations – the first is a reduced

parameterization and the second is a total one, as per definition [2.18] – and we will see the

repercussions of the choice of parameterization on the equation obtained.

6.7.1. Reduced parameterization

We choose the following reduced parameterization, which is similar to the parameterization

chosen in the previous example, except that, here, there is also the additional no-slip condition,

which appears as a complementary constraint equation:

PARAMETERIZATION.

• The primitive parameters are (x, y, ϕ).

• The constraint equation y = R is classified as a primitive equation.

• The retained parameters of the problem are, thus, q = (x, ϕ).

• The complementary constraint equation is ẋ+Rϕ̇ = 0.
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The parameterized kinetic energy and the potential have the same expressions as in the

previous example:

Ec
0S =

1

2
m(ẋ2 + ẏ2)+

1

2
Iϕ̇2 =

y=R

1

2
mẋ2 +

1

2
Iϕ̇2 and V0 = mgy+ const =

y=R
const

We can use the primitive constraint equation y = R to eliminate y from the expressions. On

the contrary, at this stage, we cannot use the complementary constraint equation ẋ+ Rϕ̇ = 0 to

eliminate, for example, ϕ̇ in favor of ẋ in the expression for Ec
0S . The complementary constraint

equations can only be used after differentiating the kinetic energy.

The VP of the contact efforts at I is the same as in the previous example, except that here the

torque Γr is zero:

P∗(Fconstraint→S) = T ẋ∗ + TRϕ̇∗

Lagrange’s equations [6.5] thus give

Lx : mẍ = T
Lϕ : Iϕ̈ = Γ + TR

Taking account of the complementary constraint equation ẋ + Rϕ̇ = 0, we have three

second-order differential equations in time for two kinematic unknowns x, ϕ and the force

unknown T . We easily obtain

ẍ = − 2Γ

3mR
ϕ̈ =

2Γ

3mR2
T = − 2Γ

3R
[6.10]

6.7.2. Total parameterization

We will now change the parameterization by classifying the constraint equation y = R as a

complementary equation:

PARAMETERIZATION.

• The primitive parameters are still x, y, ϕ.

• There is no primitive constraint equation.

• Consequently, the retained parameters are the same: x, y, ϕ.

• The complementary constraint equations are y = R and ẋ+Rϕ̇ = 0.

The parameterized kinetic energy and the potential are

Ec
0S =

1

2
m(ẋ2 + ẏ2) +

1

2
Iϕ̇2 and V0 = mgy + const

Since we are not allowed to use the complementary constraint equations at this stage, we

cannot transform these expressions as was done in the first parameterization. The expression of

the VVF also changed with respect to that of the first parameterization. According to [4.11]:

�V ∗
0S(C) =

−→
∂C

∂x
ẋ∗ +

−→
∂C

∂y
ẏ∗ +

−→
∂C

∂ϕ
ϕ̇∗ with

−−→
OC = x�x0 + y�y0

= ẋ∗�x0 + ẏ∗�y0

Hence, using [4.35]:

�V ∗
0S(I) =

�V ∗
0S(C) + �Ω∗

0S × −→
CI = (ẋ∗ +Rϕ̇∗)�x0 + ẏ∗�y0
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The VP of the constraint efforts at I is thus

P∗(Fconstraint→S) = (T�x0 +N�y0).�V
∗
0S(I) + Γr�z0.�Ω

∗
0S

= T ẋ∗ +Nẏ∗ + (Γr + TR)ϕ̇∗

Lagrange’s equations [6.5] write

Lx : mẍ = T
Ly : mÿ = N − mg
Lϕ : Iϕ̈ = Γ + TR

to which are added the complementary constraint equations y = R and ẋ+Rϕ̇ = 0. We thus have

five equations for three kinematic unknowns x, ϕ and two force unknowns N,T . By solving these

equations, we arrive again at the same results [6.10] for x, ϕ, T as in the first parameterization

and, in addition, we find the normal contact force N :

N = mg

6.7.3. Comparing the two parameterizations

The two parameterizations we have studied differ only in how the constraint equation y = R is

classified: in the first parameterization, this equation is treated as a primitive constraint equation,

while in the second it is considered as complementary constraint equation. It can be seen that the

information obtained varies in richness, depending on which parameter is chosen:

1. With the first parameterization, which is a reduced parameterization, we have three

equations for three unknowns and we are able to determine the position parameters x, ϕ
and the tangential contact force T .

2. With the second, which is a total parameterization, we have five equations for five

unknowns. We are able to obtain the same quantities as before and, in addition, we obtain

the expression for the normal contact force N , which cannot be obtained with the first

parameterization.

If we do not wish to study the force N , it is sufficient to choose the reduced parameterization.

If we do wish to study this force, then we must choose the second parameterization in which

the constraint equation y = R, ensured by the force N itself, is classified as a complementary

equation.

Figuratively speaking, putting the constraint equation y = R into complementary equations

amounts to “virtually releasing the contact constraint at I” so as to “make the contact force N
do virtual power”.

In analytical mechanics, parameterization, as defined in [2.19], is the first task to be dealt with
in solving a problem and is a fundamental task that is incumbent on the physicist to carry out. In

general, the primitive parameters are quite obvious in view of the geometry of the problem and

the constraint equations can easily be identified in view of the existing mechanical joints. What

then remains to be chosen is the classification of the constraint equations: putting this equation in

the primitive category and another in the complementary category. The physicist is free to choose

the parameterization, i.e. the classification of the constraint equations. They must simply choose

an appropriate parameterization that will provide the desired information.

As has just been seen in this example, if we wish to obtain the normal contact force – in

order to know, for example, whether the contact at I is persistent – we must choose the second

parameterization and not the first.
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6.8. Example 3

In the following example, the calculation of the constraint forces is a little more complicated than

in the previous example.

Consider a system S made up of two rigid bodies, a cart (C) and a particle p, as shown in

Figure 6.2. The system is in plane motion in a Galilean reference frame Rg = R0 endowed with

the coordinate system (O; �xg, �yg, �zg).

Figure 6.2. Cart connected to a particle

– The system S is subjected to the gravity field −g�yg.

– The mass of the cart (C) is M and its center of mass is G. It is assumed that the connection

between the cart and its wheels are such that the constraint efforts exerted by the wheels on

the cart are reduced to vertical forces.

– The particle p has mass m.

– The cart is attached to a massless spring of stiffness k. It is assumed that the spring is

unstretched when x = 0.

One end A of the spring is attached to (C) and the other end to the axis O�yg fixed in Rg .

– (C) and p are connected to each other by a flexible, inextensible wire with no mass. This

wire rests on a pulley which has no mass and which rotates, without friction, around the

O′�zg axis.

The a priori position of the system in Rg is defined by the abscissa x of point A, which

represents the position of the cart, and the ordinate y of the particle. Since the ordinate y is

measured parallel to vector �yg , it is negative in Figure 6.2.

The constraint equation that expresses the rope connection between (C) and p is written as

follows (note that y < 0 and thus |y| = −y):

x+ y = const ↔ y = const− x,

where const denotes a known, fixed constant that does not need to be specified.

As in the previous example, we will write the equations considering two different

parameterizations and we will compare the respective results.
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6.8.1. Independent parameterization

Let us start by choosing the following independent parameterization:

PARAMETERIZATION.

• The primitive parameters are x, y.

• The constraint equation x + y = const due to the rope is classified as primitive. This then

allows us to express y as a function of x through y = const − x.

• The retained parameter of the problem is, therefore, x.

• There is no complementary constraint equation.

The parameterized kinetic energy Ec
gS (x, ẋ) is

Ec
gS =

1

2
Mẋ2 +

1

2
mẏ2 with ẏ = −ẋ

=
1

2
(M +m)ẋ2

[6.11]

The weight of the system is derivable from the potential

Vg(Fweight�S ) = MgyG +mgy + const where

{
yG, the ordinate of G, is constant

y = const − x
= −mgx+ const

Further, according to [5.27] and taking into account the fact that the spring is unstretched

when x = 0, the restoring force on the cart due to the spring is derivable from the potential

Vg(Fspring�C) =
1

2
kx2 + const. The total potential is, therefore:

Vg = −mgx+
1

2
kx2 + const [6.12]

What remains is to calculate the VP of the efforts that are not derivable from a potential. These

are (i) the forces exerted by the wheels on the cart and (ii) the tensions in the rope exerted on the

cart and on the particle (recall that the spring, the rope and the wheels of the cart are not part of

the mechanical system being studied).

– The forces exerted on the cart by the wheels are vertical with magnitudes Y1, Y2

(see Figure 6.3(a)).

– As concerns the tension in the rope, it has the same value T on the cart as well as on the

particle, as the rope and the pulley have no mass and the pulley rotates about its axis without

friction.

REMARK. This assertion can be proved either by writing Lagrange’s equation for the

pulley alone or by writing the moment equation (from Newton’s laws) about axis O′�zg , for

the pulley alone. Let us describe how this is done using Newton’s laws. Let T1, T2 denote

the tensions in the rope exerted, respectively, on the cart and on the particle (Figure 6.3(b)).

As the pivot between the pulley and its axis is frictionless, the resultant force of the

constraint efforts exerted by the support on the pulley is �RO′ ≡ �Rsupport�pulley passing

through O′ and the resultant moment about O′ is zero. By applying Newton’s laws on the

pulley, for instance, we have, using the obvious notations, Iϕ̈ = a(T1 − T2). As the pulley

has no mass, the moment of inertia I is zero and we obtain T1 = T2, denoted by T . �



Lagrange’s Equations 125

a) b)

Figure 6.3. External efforts on the cart and particle

The VP is calculated in the VVF [4.11] associated with the chosen parameterization:

– VVF of the cart (C): ∀ particle p′ of the cart, of position P ′, �V ∗(p′) =
−−→
∂P ′

∂x
ẋ∗ = ẋ∗�xg;

– VVF of the particle p:

�V ∗(p) =

−→
∂P

∂x
ẋ∗, where

−−→
OP = const�xg + y�yg = const�xg + (const − x)�yg

= −ẋ∗�yg

From this, we can derive the VP of efforts non-derivable from a potential:

P∗(Fwheels�C) = (Y1�xg).(ẋ
∗�xg) + (Y2�xg).(ẋ

∗�xg) = 0
P∗(Frope�C) = (T�xg).(ẋ

∗�xg)
P∗(Frope�p) = (T�yg).(−ẋ∗�yg)

}
⇒ P∗(Frope�S ) = 0

⎫⎬⎭⇒ P∗(Fwheels and rope) = 0

[6.13]

REMARK. Anticipating Chapter 7, we know that the connection by a flexible, inextensible

massless wire is a perfect joint (see definition [7.79]) and that the considered VVF is compatible

with this joint as there is no complementary constraint equation. From this, it can be directly

concluded that P∗(Frope�S = C ∪ p) = 0. �

Taking into account [6.11]–[6.13], Lagrange’s equation [6.5] corresponding to x can be

written as

(M +m)ẍ+ kx = mg [6.14]

This is a second-order time differential equation for the kinematic unknown x. By denoting
k

M +m
= ω2

0 and
mg

M +m
= ω2

0d (ω0 > 0 and d > 0), the previous equation can be recast as

ẍ+ ω2
0x = ω2

0d

By taking into account the initial conditions x(0) = x0 and ẋ(0) = ẋ0, where x0 and ẋ0 are

given, we obtain

x(t) = (x0 − d) cosω0t+
ẋ0

ω0
sinω0t+ d [6.15]

The cart and the particle are in oscillatory motion, the circular frequency ω0 of which depends

on the stiffness of the spring and on the total mass of the system.
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6.8.2. Total parameterization

We will now work with another parameterization, where the constraint equation x + y = const
due to the rope is, this time, classified as a complementary equation:

PARAMETERIZATION.

• The primitive parameters are still x and y.

• There is no primitive constraint equation.

• Consequently, the retained parameters are the same: x and y.

• The complementary constraint equation is x+ y = const.

This time, the parameterized kinetic energy is, a priori, a function of x, y, ẋ, ẏ:

Ec
gS (x, y, ẋ, ẏ) =

1

2
Mẋ2 +

1

2
mẏ2 [6.16]

The potential of the spring is the same as in the first parameterization, while the potential due

to the weight of the system does change:

Vg(Fweight�S ) = MgyG +mgy + const where yG is constant

= mgy + const

The total potential is, therefore:

Vg = mgy +
1

2
kx2 + const [6.17]

The VVF associated with the parameterization also changes:

– The VVF of the cart (C): ∀ particle p′ of the cart whose position is P ′,

�V ∗(p′) =
−−→
∂P ′

∂x︸︷︷︸
�xg

ẋ∗ +
−−→
∂P ′

∂y︸︷︷︸
�0

ẏ∗ = ẋ∗�xg

– VVF of the particle p:

�V ∗(P ) =

−→
∂P

∂x︸︷︷︸
�0

ẋ∗ +
−→
∂P

∂y︸︷︷︸
�yg

ẏ∗ = ẏ∗�yg

Consequently, the VP in this VVF of the efforts that are not derivable from a potential is

P∗(Fwheels�C) = 0
P∗(Frope�C) = (T�xg).(ẋ

∗�xg) = T ẋ∗

P∗(Frope�p) = (T�yg).(ẏ
∗�yg) = T ẏ∗

⎫⎬⎭⇒ P∗(Fwheels and rope) = (T −kx)ẋ∗+(T −mg)ẏ∗

[6.18]

By taking into account [6.16]–[6.18], Lagrange’s equations [6.5] are written as

Lx : Mẍ = T − kx
Ly : mÿ = T − mg
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These equations, combined with the complementary constraint equation x + y = const
(which can only be used now), make up three equations for three unknowns: the two kinematic

unknowns x, y and the unknown constraint effort, which is the tension T in the rope. By solving

these equations, we once again arrive at the equation of motion [6.14] and we also obtain the

relationship for the tension T :

T = mg +mω2
0(x − d)

Hence, taking into account [6.15]:

T = mg +mω2
0

[
(x0 − d) cosω0t+

ẋ0

ω0
sinω0t

]
= mg +mω2

0C cos(ω0t − ϕ)

with C ≡
√
(x0 − d)2 +

ẋ2
0

ω2
0

. The expression for T allows us to find the inequality that the initial

conditions x0, ẋ0 must satisfy in order for the rope to remain taut:

∀t T ≥ 0 ⇔ mg ≥ mω2
0C ⇔ (x0 − d)2 +

ẋ2
0

ω2
0

≤
(
1 +

M

m

)2

d2

6.8.3. Comparing the two parameterizations

As in the previous example, it is seen that given the same mechanical system, the richness of the

information obtained depends on the chosen parameterization. Thus, the parameterization is a
preliminary task, which is of primordial importance in analytical mechanics. Here, if we wish to

study only the motion of the system, it is sufficient to choose the independent parameterization.

On the other hand, if we wish to also find the tension T in the rope, we must choose the second

parameterization in which the constraint equation x + y = const, which is ensured by the very

tension T , is classified as a complementary equation.

Figuratively speaking, classifying the constraint equation x+ y = const as a complementary

equation amounts to “virtually cutting the rope”, so as to make the tension T do virtual power.

REMARK. Anticipating Chapter 7, we know that the connection by a rope, considered in this

example, is a perfect joint. On the other hand, we also know that the VVF associated with the

second parameterization is not compatible with this joint. This leads to a non-zero VP for the

tension T and to the presence of T in Lagrange’s equations. �

6.9. Working in a non-Galilean reference frame

In certain cases, we may have to work in a non-Galilean (or non-inertial) reference frame R1. The

Lagrange’s equations relative to such a reference frame are given by the following theorem.

Theorem. Let S be a system made up of one or more rigid bodies and endowed with the
parameterization [2.19]. Consider two reference frames, Rg , which is Galilean, and R1, which

is non-Galilean.

HYPOTHESES:

(i) We choose R0 = Rg according to convention [6.1].

(ii) It is assumed that the non-Galilean reference frame R1 verifies [2.26], i.e. the rotation

tensor ¯̄Q01 does not depend on q.
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Then, the Lagrange’s equations for the system S are written in the non-Galilean reference

frame R1 as follows:

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
R1S

∂q̇i
− ∂Ec

R1S

∂qi
= Qi − C

(RgR1)
i − C

(Coriolis)
i [6.19]

where:

– Ec
R1S (q, q̇, t) is the parameterized kinetic energy of the system S with respect to R1,

defined by [2.54];

– Qi is the ith generalized force of the efforts

Qi =

∫
S

�f(P, t).

−→
∂P

∂qi
dm+

∑
s

∫
Ss

�c(P, t)dm .�ωi
1s

– C
(RgR1)
i is, by definition, C

(RgR1)
i ≡

∫
S

�ΓRgR1 .

−→
∂P

∂qi
dm , where �ΓRgR1(P, t) is the

so-called background acceleration, as defined in [1.72];

– C
(Coriolis)
i is, by definition, C

(Coriolis)
i ≡

∫
S

[
2�ΩRgR1 × �VR1S (P )

]
.

−→
∂P

∂qi
dm , where

�ΓCoriolis ≡ 2�ΩRgR1 × �VR1S (P ) is the Coriolis acceleration.

The Lagrange’s equations can, thus, be written in a non-Galilean reference frame, provided that

the generalized forces due to the background inertial forces and the Coriolis inertial forces are

added to the right-hand side.

PROOF. The reasoning is similar to that used for the Lagrange’s equations [6.2]. As Rg is

Galilean, the PVP [5.1] may be applied in Rg:

∀t, ∀ CVV V ∗
RgS , P∗(ρ�ΓRgS ) = P∗(F→S ) [6.20]

• According to [5.16], the VP of the effort system F→S in the VVF V ∗
RgS has the form

P∗(F→S ) =

n∑
i=1

Qiq̇
∗
i [6.21]

where, because hypothesis [2.26] (written with Rg instead of R1) is satisfied because of

hypothesis (i), the coefficient Qi is given by [5.18]:

Qi =

∫
S

�f(P, t).
∂
−−→
OgP

∂qi
dm+

∑
s

∫
Ss

�c(P, t)dm .�ωi
1s

Furthermore, the point Og fixed in Rg may be omitted as it is assumed independent of q.

• On the other hand, on account of the composition formula for accelerations [1.71]:

�ΓRgS (P, t) = �ΓRgR1(P, t) +
�ΓR1S (P, t) + 2�ΩRgR1 × �VR1S (P, t)︸ ︷︷ ︸

≡�ΓCoriolis
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the VP of the quantities of acceleration P∗(ρ�ΓRgS ), at an instant t, in the VVF V ∗
RgS , takes the

form

P∗(ρ�ΓRgS ) =

∫
S

�ΓRgS · �V ∗
RgS dm

=

∫
S

�ΓRgR1 · �V ∗
RgS dm︸ ︷︷ ︸

�

�

�

�
1

+

∫
S

�ΓR1S · �V ∗
RgS dm︸ ︷︷ ︸

�

�

�

�
2

+

∫
S

[
2�ΩRgR1 × �VR1S (P )

]
· �V ∗

RgS dm︸ ︷︷ ︸
�

�

�

�
3

[6.22]

where the terms
�

�

�

�
1 ,

�

�

�

�
2 ,

�

�

�

�
3 will be developed in detail below.

For term
�

�

�

�
2 , note that [4.44] is applicable by virtue of the adopted hypotheses: the virtual

velocity does not depend on the reference frame and can be written as

�V ∗
RgS (P ) = �V ∗

R1S (P ) =
n∑

i=1

−→
∂P

∂qi
q̇∗i [6.23]

Hence
�

�

�

�
2 ≡

∫
S

�ΓR1S · �V ∗
RgS dm =

∫
S

�ΓR1S · �V ∗
R1S dm ≡ P∗

R1
(ρ�ΓR1S )

In the previous relationship, we wrote the reference frame index R1 in the VP (P∗
R1

(ρ�ΓR1S ))
in order to make it easier to follow the reasoning. However, as the VP is, in fact, independent of

the reference frame, the index R1 will be removed. Hypothesis (ii), which is hypothesis [2.26],

allows us to apply [5.38]:

�

�

�

�
2 = P∗(ρ�ΓR1S ) =

n∑
i=1

Ciq̇
∗
i where Ci ≡ d

dt

(
∂Ec

R1S

∂q̇i

)
− ∂Ec

R1S

∂qi
[6.24]

As concerns terms
�

�

�

�
1 and

�

�

�

�
3 , they are written taking into account [6.23]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

�

�

�
1 ≡

∫
S

�ΓRgR1 · �V ∗
RgS dm =

n∑
i=1

C
(RgR1)
i q̇∗i or C

(RgR1)
i ≡

∫
S

�ΓRgR1 .

−→
∂P

∂qi
dm

�

�

�

�
3 ≡

∫
S

[
2�ΩRgR1 × �VR1S (P )

]
· �V ∗

RgS dm =

n∑
i=1

C
(Coriolis)
i q̇∗i

where C
(Coriolis)
i ≡

∫
S

�ΓCoriolis.

−→
∂P

∂qi
dm

[6.25]

Inserting [6.24]–[6.25] into [6.22] yields

P∗
(
ρ�ΓRgS

)
=

n∑
i=1

[
C

(RgR1)
i + Ci + C

(Coriolis)
i

]
q∗i [6.26]

• By combining [6.21] and [6.26], the PVP [6.20] gives

∀i ∈ [1, n], C
(RgR1)
i + Ci + C

(Coriolis)
i = Qi �

A priori, the VP done by the Coriolis forces (= −
�

�

�

�
3 ) is not zero, unlike the real power of the

same forces, which is indeed zero:

−
∫

S

[
2�ΩRgR1 × �VR1S (P )

]
· �VR1S (P )dm = 0
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Perfect Joints

In this chapter:

– we will define the concept of a VVF compatible with a mechanical joint,

– we will prove the invariance of the VVF compatible with a joint in different

parameterizations,

– we can then define the concept of a perfect joint by using the previous results.

The results obtained in this chapter will be used to establish the Lagrange’s equations in the

presence of a perfect mechanical joint in Chapter 8.

For generality, in this chapter we will consider the VVs and the VPs with respect to any

reference frame R1, which is not necessarily Galilean. This enables us to establish the theory of

perfect joints in a setting that is larger than that of Galilean reference frames. In the following

chapters, where we will work in a Galilean reference frame Rg , one only has to apply the results

obtained in this chapter by making R1 = Rg.

• The common reference frame R0 being chosen beforehand, it is assumed that the pair of

reference frames (R1, R0) satisfies hypothesis [2.33]:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 does not depend on q.

As was recalled at the beginning of Chapter 6, hypothesis [2.33] implies that the VV of a

particle and the VP of an effort system are independent of the reference frame R1 and may thus

be written without the reference frame index:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i and P∗(F→S , t)

In particular, the VP of the constraint efforts exerted by the mechanical joints on the system S
is independent of the reference frame R1 with respect to which it is calculated and is denoted by

P∗(Fconstraint→S , t). Hypothesis [2.33] is necessary as it implies the independence of the VP of

efforts with respect to the reference and, as will be seen in section 7.5.1, this independence makes

it possible to render the concept of a perfect joint intrinsic.
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7.1. VFs compatible with a mechanical joint

7.1.1. Definition

Let S be a system composed of several rigid bodies, constrained by a certain number of

mechanical joints, which may be joints between the rigid bodies in the system or joints between

one rigid body in the system and another rigid body outside the system. We consider a given

parameterization whose retained parameters are q ≡ (q1, . . . , qn) and t.
The existing mechanical joints are expressed by a certain number of constraint equations,

which may be classified as primitive or complementary. It is assumed that the complementary
constraint equations are either:

(i) resolved, holonomic constraint equations, for instance qn = χn(q1, . . . , qn−1, t),

(ii) unresolved, holonomic constraint equations of the form f(q, t) = 0,

(iii) or non-holonomic equations of the differential form

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0.

In order to simplify the discussion, we decide to derive any constraint equation of the type (ii)

with respect to time:
n∑

i=1

∂f

∂qi
q̇i +

∂f

∂t
= 0

such that it becomes a constraint equation of the type (iii), with αi =
∂f

∂qi
, i ∈ [1, n], and β =

∂f

∂t
. Thus, throughout the sequel, we will consider only two types of complementary constraint

equations:

1. resolved, holonomic constraint equations, for instance qn = χn(q1, . . . , qn−1, t),

2. and non-holonomic constraint equations of the differential form

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0.

[7.1]

The VV of the current particle p of the system associated with the previous parameterization

is given by [4.18]: �V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i . A new concept will now be defined, namely the VV

associated with the parameterization and that is compatible with a mechanical joint.

Definition. [7.2]

Consider a given mechanical joint on the system. This joint is expressed by a certain number

of constraint equations, which may be classified as primitive or complementary. However, only

complementary equations are involved in this definition.

A VVF �V ∗(p) associated with the considered parameterization and compatible with the
considered joint is defined as

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i [7.3]

where

1. the (q̇∗i )1≤i≤n must satisfy the following relationships, all of which come from

complementary constraint equations related to the mechanical joint under consideration:
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(a) for any resolved, holonomic constraint equation, for instance qn =

χn(q1, . . . , qn−1, t), the (q̇∗i )1≤i≤n, satisfies q̇∗n =

n−1∑
i=1

∂χn

∂qi
q̇∗i , [7.4]

(b) for any non-holonomic, complementary constraint equation in the differential form
n∑

i=1

αi q̇i + β = 0, the (q̇∗i )1≤i≤n, satisfies

n∑
i=1

αiq̇
∗
i = 0 . [7.5]

If there is a complementary constraint equation of the form f(q, t) = 0, the earlier

relationship gives

n∑
i=1

∂f

∂qi
q̇∗i = 0 ,

2. the retained parameters q, which appear in the

−→
∂P

∂qi
(q, t) of [7.3], the

∂χn

∂qi
(q, t) of [7.4]

(expressions obtained after differentiation), as well as in the αi(q, t) of [7.5], must satisfy

all existing complementary constraint equations related to the joint; namely, with the

typical examples [7.1]:

qn = χn(q1, . . . , qn−1, t) and

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0 [7.6]

It is important to note that the previous definition brings into play

– only the constraint equations that are related to the considered joint and not those related to

any other joints that may exist in the system,

– and only complementary constraint equations and not primitive equations.

Condition [7.4] is consistent with condition [7.5] since when qn = χn(q1, . . . , qn−1, t) is

derived with respect to time, we obtain q̇n =

n−1∑
i=1

∂χn

∂qi
q̇i +

∂χn

∂t
which has the form

n∑
i=1

αiq̇i + β = 0.

Consider a holonomic, complementary constraint equation f(q, t) = 0 and its differential

form obtained through time derivation: ḟ =

n∑
i=1

∂f

∂qi
q̇i +

∂f

∂t
= 0. The previous definition shows

that the compatibility condition for a VVF resulting from equation f = 0 is, by definition, the

condition resulting from the differential form ḟ = 0. Thus, if there is a semi-holonomic

complementary constraint equation ḟ = 0, whose integrated form is f = const (where const is

a constant of integration), then regardless of whether this constraint equation is used in the

semi-holonomic form or in the integrated form, it engenders the same compatibility condition

for a VVF.

According to definition [7.2], if there is no complementary equation for the mechanical joint

(especially if the parameterization is independent) then conditions [7.4]–[7.6] are irrelevant and

any VVF associated with the parameterization is automatically compatible with the joint.
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Condition [7.6] is irrelevant if the
−→
∂P
∂qi

in [7.3], the ∂χn

∂qi
in [7.4] and the αi in [7.5] do not

depend on q.

A VVF compatible with a joint is a specific VVF, subjected to the restrictive conditions

[7.4]–[7.6]. The definition of a perfect joint will be based on the VVF compatible with the joint

and not on the general VVF: the joint is said to be perfect if the VP of the constraint efforts is

zero in any compatible VVF.

REMARK. Condition [7.6] will largely be used in this chapter and will also be used in Chapter

8, when we prove expression [8.5] for the generalized constraint forces Li in the case of perfect

joints.

Let us bring together two different rules we have encountered so far:

1. The rule stated in section 6.2: when we differentiate the kinetic energy and the potential, we

can only use the complementary constraint equations after having obtained the derivatives.

2. Condition [7.6] seen above: we build up a VVF compatible with a joint by taking into

account the complementary constraint equations relative to this joint.

These two rules, relating to two independent operations, are not contradictory.

Finally, the second rule has one point in common with the first: the complementary

constraint equations are used after after obtaining the derivatives

−→
∂P

∂qi
(q, t) and

∂χn

∂qi
(q, t). �

According to definition [7.2], the VVF compatible with a given mechanical joint depends

on the joint in question; it also depends on the chosen parameterization via the complementary

constraint equations involved in the definition. In actual fact, as will be seen later in theorem

[7.78], the VVF does not depend on the chosen parameterization. Consequently, the compatible

VVF is intrinsic, in the sense that it depends only on the mechanical joint, and we can then simply

speak of a VVF compatible with a joint.

7.1.2. Generalizing the definition of a compatible VVF

• Relationship [7.3] is not the only way of calculating the VV �V ∗(p) of a particle p. Depending

on the situation, we may have to calculate �V ∗(p) using formula [4.32] for a rigid body or the

composition formula for velocities [4.43]. Whatever the way chosen, the VV always takes the

form of a linear combination of q̇∗i :

�V ∗(p) =
n∑

i=1

(ith vector, function of (q, t)) q̇∗i [7.7]

Definition [7.2] is modified in the following way to adapt to the VV of the previous form

([· · · ] denote the sections that remain unchanged with respect to definition [7.2]):

Definition. A VVF �V ∗(p) associated with the considered parameterization and of the form [7.7]

is compatible with the considered joint if

1. [· · · ],

2. the retained parameters q, which appear in the ith vector of [7.7], the
∂χn

∂qi
(q, t) of [7.4]

(expressions obtained after differentiation), as well as the αi(q, t) of [7.5], must satisfy

all existing complementary constraint equations related to the joint [· · · ].
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• We may also be led to work in a reference frame R1, which does not satisfy hypothesis

[2.33]. In this case, the VV �V ∗
R1

(p) is not given by [7.3] but instead by the general definition

[4.10]:

�V ∗
R1

(p) ≡ ¯̄Q01.

n∑
i=1

∂

∂qi

(
¯̄Q10.

−−→
O1P

)
q̇∗i , [7.8]

where O1 is a point fixed in R1, the position vector
−−→
O1P is given by

−−→
O1P =

−−→
O1P (q, t) and the

rotation tensor ¯̄Q01 is a function of (q, t). Note, in passing, that this expression is also of the form

[7.7].

The example of such a case can be seen in section 7.5.4 where we study a particle p moving

along a hoop (C). The reference frame RC defined by (C) is such that the ¯̄Q0C depends on q and

the VV �V ∗
RC

(p) of p with respect to RC is given by [7.86].

As expression [7.8] does has not the form [7.3], we must specify what a VV �V ∗
R1

(p)
compatible with a joint means. Definition [7.2] is generalized to the case of VVs [7.8] as follows:

Definition. [7.9]

A VVF �V ∗
R1

(p) associated with the considered parameterization and compatible with the
considered joint is, by definition, the VVF [7.8], where

1. [· · · ],

2. the retained parameters q, which appear in ¯̄Q01.
∂

∂qi

(
¯̄Q10.

−−→
O1P

)
(q, t) of [7.8], the

∂χn

∂qi
(q, t) of [7.4] (expressions obtained after differentiation) as well as in the αi(q, t)

of [7.5], must satisfy all existing complementary constraint equations related to the joint

[· · · ].

7.1.3. Example 1 for VVFs compatible with a mechanical joint

We work in the reference frame R1 = R0, endowed with an orthonormal coordinate system

(O; �x0, �y0) and consider a particle p which is constrained to move along a curve in the plane

O�x0�y0, with the equation y = χ(x) (Figure 7.1). The position of the particle in the reference

frame R0 at a current instant t is denoted by P . The mechanical joint imposed on the particle here

is represented by the single constraint equation y = χ(x).

Let us calculate the VVs of the particle that are compatible with the mechanical joint and

associated with the following parameterization, where the constraint equation y = χ(x) is

classified as a complementary equation:

TOTAL PARAMETERIZATION. [7.10]

• Primitive parameters: the Cartesian coordinates x, y of point P in the coordinate system

(O; �x0, �y0).

• Primitive constraint equations: none.

• Retained parameters: the same as the primitive parameters, that is: x, y. Hence, P =
P (x, y) = O + x�x0 + y�y0.

• Complementary constraint equation: y = χ(x).
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Figure 7.1. Particle moving along a planar
curve: parameterization using Cartesian
coordinates

Figure 7.2. Particle moving along a
planar curve: parameterization using polar
coordinates

According to definition [7.2], a VV associated with this parameterization and compatible with

the mechanical joint is

�V ∗(p) =
−→
∂P

∂x
ẋ∗ +

−→
∂P

∂y
ẏ∗ = ẋ∗�x0 + ẏ∗�y0 where ẏ∗ =

dχ

dx
(x) ẋ∗

As the vectors
−→
∂P
∂x and

−→
∂P
∂y do not depend on the retained parameters, condition [7.6] is

irrelevant. Hence

�V ∗(p) =
[
�x0 +

dχ

dx
(x)�y0

]
ẋ∗ [7.11]

7.1.4. Example 2

Let us go back to the previous example, but whilst working with polar coordinates this time. The

curve along which the particle p is moving has the equation r = χ(θ), where r, θ denote the

polar coordinates of point P (Figure 7.2). Here, the mechanical joint imposed on the particle is

expressed through the single constraint equation r = χ(θ).

Let us calculate the VVs of the particle compatible with the mechanical joint and associated

with the following parameterization, where the constraint equation r = χ(θ) is classified as a

complementary equation:

TOTAL PARAMETERIZATION. [7.12]

• Primitive parameters: the polar coordinates r, θ.

• Primitive constraint equations: none.

• Retained parameters: the same as the primitive parameters, that is: r, θ. Hence P = P (θ, r) =
O + r�er(θ).

• Complementary constraint equation: r = χ(θ).



Perfect Joints 137

A VV associated with this parameterization and compatible with the mechanical joint is

�V ∗(p) =
−→
∂P

∂r
ṙ∗+

−→
∂P

∂θ
θ̇∗ = �er(θ)ṙ

∗+r�eθ(θ)θ̇
∗ where

⎧⎨⎩ ṙ∗ =
dχ

dθ
(θ) θ̇∗ according to [7.4]

and r = χ(θ) according to [7.6]

Definition [7.2] imposes condition [7.6], which consists of replacing the argument r appearing

in
−→
∂P
∂θ = r�eθ(θ) with r = χ(θ). Hence

�V ∗(p) =
[
dχ

dθ
(θ) �er(θ) + χ(θ) �eθ(θ)

]
θ̇∗ [7.13]

We can clearly see the difference between a general VV and a VV compatible with the joint:

– a general VV is written as �V ∗(p) = �er(θ)ṙ
∗ + r�eθ(θ)θ̇

∗, and it depends on the parameters

r, θ and the virtual parameters ṙ∗, θ̇∗,

– a VV compatible with the constraint is given by [7.13], and it now depends only on θ and

θ̇∗.

Generally speaking, as the compatible VVF is a particular VVF subjected to conditions [7.4]–

[7.6], the expression for the compatible VVF is more restricted than that for the general VVF in

the sense that it depends on fewer variables.

7.1.5. Example 3: particle moving along a hoop rotating around a fixed axis

We work in the reference frame R1 = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) and a system consisting of a particle p located at P in R0 and of a hoop (C) of

center O, radius a and whose diameter lies constantly on the axis O�z0.−−→
OP = r �z denotes the position vector of p, where r is the radial distance and �z is a unit vector

(Figure 7.3). We define

– the unit vector �n, orthogonal to �z0 and �z, such that the basis (�z0, �z, �n) is right handed (but

not necessarily orthonormal),

– the angle θ ≡ (�z0, �z) measured with respect to �n,

– the angle ψ ≡ (�x0, �n) measured with respect to �z0,

– the unit vector �v ≡ �z × �n.

The primitive parameters of p are r, ψ, θ.

The position of the hoop is defined by the angle denoted by α ≡ (�x0,�c), measured around �z0,

where �c is a unit vector orthogonal to the hoop (O�c is thus the axis of the hoop).

Driven by an engine, the hoop rotates around the axis O�z0 at a constant rate ω > 0. At t = 0,

we take �c = �x0, such that α = ωt.
The particle p is constrained to remain on the hoop (C). The mechanical joint imposed on the

particle p is expressed through two constraint equations r = a and ψ = α (i.e. �n = �c), which are

resolved equations.

Let us calculate the VVs of the particle compatible with the mechanical joint and associated

with the following parameterization:

REDUCED PARAMETERIZATION. [7.14]

• Primitive parameters: r, ψ, θ and α.
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Figure 7.3. Particle on a hoop rotating about a fixed axis

• Primitive constraint equations: α = ωt.

• Retained parameters: r, ψ, θ, t. Hence
−−→
OP = r �z(ψ, θ). The position of the hoop (C) depends

only on t.

• Complementary constraint equation: r = a and ψ = α = ωt.

We have deliberately not taken into account the constraint equations r = a and ψ = α,

but put them into complementary equations. This is done in order to show how to calculate the

compatible VV in the presence of complementary constraint equations and the significance of

condition [7.6].

Any VV associated with this parameterization and compatible with the mechanical joint

between the particle and the hoop is

�V ∗(p) =
−→
∂P

∂r
ṙ∗ +

−→
∂P

∂θ
θ̇∗ +

−→
∂P

∂ψ
ψ̇∗ = �z(ψ, θ) ṙ∗ − r �v(ψ, θ) θ̇∗ + r sin θ �n(ψ) ψ̇∗

with {
ṙ∗ = 0, ψ̇∗ = 0 according to [7.4]

and r = a, ψ = ωt according to [7.6]

That is
�V ∗(p) = −aθ̇∗ �v(ωt, θ) [7.15]

It should be noted that

– the (real) velocity of the particle with respect to R0 is

�VR0(p, t) =

−→
∂P

∂r
ṙ +

−→
∂P

∂θ
θ̇ +

−→
∂P

∂ψ
ψ̇ +

−→
∂P

∂t
= ṙ �z − rθ̇ �v + r sin θ ψ̇ �n

– and the (real) velocity permitted by the mechanical joint is derived from the previous one

by making r = a et ψ = ωt:

�VR0(p, t) = −aθ̇ �v(ωt, θ) + aω sin θ �n(ωt)
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Thus, the (real) velocity permitted by the joint and the VV compatible with the joint are

different.

7.2. Invariance of the compatible VVFs with respect to the choice of the primitive
parameters

7.2.1. Context

Assume that the a priori position of the system S in the reference frame R0 is defined by N
primitive position parameters and, possibly, by time t. Consider two different parameterizations

that have the same number (N + 1) of primitive parameters: in the first parameterization, we

choose q1, . . . , qN , t as primitive parameters, while in the second parameterization, we choose

r1, . . . , rN , t as the primitive parameters.

Furthermore, we consider a given mechanical joint in the system, expressed by a certain

number of constraint equations. These equations can be written in terms of (q1, . . . , qN , t) or

(r1, . . . , rN , t) depending on the chosen parameterization.

The following table describes the two parameterizations studied.

PARAMETERIZATION NO. 1 PARAMETERIZATION NO. 2
Primitive parameters: q1, . . . , qN and t. Primitive parameters: r1, . . . , rN and t.
Primitive constraint equations: none. Primitive constraint equations: none.

Retained parameters: the same as the primitive

parameters, that is: q ≡ (q1, . . . , qN ), t. Hence

P = P (q, t) [7.16]

Retained parameters: the same as the primitive

parameters, that is: r ≡ (r1, . . . , rN ), t. Hence

P̃ = P̃ (r, t) [7.17]

The function P̃ (r, t) is not the same as P (q, t)
in parameterization no. 1.

Complementary constraint equations:

(i) those related to the considered

mechanical joint: we decide to write all

of them in the differential form and we

study the typical equation:

N∑
k=1

αk(q, t)q̇k + β(q, t) = 0 [7.18]

(ii) and those related to other mechanical

joints, which do not need to be specified.

Complementary constraint equations:

(i) those related to the considered

mechanical joint: we decide to write

them all in the differential form and the

counterpart of the equation of the type

[7.18] is written as

N∑
h=1

α̃h(r, t)ṙh + β̃(r, t) = 0 [7.19]

(ii) and those related to other mechanical

joints, which do not need to be specified.

Since the parameters are used to define the position of the current particle of the system, the

change in parameters described in the table means that the position of the system is expressed

with new parameters. If the parameters q and r are space coordinates (for example, Cartesian

or cylindrical coordinates), a change in parameters amounts to changing the coordinates. In the

general framework, the parameters q and r may have any nature and are not necessarily space

coordinates.
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It is assumed that there is a C1-diffeomorphism (that is, a bijection of class C1 whose inverse

is also of class C1):

A subset of RN → A subset of RN

q �→ r
[7.20]

In other words, there exists a mapping q �→ r, which is bijective, of class C1 and whose Jacobian
Dq

Dr
≡ D(q1, . . . , qN )

D(r1, . . . , rN )
is �= 0. Once the parameterizations nos. 1 and 2 are chosen, the bijection

q �→ r = r(q) or its inverse r �→ q) = q(r) are known. The bijection [7.20] is schematized in

Figure 7.4(a), together with another bijection that we will see later.

a) Bijection q �→ r

b) Linear bijection q̇∗ �→ ṙ∗

Figure 7.4. The two bijections [7.20] and [7.36]

There is no use in the previous table showing any possible resolved constraint equation related

to the considered mechanic joint, whether it is a primitive or a complementary equation. Indeed,

if there does exist a resolved constraint equation in parameterization no. 1, then its corresponding

equation in parameterization no. 2 (obtained by the variable change q �→ r) is not generally

a resolved equation and vice versa. For instance, the resolved constraint equation r = R in

cylindrical coordinates becomes
√

x2 + y2 = R in Cartesian coordinates and is not resolved.

This is why we decided to write all resolved constraint equations in the differential form [7.18] or

[7.19] and to treat them as differential constraint equations.

The objective of this section is to show that under certain non-restrictive conditions, the VVFs

associated with the previous two parameters and that are compatible with the mechanical joint do

not depend on the considered parameterizations and are, therefore, identical. In order to do this,

we will first study the relationships that exist between the real and virtual quantities resulting from

the two parameterizations.

7.2.2. Relationships between the real quantities resulting from the two
parameterizations

The different functions that appear in both parameterizations are different. However, the

relationships between them are easy to establish.
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Equation [7.17] with parameterization no. 2 is the counterpart of [7.16] from parameterization

no. 1. Function P̃ (r, t), which depends on (r, t), is different from function P (q, t), which depends

on (q, t). However, as the two functions give the position of the same particle in R0, if we replace

r in P̃ (r, t) by r(q), then we must once again arrive at P (q, t):

P (q, t) = P̃ (r, t) = P̃ (r(q), t) [7.21]

which gives function P (q, t) as a composite function of (q, t). Conversely:

P̃ (r, t) = P (q, t) = P (q(r), t) [7.22]

Relationships r = r(q) or q = q(r) used in [7.21] and [7.22] come from the bijection [7.20],

and they are known and ready to employ as soon as parameterizations nos. 1 and 2 are chosen.

The complementary constraint equation [7.19] of parameterization no. 2 is the counterpart

of [7.18] from parameterization no. 1. Functions α̃h, β̃ do not depend on the same variables as

functions αk, β and they are not identical to functions αk, β. However, the relationships between

these functions are easy to establish: if r in the left-hand side of [7.19] is replaced by r(q), we

must arrive at the left-hand side of [7.18]:

N∑
k=1

αk(q, t)q̇k + β(q, t) =

N∑
h=1

α̃h(r(q), t)ṙh + β̃(r(q), t) [7.23]

Let us develop the right-hand side of the previous relationship, knowing that ṙh =

N∑
k=1

∂rh
∂qk

q̇k:

N∑
h=1

α̃h(r, t)ṙh + β̃(r, t) =

N∑
k=1

(
N∑

h=1

α̃h(r(q), t)
∂rh
∂qk

)
︸ ︷︷ ︸

this is αk(q,t)

q̇k + β̃(r(q), t)︸ ︷︷ ︸
this is β(q,t)

Equating this with the left-hand side of [7.18] yields the following relationships between αk

and α̃k, on the one hand, and between β and β̃, on the other hand:

αk(q, t) =
N∑

h=1

α̃h(r(q), t)
∂rh
∂qk

(q)

β(q, t) = β̃(r(q), t)

[7.24]

A similar reasoning leads to the converse relationships:

α̃h(r, t) =

N∑
k=1

αk(q(r), t)
∂qk
∂rh

(r)

β̃(r, t) = β(q(r), t)

[7.25]

7.2.3. Relationships between the virtual quantities resulting from the two
parameterizations

The VVFs corresponding to the two parameterizations are given by

�V ∗(p) =
N∑

k=1

−→
∂P

∂qk
(q, t) q̇∗k [7.26]
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Ṽ ∗(p) =
N∑

h=1

∂̃P

∂rh
(r, t) ṙ∗h [7.27]

where the N -tuples (q̇∗1 , . . . , q̇
∗
N ) and (ṙ∗1 , . . . , ṙ

∗
N ) are arbitrary and independent, and where, for

easier reading, we have written
∂̃P

∂rh
instead of

−→
∂P̃

∂rh
.

The functions P (q, t) and P̃ (r, t) are connected through [7.21], however, as the tuples

(q̇∗1 , . . . , q̇
∗
N ) and (ṙ∗1 , . . . , ṙ

∗
N ) are independent of each other; the VVFs �V ∗(p) and Ṽ ∗(p) are

not, a priori, identical. The following theorem gives the relationships between the two VVFs.

Theorem. By taking r = r(q), we have the following relationship between the VVFs resulting

from the two parameterization nos. 1 and 2:

�V ∗(p) = Ṽ ∗(p)∣∣r=r(q)
+

N∑
h=1

(
N∑

k=1

∂rh
∂qk

q̇∗k − ṙ∗h

)
∂̃P

∂rh
(r(q), t) [7.28]

Conversely, by taking q = q(r):

Ṽ ∗(p) = �V ∗(p)∣∣q=q(r)
+

N∑
k=1

(
N∑

h=1

∂qk
∂rh

ṙ∗h − q̇∗k

) −→
∂P

∂qk
(q(r), t) [7.29]

PROOF. We only have to prove [7.28]; since the converse relationship [7.29] can then be

obtained in the same manner. We have

�V ∗(p) =
N∑

k=1

−→
∂P

∂qk
(q, t) q̇∗k according to [7.26]

=
N∑

k=1

N∑
h=1

∂̃P

∂rh
(r(q), t)

∂rh
∂qk

ṙ∗h because

−→
∂P

∂qk
=

N∑
h=1

∂̃P

∂rh

∂rh
∂qk

according to [7.21]

=

N∑
h=1

∂̃P

∂rh
(r(q), t)

(
N∑

k=1

∂rh
∂qk

q̇∗k

)

By subtracting the last equation obtained and the equality [7.27], we obtain [7.28]. �
For later convenience, let us also prove the following relationship:

Theorem. We have

∀(q̇∗1 , . . . , q̇∗N ),
N∑

k=1

αk(q, t) q̇
∗
k =

N∑
h=1

α̃h(r(q), t)

(
N∑

k=1

∂rh
∂qk

q̇∗k

)
[7.30]

Conversely,

∀(ṙ∗1 , . . . , ṙ∗N ),
N∑

h=1

α̃h(r, t) ṙ
∗
h =

N∑
k=1

αk(q(r), t)

(
N∑

h=1

∂qk
∂rh

ṙ∗h

)
[7.31]
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PROOF. It is enough to prove [7.30]; the converse relationship [7.31] can then be obtained in

the same manner. The summation
∑N

k=1 on relationship [7.24] weighted by q∗k gives

N∑
k=1

αk q̇
∗
k =

N∑
k=1

N∑
h=1

α̃h
∂rh
∂qk

q̇∗k =
N∑

h=1

α̃h

(
N∑

k=1

∂rh
∂qk

q̇∗k

)
�

7.2.4. Identity between the VVFs associated with the two parameterizations and
compatible with a mechanical joint

On applying definition [7.2], we arrive at the VVFs associated with the parameterization nos. 1
and 2 and compatible with the mechanical joint.

COMPATIBLE VVF RESULTING FROM
PARAMETERIZATION NO. 1

COMPATIBLE VVF RESULTING FROM
PARAMETERIZATION NO. 2

�V ∗(p) =
N∑

k=1

−→
∂P

∂qk
(q, t) q̇∗k Ṽ ∗(p) =

N∑
h=1

∂̃P

∂rh
(r, t) ṙ∗h

where (q̇∗1 , . . . , q̇
∗
N ) satisfies where (ṙ∗1 , . . . , ṙ

∗
N ) satisfies

N∑
k=1

αk q̇
∗
k = 0 [7.32]

N∑
h=1

α̃hṙ
∗
h = 0 [7.33]

and where q, which appears in the
−→
∂P
∂qk

(q, t)
(expressions obtained after differentiation) as

well as in the αk(q, t), satisfies equations

[7.18]:

N∑
k=1

αk(q, t)q̇k + β(q, t) = 0 [7.34]

and where r, which appears in the ∂ ˜P
∂rh

(r, t)
(expressions obtained after differentiation) as

well as in the α̃h(r, t), satisfies equations

[7.19]:

N∑
h=1

α̃h(r, t)ṙh + β̃(r, t) = 0 [7.35]

We will construct a new bijection based on bijection [7.20]. For a given q, let us consider the

(non-singular) Jacobian matrix
∂r

∂q
(q) of the bijection [7.20], evaluated at q, and define the linear

mapping

RN → RN

q̇∗ �→ ṙ∗ =
∂r

∂q
q̇∗, [7.36]

where q̇∗ and ṙ∗ denote the column-vectors with components (q̇∗1 , . . . , q̇
∗
N ) and (ṙ∗1 , . . . , ṙ

∗
N ),

respectively. Relationship ṙ∗ =
∂r

∂q
q̇∗ signifies that ṙ∗h =

N∑
k=1

∂rh
∂qk

q̇∗k, ∀h ∈ [1, N ]. The mapping

[7.36], defined for each fixed q, is linear and, therefore, bijective. This is schematized in Figure

7.4(b), with comparison to bijection [7.20].
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Theorem. Identity between the compatible VVFs associated with the two
parameterizations.

1. The compatible VVF resulting from parameterization no. 1 has the same expression as

the compatible VVF resulting from parameterization no. 2, provided that the latter VVF

is calculated with r = r(q) and ṙ∗ =
∂r

∂q
q̇∗:

compatible �V ∗(p) = compatible Ṽ ∗(p)∣∣r = r(q) and ṙ∗ =
∂r

∂q
q̇∗

[7.37]

2. Conversely, the compatible VVF resulting from parameterization no. 2 has the same
expression as the compatible VVF resulting from parameterization no. 1, provided that

the previous VVF is calculated with q = q(r) and q̇∗ =
∂q

∂qr
ṙ∗:

compatible Ṽ ∗(p) = compatible �V ∗(p)∣∣q = q(r) and q̇∗ =
∂q

∂r
ṙ∗

[7.38]

3. Consequently, the two compatible VVFs, respectively, associated with parameterization

nos. 1 and 2, are identical, on the condition that they are calculated with r = r(q) and

ṙ∗ =
∂r

∂q
q̇∗, or, conversely, with q = q(r) and q̇∗ =

∂q

∂r
ṙ∗.

In other words, the compatible VVFs resulting from the two parameterizations whose

respective primitive parameters are (q, t) and (r, t) are identical, on the condition that

certain relationships are imposed between r and q and between ṙ∗ and q̇∗.

In short, compatible VVFs do not depend on the choice of the primitive

parameters. [7.39]

PROOF. As the two equalities [7.37] and [7.38] are analogous, it is sufficient to prove the

first equality. Let �V ∗(p) be a VV resulting from parameterization no. 1 and compatible with the

mechanical joint; it is given by [7.26] where q̇∗k must satisfy [7.32] and where q must satisfy

[7.34].

Knowing q and q̇∗, let us construct the VV Ṽ ∗
R1

(p) resulting from parameterization no. 2,

expressed by [7.27], such that r = r(q) and ṙ∗ = ∂r
∂q q̇

∗.

– One the one hand, the parameter r satisfies [7.35]. Indeed

N∑
h=1

α̃h(r(q), t) ṙh + β̃(r(q), t) =
[7.23]

N∑
k=1

αk(q, t) q̇k + β(q, t) =
[7.34]

0

– On the other hand, the parameter ṙ∗ satisfies [7.33]. Indeed

N∑
h=1

α̃h(r(q), t) ṙ
∗
h =

N∑
h=1

α̃h(r(q), t)

(
N∑

k=1

∂rh
∂qk

q̇∗k

)
=

[7.30]

N∑
k=1

αk(q, t) q̇
∗
k =

[7.32]
0

Consequently, the VV Ṽ ∗
R1

(p) thus constructed is compatible. Moerover, according to [7.28],

we have

Ṽ ∗(p)∣∣r=r(q)
= �V ∗(p) �
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In equality [7.37], the velocity �V ∗(p) is a function of (q, t) and q̇∗, while the velocity Ṽ ∗(p)
is a function of (r, t) and ṙ∗. In order to express the right-hand side as a function of the same

variables (q, t) and q̇∗ as the left-hand side:

1. we must replace r by r = r(q). Let us recall that this relationship is known and is imposed

as soon as parameterization nos. 1 and 2 have been chosen. This operation is natural, so

much so that it may be implicit,

2. we must also replace ṙ∗ by ṙ∗ =
∂r

∂q
q̇∗. Unlike r = r(q), this relationship is not naturally

imposed, but is the result of a process of reasoning. It may not be implicit, but must be

stated explicitly. A relationship like ṙ∗ = q̇∗ does not allow one to get equality [7.37].

A similar observation can be made regarding the reciprocal equality [7.38].

REMARK. From the proof of the previous theorem, it can be seen that:

– if q̇∗ satisfies [7.32], then ṙ∗ =
∂r

∂q
q̇∗ satisfies [7.33] evaluated with r = r(q),

– conversely, if ṙ∗ satisfies [7.33], then q̇∗ =
∂q

∂r
ṙ∗ satisfies [7.32] evaluated with q = q(r).

Thus, the mapping q̇∗ �→ ṙ∗ =
∂r

∂q
q̇∗, restricted to the set of q̇∗ which satisfies [7.32], is a

bijection from this set into the set of ṙ∗ that satisfies [7.33], (of course, provided that we make

r = r(q) in α̃h(r, t) of [7.32], or conversely, q = q(r) in the αk(q, t) of [7.33]). �

7.2.5. Example

Consider a reference frame R0 endowed with the orthonormal coordinate system (O; �x0, �y0) and

consider a particle p which is forced to move along a hoop in the plane O�x0�y0. The center of the

hoop is O and its radius is R (Figure 7.5). The position of the particle in the reference frame R0

at a current instant t is denoted by P , with polar coordinates r, θ and Cartesian coordinates x, y.

The mechanical joint imposed on the particle is expressed through the single constraint

equation r = R, or
√
x2 + y2 = R.

Figure 7.5. Particule on a hoop

We will establish the VVs of the particle compatible with the mechanical joint and

associated with two distinct parameterizations, one of which has polar coordinates as its

primitive parameters, while the other has Cartesian coordinates.
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PARAMETERIZATION NO. 1 PARAMETERIZATION NO. 2
Primitive parameters: r, θ. Primitive parameters: x, y.

Primitive constraint equations: none. Primitive constraint equations: none.

Retained parameters: the same as the primitive

parameters, namely r, θ. Hence

P (r, θ) = r�er(θ)

Retained parameters: the same as the primitive

parameters, namely x, y. Hence

P̃ (x, y) = x�x0 + y�y0

Complementary constraint equation: r = R;

i.e., in the differential form:

ṙ = 0

This equation plays the role of [7.18].

Complementary constraint equation:√
x2 + y2 = R; i.e., in the differential

form:

xẋ+ yẏ = 0

This equation plays the role of [7.19].

Using the notations from the previous sections, we have q = (r, θ) and r = (x, y) (the radius

r and the pair r = (x, y) must not be confused!).

A VV associated with parameterization no. 1 and compatible with the mechanical joint

between the particle and the hoop is

�V ∗(p) =
−→
∂P

∂r
ṙ∗+

−→
∂P

∂θ
θ̇∗ = ṙ∗�er(θ)+rθ̇∗�eθ(θ) where

{
ṙ∗ = 0
and r satisfies ṙ = 0 (or r = R)

[7.40]

A VV associated with parameterization no. 2 and compatible with the mechanical joint is

Ṽ ∗(p) =
∂̃P

∂x
ẋ∗+

∂̃P

∂y
ẏ∗ = ẋ∗�x0+ẏ∗�y0 where

{
ẋ∗, ẏ∗ satisfy xẋ∗ + yẏ∗ = 0

andx, y satisfy xẋ+yẏ=0 (or
√
x2 + y2=R)

[7.41]

• Let us start from a VV associated with parameterization no. 1 and compatible with the

mechanical joint (see relationship [7.40]). The mapping that represents the change from the polar

coordinates to the Cartesian coordinates

R∗
+×] − π, π[ → R2\I with I ≡ {(x, 0) ∈ R2|x < 0}
(r, θ) �→ (x = r cos θ, y = r sin θ)

is a C∞-diffeomorphism. Its Jacobian matrix is

∂r

∂q
=

⎛⎜⎝ ∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

⎞⎟⎠ =

(
cos θ −r sin θ
sin θ r cos θ

)

Consequently, the condition ṙ∗ =
∂r

∂q
q̇∗ in [7.37], that is ∀h ∈ [1, N ], ṙ∗h =

N∑
k=1

∂rh
∂qk

q̇∗k, can

be written as{
ẋ∗

ẏ∗

}
=

(
cos θ −r sin θ
sin θ r cos θ

){
ṙ∗

θ̇∗

}
or

∣∣∣∣ ẋ∗ = cos θ ṙ∗ − r sin θ θ̇∗ = −r sin θ θ̇∗

ẏ∗ = sin θ ṙ∗ + r cos θ θ̇∗ = r cos θ θ̇∗
[7.42]
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Taking into account the relationships x = r cos θ, y = r sin θ, the pair (ẋ∗, ẏ∗) given by [7.42]

satisfies xẋ∗ + yẏ∗ = 0, whence the VV Ṽ ∗(p) = ẋ∗�x0 + ẏ∗�y0 resulting from parameterization

no. 2 is compatible. Moreover:

Ṽ ∗(p)∣∣ṙ∗ =
∂r

∂q
q̇∗

= ẋ∗�x0 + ẏ∗�y0∣∣ẋ∗, ẏ∗ given by [7.42]
= rθ̇∗�eθ(θ) =

[7.40]

�V ∗(p)

The two compatible VVFs [7.40] and [7.41] are identical, in accordance with [7.37].

• It is also possible to work with the converse relationships. Let us start from a VV associated

with parameterization no. 2 and compatible with the mechanical joint (see relationship [7.41]).

The inverse Jacobian matrix is

∂q

∂r
=

⎛⎜⎝
∂r

∂x

∂r

∂y
∂θ

∂x

∂θ

∂y

⎞⎟⎠ =

(
cos θ −r sin θ
sin θ r cos θ

)−1

=

(
cos θ sin θ

− sin θ/r cos θ/r

)

=

⎛⎜⎝
x√

x2 + y2
y√

x2 + y2

− y

x2 + y2
x

x2 + y2

⎞⎟⎠
Consequently, the condition q̇∗ =

∂q

∂r
ṙ∗ in [7.38], that is ∀k ∈ [1, N ], q̇∗k =

N∑
h=1

∂qk
∂rh

ṙ∗h, can

be written as

{
ṙ∗

θ̇∗

}
=

⎛⎜⎝
x√

x2 + y2
y√

x2 + y2

− y

x2 + y2
x

x2 + y2

⎞⎟⎠{ ẋ∗

ẏ∗

}
or

∣∣∣∣∣∣∣∣
ṙ∗ =

xẋ∗ + yẏ∗√
x2 + y2

= 0

θ̇∗ =
−yẋ∗ + xẏ∗

x2 + y2

[7.43]

Because the ṙ∗ given by [7.43] satisfies ṙ∗ = 0, the VV �V ∗(p) = ṙ∗�er(θ)+rθ̇∗�eθ(θ) resulting

from parameterization no. 1 is compatible. Moreover:

�V ∗(p)∣∣q̇∗ =
∂q

∂r
ṙ∗

= ṙ∗�er(θ) + rθ̇∗�eθ(θ)∣∣ṙ∗, θ̇∗ given by [7.43]
= r

−yẋ∗ + xẏ∗

x2 + y2
�eθ(θ)

Taking into account r cos θ = x, r sin θ = y and xẋ∗ + yẏ∗ = 0, we arrive at

�V ∗(p)∣∣q̇∗ =
∂q

∂r
ṙ∗

= ẋ∗�x0 + ẏ∗�y0 =
[7.41]

Ṽ ∗(p)

The two compatible VVFs [7.41] and [7.40] are identical, in accordance with [7.38].

REMARK. In this section, we considered two parameterizations that have the same number N
of primitive position parameters, but do not have the same primitive parameters. While we could

also examine the case of two parameterizations that do not have the same number of primitive

position parameters, this case offers nothing special, as can be seen through the following simple

example.

Let there be a particle moving in the plane O�x0�y0. Two parameterizations can be considered:

– in the first parameterization, we take three Cartesian coordinates x, y, z of the particle as

the primitive parameters and we take z = 0 as the primitive constraint equation,

– in the second parameterization, we assume z = 0 from the start and, consequently, we

only take two Cartesian coordinates x, y in the plane as the primitive parameters. With this

parameterization, there is no primitive constraint equation.
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This situation is summarized in the following table.

PARAMETERIZATION NO. 1 PARAMETERIZATION NO. 2
Primitive parameters: x, y, z. Primitive parameters: x, y.

Primitive constraint equation: z = 0. Primitive constraint equation: none.

Retained parameters: x, y. Hence

P (x, y) = x�x0 + y�y0

Retained parameters: x, y. Hence

P (x, y) = x�x0 + y�y0

Complementary constraint equation: · · · Complementary constraint equation: · · ·

There is no use in specifying the complementary constraint equations. If these do exist, they

are the same for both parameterizations as they are relationships between the same retained

parameters x, y.

Let us now assume that the particle is subjected to a certain mechanical joint in the plane

O�x0�y0. The VVF compatible with this joint is the same for both parameterizations since it is

based on the same complementary constraint equations. �

7.3. Invariance of the compatible VVFs with respect to the choice of the retained
parameters

Now that it is known that the compatible VVFs do not change when the primitive parameters

are changed, let us fix a set of primitive parameters and study what happens when the retained

parameters are changed. We will show that the compatible VVFs also do not change with a

change in retained parameters or, in other words, with a change in the classification of constraint

equations.

7.3.1. Context

Let us assume that the a priori position of the system S in the reference frame R0 is defined

by the primitive parameters q1, . . . , qN and t. As in section 7.1, it is assumed that the constraint

equations related to all existing mechanical joints in the system are composed of two types of

equations:

1. resolved holonomic equations, for instance qN = χn(q, t), where q ≡ (q1, · · · , qn), n ≤
N ,

2. and non-holonomic constraint equations in differential form

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0.

The unresolved holonomic constraint equations of the type f(q, t) = 0, if they exist, are

systematically recast in the differential form.

A resolved holonomic constraint equation may be classified as a primitive or complementary

equation depending on the user’s choice. If it is written as a primitive equation, this signifies that

it is used to eliminate the resolved parameter. On the contrary, an unresolved, holonomic or non-

holonomic constraint equation must necessarily be written as a complementary equation, since it

cannot be used to eliminate a position parameter.

Consider a given mechanical joint in the system, expressed by a certain number of constraint

equations. On the other hand, we consider two parameterizations that differ in the placement

of a single constraint equation taken from among those related to the mechanical joint under
consideration:
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– in the first parameterization, the constraint equation in question is classified as primitive (it

is, therefore, necessarily a resolved holonomic equation),

– while the second parameterization is classified as complementary.

The following table describes both of these parameterizations; the constraint equation [7.44],

which changes its place from one parameterization to the other is written in a box in order to

highlight it.

PARAMETERIZATION NO. 1 PARAMETERIZATION NO. 2
(this is the usual parameterization considered

in [2.19])

Primitive parameters:
q1, . . . , qn︸ ︷︷ ︸

≡q

, qn+1, . . . , qN and t.
Primitive parameters: the same as in

parameterization no. 1.

Primitive constraint equations: it is assumed

that there exist the following primitive

constraint equations:

qn+1 = χn+1(q, t) [7.44]

qn+2 = χn+2(q, t)
...

qN = χN (q, t)

where Equation [7.44] is specific to the

considered mechanical joint, the other

equations come from all existing mechanical

joints in the system.

Primitive constraint equations: the same as in

parameterization no. 1, except for Equation

[7.44] which is moved to complementary

equations:

qn+2 = χn+2(q, t)
...

qN = χN (q, t)

Retained parameters: q ≡ (q1, . . . , qn), t.
Hence

Retained parameters:

q̂ ≡ (q1, . . . , qn, qn+1), t.
Compared to parameterization no. 1, there is

the additional parameter qn+1. Hence

P = P (q, t) [7.45] P = P̂ (q̂, t) [7.46]

The function P̂ (q̂, t) is not the same as P (q, t)
from parameterization no. 1.

Complementary constraint equations:

(i) those related to the considered

mechanical joint: these may or may not

be resolved holonomic equations. We

will study two typical equations:

qn = χn(q1, . . . , qn−1, t) [7.47]

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0 [7.48]

(ii) and those related to other mechanical

joints, which do not need to be specified.

Complementary constraint equations:

(i) those related to the mechanical joint

under consideration:

qn+1 = χn+1(q, t)

qn = χn(q1, . . . , qn−1, t)

n+1∑
i=1

α̂i(q̂, t) q̇i + β̂(q̂, t) = 0 [7.49]

(ii) and those related to other mechanical

joints, which do not need to be specified.
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The objective of this section is to show that the VVFs associated with the two

parameterizations given above and which are compatible with the mechanical joint do not, in

fact, depend on the parameterization being considered and are, therefore, identical. In order to

show this, we will first study the relationships that exist between the real and virtual quantities

resulting from both these parameterizations, respectively.

REMARK. One has only to study the case described in the above table, where we move a single

equation from parameterization no. 1 to parameterization no. 2. The general case, where several

equations are moved, can be treated by repeating the above case several times in succession,

moving one equation at a time. �

7.3.2. Relationships between the real quantities resulting from the two
parameterizations

Equation [7.46] in parameterization no. 2 is the counterpart of [7.45] from parameterization no.

1, by adopting the point of view of the user who chooses parameterization no. 2. The function

P̂ (q̂, t), which depends on (q̂, t) is different from the function P (q, t), which depends on (q, t).
However, the relationship between the two functions is quite simple to establish, knowing that

they give the position of the same particle in R0: if we replace qn+1 in P̂ (q̂, t) by qn+1 =
χn+1(q, t), we must once again arrive at P (q, t):

P (q, t) = P̂ (q̂, t) = P̂ (q, χn+1(q, t), t) , [7.50]

which gives function P (q, t) as a composite function of (q, t).

Equation [7.47] from parameterization no. 1 typically designates a resolved holonomic

constraint equation that may be classified as a primitive equation (to remove qn from the retained

parameters) but which we decide to classify as a complementary equation. This equation is

written as is in parameterization no. 2. Here, unlike what we did for [7.46], there is no need to

take into account qn+1 = χn+1(q, t) simply because qn+1 does not appear in [7.47].

The non-holonomic complementary constraint equation [7.49] from parameterization no. 2 is

the counterpart of [7.48] from parameterization no. 1, by adopting the point of view of the user

who chooses parameterization no. 2. The functions α̂i, β̂ are not identical to the functions αi, β
as they are written in terms of the retained parameters, which are not the same in parameterization

no. 1. However, the relationships between these functions can be easily established: if we replace

qn+1 in the left-hand side of [7.49] with qn+1 = χn+1(q, t), then we must once again arrive at

the left-hand side of [7.48]:

n∑
i=1

αi(q, t) q̇i + β(q, t) =
n+1∑
i=1

α̂i(q, χn+1(q, t), t) q̇i + β̂(q, χn+1(q, t), t) [7.51]

Let us develop the right-hand side of the previous relationship:

n+1∑
i=1

α̂i(q̂, t) q̇i + β̂(q̂, t) =
n∑

i=1

α̂i(q̂, t) q̇i + α̂n+1(q̂, t) q̇n+1 + β̂(q̂, t)
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where q̇n+1 =

n∑
i=1

∂χn+1

∂qi
q̇i +

∂χn+1

∂t
. Hence

n+1∑
i=1

α̂i(q̂, t) q̇i + β̂(q̂, t) =

n∑
i=1

(
α̂i(q̂, t) + α̂n+1(q̂, t)

∂χn+1

∂qi︸ ︷︷ ︸
function of (q,t)

)
q̇i + β̂(q̂, t)

+ α̂n+1(q̂, t)
∂χn+1

∂t︸ ︷︷ ︸
function of(q,t)

By equating this with the right-hand side of [7.51], we arrive at the following relationships

between αi and α̂i, on the one hand, and between β and β̂, on the other hand:

αi(q, t) = α̂i(q, χn+1(q, t), t) + α̂n+1(q, χn+1(q, t), t)
∂χn+1

∂qi
(q, t)

β(q, t) = β̂(q, χn+1(q, t), t) + α̂n+1(q, χn+1(q, t), t)
∂χn+1

∂t
(q, t)

[7.52]

which gives the functions αi, β as composite functions of (q, t).

7.3.3. Relationships between the virtual quantities resulting from the two
parameterizations

The VVFs corresponding to the two parameterizations, respectively, are given by

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
(q, t) q̇∗i [7.53]

V̂ 
(p) =

n+1∑
i=1

∂̂P

∂qi
(q̂, t) q̇
i [7.54]

where the n-tuple (q̇∗1 , . . . , q̇
∗
n) and the (n+1)-tuple (q̇
1, . . . , q̇



n+1) (these two tuples do not have

the same number of elements) are arbitrary and independent.
The functions P (q, t) and P̂ (q̂, t) are related through [7.50]. However, as the two tuples

(q̇∗1 , . . . , q̇
∗
n) and (q̇
1, . . . , q̇



n+1) are independent of each other, the VVFs �V ∗(p) and V̂ 
(p) are

not, a priori, identical.

We will establish the relationship between the two VVFs using the relationships between the

q̇∗i and the q̇
i .

Definition. The VVF associated with parameterization no. 2 and twinned with parameterization
no. 1, is, by definition, the VVF [7.54] where (q̇
1, . . . , q̇



n) is taken to be equal to (q̇∗1 , . . . , q̇

∗
n) of

the VVF [7.53]:

V̂ 
(p) =
n∑

i=1

∂̂P

∂qi
(q̂, t) q̇∗i +

∂̂P

∂qn+1
(q̂, t) q̇
n+1 [7.55]

(there is no condition on q̇
n+1, which is an arbitrary scalar specific to parameterization no. 2).

In other words, the two VVFs are twinned when they have the same virtual q̇∗j for all j indices

common to the two parameterizations.

We also say that the VVFs �V ∗(p) and �V 
(p) are twinned.
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Do not say that the virtual parameters q̇∗i and q̇
i are equal as only some of them are equal.

Theorem. Relationship between twinned VVFs.

(i) The twinned VVs are related through

�V ∗(p) = V̂ 
(p)∣∣qn+1=χn+1(q,t)
+

(
n∑

i=1

∂χn+1

∂qi
q̇∗i − q̇
n+1

)
∂̂P

∂qn+1
(q, χn+1(q, t), t)

[7.56]

(ii) In a rigid body S, the twinned virtual angular velocities are related through

�Ω∗
R1S(p) = Ω̂


R1S
(p)∣∣qn+1=χn+1(q,t)

+

(
n∑

i=1

∂χn+1

∂qi
q̇∗i − q̇
n+1

)
ω̂n+1
R1S
∣∣qn+1=χn+1(q,t)

[7.57]

where ω̂n+1
R1S

is the partial angular velocity of S with respect to R1 defined by [2.36] (with

n+ 1 parameters, instead of n).

PROOF.

(i) We have

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
(q, t) q̇∗i according to [7.53]

=
n∑

i=1

(
∂̂P

∂qi
(q, χn+1(q, t), t) +

∂̂P

∂qn+1
(q, χn+1(q, t), t)

∂χn+1

∂qi
(q, t)

)
q̇∗i

on applying [7.50]

=

n∑
i=1

∂̂P

∂qi
(q, χn+1(q, t), t) q̇

∗
i +

∂̂P

∂qn+1
(q, χn+1(q, t), t)

n∑
i=1

∂χn+1

∂qi
(q, t) q̇∗i

Hence relationship [7.56], noting that according to [7.55] the first term in the last right-hand

side of the equation is written as

n∑
i=1

∂̂P

∂qi
(q, χn+1(q, t), t) q̇

∗
i = V̂ 
(p)∣∣qn+1=χn+1(q,t)

− ∂̂P

∂qn+1
(q, χn+1(q, t), t) q̇



n+1

(ii) To prove [7.57], let us apply [7.56] to two different particles p, p′ of the rigid body S, whose

respective positions in R0 are P and P ′, and then subtract the obtained relationships:

�V ∗(p′) − �V ∗(p)︸ ︷︷ ︸
=

[4.32]

�Ω∗
R1S×−−→

PP ′

= V̂ 
(p′) − V̂ 
(p)︸ ︷︷ ︸
=

[4.32]
Ω̂�

R1S×−−→
PP ′

+

(
n∑

i=1

∂χn+1

∂qi
q̇∗i − q̇
N+1

)(
∂̂P ′

∂qn+1
− ∂̂P

∂qn+1

)
︸ ︷︷ ︸

=
[2.42]

ω̂n+1
R1S×−−→

PP ′

where qn+1 = χn+1(q, t) is implied in the right-hand side of the equation, for brevity. Note

that [2.42] is applicable because hypothesis [2.33], assumed to be verified in this chapter,

encompasses hypothesis [2.26]. We arrive at relationship [7.57] by taking into account the

fact that
−−→
PP ′ is arbitrary. �
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For later convenience, let us also prove the following relationship:

Theorem. ∀(q̇∗1 , . . . , q̇∗n), ∀q̇
n+1 (here, we do not require twinned VVFs),

n∑
i=1

αi q̇
∗
i =

n∑
i=1

α̂i q̇
∗
i + α̂n+1 q̇



n+1 + α̂n+1

(
n∑

i=1

∂χn+1

∂qi
q̇∗i − q̇
n+1

)
[7.58]

where the functions α̂i, i ∈ [1, n + 1] on the right-hand side of the equation are evaluated at

(q, χn+1(q, t), t).

PROOF. The proof is simple: the summation
∑n

i=1 over relationship [7.52], weighted by q∗i ,

gives
n∑

i=1

αiq
∗
i =

n∑
i=1

α̂iq
∗
i + α̂n+1

n∑
i=1

∂χn+1

∂qi
q∗i

By adding α̂n+1q̇


n+1 to the last term and by subtracting the same term, we arrive at the desired

result. Q.E.D. �

7.3.4. Identity between the VVFs associated with the two paramaterizations and
compatible with a mechanical joint

On applying definition [7.2], we arrive at the VVFs associated with parameterization nos. 1 and

2, and compatible with the mechanical joint:

COMPATIBLE VVF RESULTING FROM
PARAMETERIZATION NO. 1

COMPATIBLE VVF RESULTING FROM
PARAMETERIZATION NO. 2

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
(q, t) q̇∗i V̂ 
(p) =

n+1∑
i=1

∂̂P

∂qi
(q̂, t) q̇
i

where (q̇∗1 , . . . , q̇
∗
n) satisfies where (q̇
1, . . . , q̇



n+1) satisfies

q̇
n+1 =

n∑
i=1

∂χn+1

∂qi
q̇
i [7.59]

q̇∗n =

n−1∑
i=1

∂χn

∂qi
q̇∗i [7.60] q̇
n =

n−1∑
i=1

∂χn

∂qi
q̇
i [7.61]

n∑
i=1

αi(q, t)q̇
∗
i = 0 [7.62]

n+1∑
i=1

α̂i(q̂, t)q̇


i = 0 [7.63]
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and where q, involved in the
−→
∂P
∂qi

(q, t), the ∂χn

∂qi
(expressions obtained after differentiation) as

well as in the αi(q, t), satisfies

qn = χn(q1, . . . , qn−1, t)

n∑
i=1

αi(q, t) q̇i + β(q, t) = 0
[7.64]

and where q̂, involved in the
−→
∂P
∂qi

(q̂, t), the ∂χn

∂qi
(expressions obtained after differentiation) as

well as in the α̂i(q̂, t), satisfies

qn = χn(q1, . . . , qn−1, t)
qn+1 = χn+1(q, t)
n+1∑
i=1

α̂i(q̂, t) q̇i + β̂(q̂, t) = 0
[7.65]

Qualitatively speaking, parameterization no. 2 has more retained parameters and the

associated VVF is, therefore, richer: it depends on (q̇
1, . . . , q̇


n) and q̇
n+1. However, as it is

subjected to more restrictions, we may expect to obtain the same VVF as with parameterization

no. 1. This is what will now be proved.

Theorem. Identity between the compatible VVFs associated with two parameterizations.
The two compatibles VVFs, resulting from parameterization nos. 1 and 2 are twinned. Stronger

still – they are identical:

compatible �V ∗(p) = compatible V̂ 
(p) [7.66]

Recall that the compatible VVFs do not change when the classification of constraint equation

is changed. In other words, the compatible VVFs do not depend on the choice of retained

parameters.

PROOF.

(i) Let us first show that the solutions of [7.64] are the same as those of [7.65]. More

specifically, let us show that{
– if q satisfies [7.64], then q and qn+1 = χn+1(q, t) satisfy [7.65],

– conversely, if q and qn+1 satisfy [7.65], then q satisfies [7.64].
[7.67]

As the above statement is evident for relationships [7.64]1 and [7.65]1, which are identical,

let us show it for solutions of [7.64]2 and [7.65]2−3. In order to do this, one only has to

recall relationship [7.51]:

n∑
i=1

αi(q, t) q̇i + β(q, t) =

n+1∑
i=1

α̂i(q, χn+1(q, t), t) q̇i + β̂(q, χn+1(q, t), t)

Hence, the statement [7.67].

(ii) Let us now show that the solutions of [7.60] and [7.62] are the same as those of [7.59],

[7.61] and [7.63]. More specifically, let us show that⎧⎪⎪⎪⎨⎪⎪⎪⎩
– if (q̇∗1 , . . . , q̇

∗
n) satisfies [7.60] and [7.62], then (q̇
1, . . . , q̇



n) = (q̇∗1 , . . . , q̇

∗
n) and an

arbitrary q̇
n+1 satisfies [7.59], [7.61] and [7.63],

– conversely, if (q̇
1, . . . , q̇


n, q̇



n+1) satisfies [7.59], [7.61] and [7.63], then

(q̇∗1 , . . . , q̇
∗
n) = (q̇
1, . . . , q̇



n) satisfies [7.60] and [7.62].

[7.68]
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Indeed:

– as equation [7.59] exists only in parameterization no. 2 (it has no equivalent in

parameterization no. 1), there is nothing to be proven for this equation,

– as equations [7.60] and [7.61] are identical when ∗ and � are interchanged, any

(q̇∗1 , . . . , q̇
∗
n) that satisfies [7.60] gives (q̇
1, . . . , q̇



n) = (q̇∗1 , . . . , q̇

∗
n) satisfying [7.61]

and vice versa,

– what remains now is to consider the solutions of [7.62] and [7.63]. Taking into account

[7.59] and [7.65], relationship [7.58] becomes: ∀(q̇∗1 , . . . , q̇∗n), ∀q̇
n+1,

n∑
i=1

αi(q, t) q̇
∗
i =

n∑
i=1

α̂i(q, χn+1(q, t), t) q̇
∗
i + α̂n+1(q, χn+1(q, t), t) q̇



n+1

Consequently:

* if (q̇∗1 , . . . , q̇
∗
n) satisfies [7.62], then (q̇
1, . . . , q̇



n) = (q̇∗1 , . . . , q̇

∗
n) and an arbitrary

q̇
n+1 satisfy relationship [7.63] calculated with [7.65],

* conversely, if (q̇
1, . . . , q̇


n, q̇



n+1) satisfies [7.63] calculated with [7.65], then

(q̇∗1 , . . . , q̇
∗
n) = (q̇
1, . . . , q̇



n) satisfies [7.62].

We have thus proven statement [7.68]. Consequently, the two compatible VVFs resulting

from the two parameterizations, respectively, are twinned.

(iii) As the two VVFs are twinned, it is possible to apply [7.56]. Taking into account [7.59],

relationship [7.56] becomes [7.66]. �

7.3.5. Example 1

We will verify theorem [7.66] through a few simple examples. Let us return to the example in

section 7.1.3 for a particle p moving along a curve in the plane O�x0�y0, with equation y =
χ(x) (Figure 7.1). This time, let us calculate the VVs of the particle that are compatible with

the mechanical joint and associated with the following parameterization, where the constraint

equation y = χ(x) is classified as primitive:

REDUCED PARAMETERIZATION. [7.69]

• Primitive parameters: the same as in the total parameterization: x, y.

• Primitive constraint equation: y = χ(x).

• Retained parameter: x. Hence P = P (x) = O + x�x0 + χ(x)�y0.

• Complementary constraint equation: none.

According to definition [7.2], a VV associated with this parameterization and compatible with

the mechanized joint is

�V ∗(p) =
−→
∂P

∂x
ẋ∗ =

[
�x0 +

dχ

dx
(x)�y0

]
ẋ∗ [7.70]

As predicted by [7.66], this VV is identical to the VV [7.11] found in section 7.1.3 and

resulting from the total parameterization.
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7.3.6. Example 2

Resume the example in section 7.1.4 of a particle p moving along a curve in the plane O�x0�y0,

with the polar equation r = χ(θ) (Figure 7.2). This time, let us calculate the VVs of the particle

that are compatible with the mechanical joint and associated with the following parameterization,

where the constraint equation r = χ(θ) is classified as primitive:

REDUCED PARAMETERIZATION. [7.71]

• Primitive parameters: the same as in the total parameterization: r, θ.

• Primitive constraint equation: r = χ(θ).

• Retained parameter: θ . Hence P = O + r�er(θ) = O + χ(θ)�er(θ) = P (θ).

• Complementary constraint equation: none.

According to definition [7.2], a VV associated with this parameterization and compatible with

the mechanical joint is

�V ∗(p) =
−→
∂P

∂θ
θ̇∗ =

[
dχ

dθ
(θ) �er(θ) + χ(θ) �eθ(θ)

]
θ̇∗ [7.72]

As predicted by [7.66], this VV is identical to the VV [7.13] found in section 7.1.4 and

resulting from the total parameterization.

REMARK. This is where we understand the significance of condition [7.6] in the definition

of a VVF compatible with a joint. With the total parameterization considered in section 7.1.4,

condition [7.6] forces r to satisfy the complementary constraint equation r = χ(θ) and it leads to

expression [7.13] for the compatible VV, identical to [7.72].

If we had not made r = χ(θ), we would have obtained the following expression for the VV

compatible with the particle, instead of [7.13]:

�V ∗(p) =
[
dχ

dθ
(θ) �er(θ) + r �eθ(θ)

]
θ̇∗, [7.73]

which is a different expression from [7.72]. �

7.3.7. Example 3: particle moving along a hoop rotating around a fixed axis

Let us now return to the example of the particle p moving along a hoop (C) rotating at a constant

rate about a fixed axis, considered in section 7.1.5. Recall that the primitive parameter of (C) is

α, the primitive parameters of p are r, ψ, θ and that the mechanical joint between the particle and

the hoop is expressed by the resolved constraint equations r = a and ψ = α (i.e. �n = �c). Let us

calculate the VVs of the particle compatible with the mechanical joint and associated with two

parameterizations that are different from the parameterization considered in section 7.1.5.

• The first parameterization is as follows:

REDUCED PARAMETERIZATION. [7.74]

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equations: α = ωt and r = a.
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• Retained parameters: ψ, θ, t. Hence,
−−→
OP = a �z(ψ, θ). The position of the hoop (C) depends

only on t.

• Complementary constraint equation: ψ = α = ωt.

A VV associated with this reduced parameterization and compatible with the mechanical joint

is

�V ∗(p)=
−→
∂P

∂θ
θ̇∗+

−→
∂P

∂ψ
ψ̇∗ =−aθ̇∗ �v(ψ, θ)+a sin θ ψ̇∗ �n(ψ) with

{
ψ̇∗ = 0 according to [7.4]

and ψ = ωt according to [7.6]

That is
�V ∗(p) = −aθ̇∗ �v(ωt, θ) [7.75]

• The second parameterization is as follows:

INDEPENDENT PARAMETERIZATION. [7.76]

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equations: α = ωt, r = a and ψ = α = ωt.

• Retained parameters: θ, t. Hence
−−→
OP = a �z(ωt, θ). The position of the hoop (C) depends

only on t.

• Complementary constraint equation: none.

A VV associated with this independent parameterization and compatible with the mechanical

joint is

�V ∗(p) =
−→
∂P

∂θ
θ̇∗ = −aθ̇∗ �v(ωt, θ) [7.77]

As predicted by [7.66], the VVs [7.75] and [7.77] are identical to the VV [7.15] found in

section 7.1.5 and resulting from the total parameterization.

REMARK. It is seen that, at a given instant t, one can derive the VV of the particle p compatible

with the joint, from the real velocity as follows:

– to imagine that the hoop is fixed in the position in R0, that it occupies at the considered
instant t,

– to calculate the velocity that particle p would have at this position: �V (p, t) = −aθ̇ �v(ωt, θ),

– to then derive the VV �V ∗(p) by formally replacing θ̇ with θ̇∗. �

7.4. Invariance of the compatible VVFs with respect to the choice of the
parameterization

Let us summarize the principal facts established since the beginning of this chapter. Consider a

system S made up of several rigid bodies and subjected to a certain number of mechanical joints.

The a priori position of system S in the reference frame R0 is defined by a certain number of

primitive position parameters chosen beforehand, and possibly the time t. The existing

mechanical joints are expressed by a certain number of constraint equations. Choosing a
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parameterization consists of classifying these equations in a certain manner – some as primitive

and others as complementary, which amounts to choosing the retained parameters.

We are concerned with a given mechanical joint in this system, and in [7.2] we define the

concept of the VVF associated with a chosen parameterization and compatible with the

mechanical joint.

In the previous sections, we proved two interesting results:

1. The first of these is theoreom [7.39], according to which the compatible VVFs do not
depend on the choice of the primitive parameters. Owing to this result, we can fix a set of

primitive parameters and then study what happens when we change the retained parameters.

2. The second is theorem [7.66], according to which the compatible VVFs do not depend on

the choice of the retained parameters.

Now one only has to combine these two results to arrive at the following conclusion:

Theorem. [7.78]

The VVF compatible with a given mechanical joint is independent of the choice of the

primitive parameters and the retained parameters. In other words, it is independent of the choice

of the parameterization. The VVF compatible with the considered joint has the same expression,

whatever parameterization we choose. It depends only on the considered mechanical joint.
In order to express these properties, we say that the concept of the compatible VVF defined

by [7.2] is an intrinsic concept. We also say that the compatible VVF is invariant with respect

to the choice of the parameterization.

Thus, from now on we will simply speak of a VVF compatible with a mechanical joint, without

needing to specify the parameterization that we are working with.

7.5. Perfect joints

7.5.1. Definition of a perfect joint

A mechanical joint in the system S may be of one of the following types:

1. either an internal joint; i.e. between two rigid bodies S1 and S2 of the system S (Figure

7.6(a)),

2. or a joint with the exterior; i.e. between a rigid body S of the system and a rigid body S̄,

which does not belong to the system (S̄ may be fixed or moving in R1) (Figure 7.6(b)).

Let us examine the VP done by the constraint efforts at this mechanical joint, using the

summary given in section 5.6:

1. In the case of an internal mechanical joint between two rigid bodies S1 and S2 in the

system S , the efforts exerted by the joint on the system S are the inter-efforts FS1↔S2

between these rigid bodies. The VP of the constraint efforts is that of the inter-efforts and

according to theorem [5.14], it is independent of the reference frame with respect to which it

is calculated. It is denoted P∗(FS1↔S2 , t) without the reference frame index. Let us recall

its expression:

P∗(FS1↔S2
, t) = MS2→S1

(t) ◦ V ∗
S2S1

The VP of the inter-efforts only depends on the moment field of the efforts MS2→S1(t) and

the relative virtual velocities �V ∗
S1S2

between two rigid bodies.
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a) Internal joint between two rigid bodies S1 and

S2 of the system

b) Joint between a rigid body S of the system and

a rigid body S̄ outside the system

Figure 7.6. Mechanical joints in a system

2. In the case of a mechanical joint between a rigid body S of the system and a rigid body S̄
outside the system, we require hypothesis [2.33] adopted at the beginning of this chapter:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q01 of R1 with respect to R0 and the point O1

fixed in R1 do not depend on q.

The VP of the constraint efforts is that of the efforts exerted by rigid body S̄ on rigid body

S. Using the previous hypothesis, we showed in [5.8] and [5.11] that this VP is independent
of the reference frame R1 with respect to which it is calculated. This enables us to write it

without the reference frame index: P∗(FS̄→S , t). Its expression follows from [5.5]:

P∗(FS̄→S , t) = MS̄→S(t) ◦ V ∗
R1S

being aware that here the VVF V ∗
R1S

is, in fact, independent of R1.

In a generic manner, the VP of the constraint efforts exerted by the joint in question on system

S is denoted by P∗(Fconstraint→S , t). Depending on whether this involves an internal joint or a

joint with the exterior, this notation denotes either the VP of inter-efforts P∗(FS1↔S2 , t), or the

VP P∗(FS̄→S , t) of an external rigid body on a rigid body in S .

Because of the notation P∗(Fconstraint→S , t), we can introduce the following definition:

Definition. A mechanical joint in the system S is said to be perfect (or ideal) if, at any instant

t, the VP of the constraint efforts exerted by the joint on S is zero in any VVF V ∗ compatible
with this joint:

∀t, ∀ VVF V ∗ compatible with this joint, P∗(Fconstraint→S , t) = 0 [7.79]

In other words, the mechanical joint is perfect if, at any instant, any VVF compatible with

the joint is orthogonal (in the sense of the product ◦ defined in [5.5]) to the moment field of

constraint efforts exerted by the joint in question.

As just seen above, the notion of a perfect joint is independent of the reference with respect

to which the VP is calculated. Let us now examine the independence with respect to the chosen

parameterization. According to theorem [7.78], the VVFs compatible with the considered

mechanical joint are independent of the choice of parameterization. As a result, the VP of the

constraint efforts in a VVF compatible with the considered joint is also independent of the

chosen parameterization (let us recall that the VP is defined as a sum of the products of the

efforts and the VVF). In particular, if the VP of the constraint efforts is zero with one

parameterization, then it is also zero with another parameterization.
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In analytical mechanics, the concept of a perfect joint is, therefore, intrinsic in the sense that

it does not depend on the chosen parameterization. In Newtonian mechanics, a perfect joint is

defined without any mention of the parameterization and, therefore, the question of independence

with respect to the parameterization does not arise at all.

In practice, in order to carry out the calculations, we have yet to choose a certain

parameterization, calculate the VVFs compatible with this parameterization and, finally,

calculate the VP of constraint efforts in these compatible VVFs. When working with this

parameterization, it should be remembered that

– the constraint equations that come into play via the compatible VVFs are only

complementary equations,

– and that the VP is the VP of all constraint efforts ensuring the mechanical joint in question

(these efforts correspond to the primitive constraint equations as well as to the

complementary constraint equations).

• Let us assume that the mechanical joint being studied is an internal joint. In the calculation

of the VP P∗(FS1↔S2 , t) of the inter-efforts, we must take the most general relative VVF �V ∗
S1S2

,

compatible with the mechanical joint in question, and only this joint.

The relative VVF �V ∗
S1S2

is automatically the most general if the two rigid bodies S1 and S2

are subjected to a single mechanical joint between them. On the contrary, if the two rigid bodies

are subjected to several joints between them or with other rigid bodies around them, then we must

consider releasing the joints other than the joint in question (i.e. considering the two rigid bodies

as being solely connected by the joint in question) in order to have the most general possible

relative VVF �V ∗
S1S2

.

For instance, assume that the rigid bodies S1, S2 are connected by two mechanical joints

called A and B and that we wish to study the perfection of joint A. We must then release
joint B and write the compatible VVF corresponding to the system subjected only to joint A.

Releasing a joint means removing all the existing constraint equations that express this joint

and, consequently, possibly increasing the number of retained parameters, or even creating new

primitive parameters (thus, increasing the number of initial degrees of freedom of the system).

The compatible VVF resulting from this operation is not the same as that resulting from the

initial parameterization and constitutes the most general possible VVF compatible with the joint

A.

• The same operation must be carried out if the mechanical joint studied is a joint with the

exterior. When calculating the VP P∗(FS̄↔S , t) of the constraint efforts, we must take the most
general VVF �V ∗

R1S
compatible with the mechanical joint in question, and only this.

This condition is automatically satisfied if the rigid body S is subjected to a single mechanical

joint with S̄. On the other hand, if S is subjected to several joints with other rigid bodies around it,

we must consider freeing joints other than the joint in question to satisfy this condition. The VVF
�V ∗
R1S

(here, independent of R1) does indeed depend on the mechanical joints taken into account.

This remark will be illustrated in section 7.6 where we deal with a combined joint.

• In the sequel, we will work on some examples of perfect joints. The reader may also consult

Appendix 2, which is dedicated to the study of the elementary perfect joints (spherical joint,

cylindrical joint, etc.) that are frequently encountered in mechanics.

7.5.2. Example 1

We return to the example of the particle that moves along a planar curve with the equation y =
χ(x) in Cartesian coordinates, discussed in section 7.1.3.
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Figure 7.7. Perfect joint between a particle and
a planar curve – parameterization in Cartesian
coordinates

Figure 7.8. Perfect joint between a particle
and a planar curve – parameterization in polar
coordinates

The mechanical joint studied here is the (external) joint imposed by the materialized curve

on the particle. The VV compatible with the joint is given by [7.11] or [7.70]:

�V ∗(p) =
[
�x0 +

dχ

dx
(x)�y0

]
ẋ∗.

Let us denote the constraint force exerted by the curve on the particle p by: �F = X�x0 + Y �y0
(Figure 7.7). The VP of the constraint forces in a VV compatible with the joint is

P∗ = �F .�V ∗(p) =
[
X + Y

dχ

dx
(x)

]
ẋ∗

Definition [7.79] gives:

The joint is perfect ⇔ P∗ = 0 for any compatible VV, i.e. for any ẋ∗

⇔ X + Y
dχ

dx
(x) = 0

⇔ the constraint force �F is orthogonal to the curve y = χ(x)
⇔ there is no friction along the curve

Through this example, it can be seen that the definition of a perfect joint may be used in two

ways:

– One may assume that the constraint efforts satisfy certain properties and then prove that the

mechanical joint is perfect.

– Conversely, one may assume, a priori, that the joint is perfect and that from this we derive

the properties that these constraint efforts must satisfy.

In a general problem, the hypothesis of a perfect joint provides some a priori information

about the constraint efforts (this is the same in Newtonian mechanics).

7.5.3. Example 2

We return to the example of the particle moving along a planar curve r = χ(θ) in polar

coordinates, discussed in section 7.1.4.

The VV compatible with the joint is given by [7.13] or [7.72]:

�V ∗(p) =
[
dχ

dθ
(θ) �er(θ) + χ(θ) �eθ(θ)

]
θ̇∗
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Let us denote the constraint force exerted on the particle p by �F = N�n + T�s, Figure 7.8,

where N is the normal force, T is the tangential force, �s the unit vector tangent to the curve:

�s =

−→
dP/dθ

‖−→dP/dθ‖
=

1√(
dχ
dθ

)2
+ χ2(θ)

[
dχ

dθ
�er + χ(θ)�eθ

]

and �n is the unit vector normal to the curve, defined as

�n = �s× �z0 =
1√(

dχ
dθ

)2
+ χ2(θ)

[
−χ(θ)�er +

dχ

dθ
�eθ

]

The VP of the constraint forces in a VV compatible with the joint is

P∗ =
1√(

dχ
dθ

)2
+ χ2(θ)

T

[
χ2(θ) +

(
dχ

dθ

)2
]
θ̇∗ [7.80]

Definition [7.79] gives:

The joint is perfect ⇔ P∗ = 0 for any compatible VV i.e. for any θ̇∗

⇔ T = 0

⇔ the constraint force �F is orthogonal to the curve r = χ(θ)
⇔ there is no friction along the curve

As expected, we arrive at the same final result as in the previous example.

REMARK. Let us continue with the remark made after [7.72] on the significance of condition

[7.6] in the definition of a VVF compatible with a constraint. When working with the total

parameterization in section 7.1.4, if we had not made r = χ(θ), we would have obtained

expression [7.73] for the compatible VV and the VP of the constraint force would be

P∗ = �F .�V ∗(p) =
1√(

dχ
dθ

)2
+ χ2(θ)

{
N

dχ

dθ

[
r − χ(θ)

]
+ T

[
rχ(θ) +

(
dχ

dθ

)2 ]}
θ̇∗

In the case of a perfect joint, we cannot derive from the above expression that T = 0, which is

not consistent with what may be expected in physics. Condition [7.6] is, therefore, an important

condition. �

7.5.4. Example 3

We return to the example of the particle moving along a hoop rotating about a fixed axis, discussed

in section 7.1.5, except that, for the sake of generality, the angular velocity of the hoop is no longer

prescribed.

Recall that the studied system is composed of the particle p and hoop (C). The mechanical

joint studied here is, therefore, an internal joint. Let �FC→p = N�n+T�v+Z�z denote the constraint

force exerted by the hoop (C) on particle p, where T is the tangential force, and N and Z are the

normal forces (Figure 7.9). Furthermore, when RC denotes the reference frame defined by (C),

the VP of the constraint inter-forces in a VV �V ∗
RC

(p) compatible with the joint is calculated using

the general formula [5.14]:

P∗(FC↔p, t) = �FC→p.�V
∗
RC

(p) [7.81]
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Figure 7.9. Perfect joint between a particle and a hoop

The relative VV �V ∗
RC

(p) of p with respect to (C) is calculated by the composition formula for

velocities [4.43]:
�V ∗
RC

(p) = �V ∗
R0

(p) − �V ∗
R0RC

(P ) [7.82]

where �V ∗
R0RC

(P ) is the VV, with respect to R0, of the particle of the hoop C, which at instant t
coincides with the position P (t) of p (this is the so-called background virtual velocity defined in

[4.49]). Note, in passing, the relevance or irrelevance of the reference frame indices:

– Using the below parameterization, the reference frame RC does not satisfy hypothesis

[2.33] adopted at the beginning of this chapter. Consequently, the VV �V ∗
RC

(p) depends

on RC and the reference frame index RC cannot be removed.

– On the contrary, as the reference frame R0 automatically satisfies hypothesis [2.33], the

VVs �V ∗
R0

(p) and �V ∗
R0C

(P ), which appear in the right-hand side of [7.82] do not, in fact,

depend on R0. The reference frame R0 may be replaced by any other reference frame R1

(satisfying hypothesis [2.33]) without changing the final result.

To calculate the VVs �V ∗
R0

(p) and �V ∗
R0RC

(P ), we choose the following parameterization for

the hoop and particle system:

REDUCED PARAMETERIZATION.

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equation: α = ψ.

• Retained parameters: r, ψ, θ. Hence
−−→
OP = r �z(ψ, θ). The position of the hoop (C) is defined

by ψ.

• Complementary constraint equation: r = a.

A VV �V ∗
R0

(p) associated with this parameterization and compatible with the mechanical joint

between the particle and the hoop is given as

�V ∗
R0

(p) =

−→
∂P

∂r
ṙ∗ +

−→
∂P

∂θ
θ̇∗ +

−→
∂P

∂ψ
ψ̇∗ = �z(ψ, θ) ṙ∗ − r �v(ψ, θ) θ̇∗ + r sin θ �n(ψ) ψ̇∗
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with {
ṙ∗ = 0 according to [7.4]

and r = a according to [7.6]

Or
�V ∗
R0

(p) = −aθ̇∗ �v + a sin θ ψ̇∗ �n [7.83]

The background virtual velocity �V ∗
R0C

(P ) is calculated using relationship [4.35]:

�V ∗
R0RC

(P ) = �V ∗
R0RC

(O) + �Ω∗
R0RC

× −−→
OP where �V ∗

R0RC
(O) = �0 and �Ω∗

R0RC
= ψ̇∗�z0

= a sin θ ψ̇∗ �n
[7.84]

This VV is compatible with the mechanical joint. Inserting relationships [7.83] and [7.84] in

[7.82] yields the compatible VV:
�V ∗
RC

(p) = −aθ̇∗ �v [7.85]

Hence, by [7.81]:

P∗(FC↔p, t) = �FC→p.�V
∗
RC

(p) = −aT θ̇∗

Finally, definition [7.79] gives:

The joint is perfect ⇔ P∗ = 0 for any compatible VV i.e. for any θ̇∗

⇔ T = 0
⇔ there is no friction between the particle and the hoop

REMARKS.

1. Another way of obtaining [7.85] is to calculate the VV �V ∗
RC

(p) using the general definition

[7.9]:

�V ∗
RC

(p) = ¯̄Q0C .

n∑
i=1

∂

∂qi

(
¯̄QC0.

−−→
OP
)
q̇∗i=

¯̄Q0C .

(
∂

∂r

(
¯̄QC0.

−−→
OP
)
ṙ∗+

∂

∂θ

(
¯̄QC0.

−−→
OP
)
θ̇∗
)

[7.86]

where the rotation represented by ¯̄Q0C is taken to be equal to the rotation by angle ψ about

�z0, which brings �x0 to �n. The rotation tensor ¯̄Q0C thus depends on the parameter ψ and

does not satisfy hypothesis [2.33].

In Figure 7.10, we have depicted the canonical basis (�e1, �e2, �e3) of R3, as well as the vectors

denoted by �v(C) ≡ ¯̄QC0.�v, �z(C) ≡ ¯̄QC0.�z, images of �v, �z in the reference frame RC . The

vector ¯̄QC0.
−−→
OP is the image of

−−→
OP in the reference frame RC : ¯̄QC0.

−−→
OP = r�z(C).

Figure 7.10. The relative virtual velocity of p with respect to (C)
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Hence
∂

∂r

(
¯̄QC0.

−−→
OP
)
ṙ∗ +

∂

∂θ

(
¯̄QC0.

−−→
OP
)
θ̇∗ = ṙ∗�z(C) − rθ̇∗�v(C)

which, when inserted in [7.86], gives

�V ∗
RC

(p) = ṙ∗�z − rθ̇∗�v

The VV compatible with the joint can be derived from this by making ṙ∗ = 0 and r = a.

We then arrive again at [7.85].

2. If we consider that the system is only made up of the particle p without the hoop, then the

joint between the particle and the hoop becomes external to the system and it is not perfect.

Indeed, the VP of the constraint forces exerted by the hoop on the particle writes

P∗(FC→p, t) = �FC→p.V
∗
R1

(p)

knowing that the VV V ∗
R1

(p) does, in fact, have the same expression for any R1 satisfying

hypothesis [2.33]. The VV compatible with the joint may be obtained by reusing [7.83]:

�V ∗
R1

(p) = �V ∗
R0

(p) = −aθ̇∗ �v + a sin θ ψ̇∗ �n

Hence

P∗(FC→p, t) = (N�n+ T�v + Z�z).�V ∗
R1

(p) = Na sin θ ψ̇∗ − aT θ̇∗

Definition [7.79] gives:

The joint is perfect ⇔ P∗ = 0 for any compatible VV,

i.e. for any ψ̇∗, θ̇∗

⇔ N = T = 0

Contrary to the condition T = 0, the condition N = 0 is not, in general, feasible and

consequently the considered joint is not perfect. Thus, the same mechanical joint may or

may not be perfect depending on whether it is an internal joint or an external joint. �

7.5.5. Example 4

The previous examples dealing with the joint between a particle and another rigid body showed

that the joint is perfect if and only if the contact is frictionless. The example we now study deals

with the joint between two solid rigid bodies and exhibits a new condition: the joint is perfect if

the contact between the rigid bodies takes place without friction or slipping.

The system studied is a disc S with center C and radius R, moving in the reference frame

R0 endowed with the coordinate system (O; �x0, �y0), and remaining in contact at point I with the

materialized axis O�x0 (Figure 7.11). The a priori position of the disc in R0 is defined by the

coordinates (x, y) of the center C and the angle of rotation ϕ of the disc, defined as being the

angle between �x0 and a radius
−→
CA attached to the disc.

The mechanical joint studied here is the contact at I imposed by the axis O�x0 on the disc S
(it is an external joint). The contact force exerted by the axis on the disc is written, in the general

case, as �Faxis→S = T�x0 +N�y0, where T,N denote, respectively, the tangential and the normal

contact force. We will study the perfect character of the joint by distinguishing between two cases:

simple contact and contact without slipping.
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Figure 7.11. Perfect joint between a disc and an axis

7.5.5.1. Case of simple contact at I

Let us first assume that the contact between the disc and the axis O�x0 is simple, in the sense that

it is expressed only by the geometric relationship y = R and no other additional relationship such

as contact without slipping. We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: x, y, ϕ.

• Primitive constraint equation: y = R.

• Retained parameters: x, ϕ.

• No complementary constraint equation.

The VV at the point C is

�V ∗
0S(C) =

−→
∂C

∂x
ẋ∗ +

−→
∂C

∂ϕ
ϕ̇∗ with

−−→
OC = x�x0 +R�y0

= ẋ∗�x0

Hence, the VV at the point I , on applying [4.35], is given as:

�V ∗
0S(I) = �V ∗

0S(C) + �Ω∗
0S × −→

CI = (ẋ∗ +Rϕ̇∗)�x0

This VV is compatible with the mechanical joint. Relationships [5.5] and [5.8] give the VP of

the constraint forces exerted by the axis O�x0 on the disc S in a VV compatible with the joint:

P∗(�Faxis →S , t) = �Faxis →S .�V
∗
0S(I) = T (ẋ∗ +Rϕ̇∗)

(to apply [5.8], we note that the reference frame R0 automatically satisfies hypothesis [2.33]).

Definition [7.79] gives:

The joint is perfect ⇔ P∗ = 0 for any compatible VV, i.e. for any ẋ∗, ϕ̇∗

⇔ T = 0
⇔ there is no friction between the axis O�x0 and the disc

7.5.5.2. Case of no-slip contact at I

Let us now assume that the contact between the disc and the axis O�x0 takes place without slipping.

The joint at I is therefore expressed through two equations: the geometric relationship y = R
and �V0S(I) = �0, i.e. the semi-holonomic condition ẋ + Rϕ̇ = 0. We choose the following

parameterization:
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PARAMETERIZATION.

• Primitive parameters: x, y, ϕ.

• Primitive constraint equation: y = R.

• Retained parameters: x, ϕ.

• Complementary constraint equation: ẋ+Rϕ̇ = 0.

This time, the VV at the point I , compatible with the mechanical joint is

�V ∗
0S(I) = �V ∗

0S(C) + �Ω∗
0S × −→

CI = (ẋ∗ +Rϕ̇∗)�x0 with ẋ∗ +Rϕ̇∗ = 0 according to [7.5]

= �0

Hence, the VP of the constraint forces exerted by the axis O�x0 on the disc S, in a VV

compatible with the joint:

P∗(�Faxis→S , t) = �Faxis →S .�V
∗
0S(I) = 0

which means that, according to definition [7.79], the joint at I is perfect.

7.5.5.3. To summarize

The results given earlier show that the point contact between the disc and the axis O�x0 is a

perfect joint if the contact takes place without friction or slipping. This observation is the same

in Newtonian mechanics, where the concept of a perfect joint is defined in a slightly different

manner. It remains valid in the following cases (by neglecting the resistance to rolling and

pivoting):

– (external) point contact between a rigid body and another rigid body that is at rest in a

reference frame R1 that satisfies hypothesis [2.33],

– (internal) point contact between two rigid bodies in the same system.

7.6. Example: a perfect compound joint

We work in the reference frame R0 endowed with the coordinate system (O; �x0, �y0, �z0) and we

consider a rigid body S made up (i) of a rod AC of length e, parallel to �zS , and (ii) of a disc of

radius a, center C, axis A�zS and (iii) of a part of any form, represented schematically in Figure

7.12 by a cylinder.

We define the three Euler angles ψ, θ, ϕ by taking

– the vector �n equal to one of the vectors orienting the line of intersection between the plane

of the disc and the plane O�x0�y0,

– the precession angle ψ equal to the angle between �x0 and �n, measured around �z0,

– the nutation angle θ equal to the angle between �z0 and �zS , measured around �n,

– the spin angle ϕ, which gives the rotation of S about the axis A�zS .

The intermediate bases (�n, �u, �z0) and (�n,�v, �zS) are represented in Figure 7.12.

The a priori position of the rigid body S in R0 is defined by three Cartesian coordinates x, y, z
of the point A and three Euler angles ψ, θ, ϕ.

We study here the compound joint imposed by the fixed support on the rigid body S, defined

by the combination of two elementary joints:
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Figure 7.12. Combination of a ball-and-socket joint and a point contact

– a ball-and-socket joint that maintains the end A of the shaft AC at the origin O at any

instant,

– and a point contact of the disc with the plane O�x0�y0 at the point I .

The constraint efforts exerted by the support S0 (defining the reference frame R0) on S are

those given as follows:

– at the ball-and-socket joint at A: a force denoted by �FA and a torque denoted by �CA,

– at the contact point I: a contact force �FI .

We will study the perfect character of the compound joint in two different ways: (i) by

considering it as a single global joint and (ii) by considering it as the superimposition of two

elementary joints.

7.6.1. Perfect combined joint

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: x, y, z, ψ, θ, ϕ.

• Primitive constraint equations: these are those expressing the spherical joint, namely: x =
y = z = 0.

• Retained parameters : ψ, θ, ϕ.

• Complementary constraint equation: the equation expressing the contact at I , namely zI = 0.

To express this equation in terms of the retained parameters, let us write:

−→
AI =

−→
AC +

−→
CI = e�zS − a�v = (e cos θ − a sin θ)�z0 − (e sin θ + a cos θ)�u [7.87]

Hence, through projection onto �z0, the new expression for zI = 0:

e cos θ − a sin θ = 0 ⇔ θ = θ0 ≡ arctan
e

a
(const) [7.88]
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The VP of the constraint efforts exerted by the support on the rigid body S is calculated using

[5.5] and [5.8]:

P∗(F0→S , t) = �FA.�V
∗
0S(A) + �CA.�Ω

∗
0S︸ ︷︷ ︸

due to the spherical joint

+ �FI .�V
∗
0S(I)︸ ︷︷ ︸

due to the contact at I

[7.89]

Let us calculate the VVs appearing in the above expression, compatible with the joint:

– �V ∗
0S(A) =

−→
∂A

∂ψ
ψ̇∗ +

−→
∂A

∂ϕ
ϕ̇∗ = �0 because

−→
OA = �0.

– On the other hand:

�Ω∗
0S = ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�zS where θ̇∗ = 0 according to [7.88]

= ψ̇∗�z0 + ϕ̇∗�zS

– We calculate �V ∗
0S(I) by �V ∗

0S(I) = �V ∗
0S(A) + �Ω∗

0S × −→
AI , where

−→
AI =−−−−−−−−−−−−−−−−−−−−−−−−→

−(e sin θ + a cos θ)�u = − a

cos θ0
�u, knowing that, according to [7.88],

e sin θ + a cos θ =
a

cos θ0
. It is because of clause [7.6] that we were able to use the

complementary constraint equation [7.88] to construct the compatible VV. Hence

�V ∗
0S(I) = �V ∗

0S(A) + �Ω∗
0S × −→

AI = (
a

cos θ0
ψ̇∗ + a ϕ̇∗)�n

Consequently, the VP [7.89] in a VV compatible with the joint is written as

P∗(F0↔S , t) =

[
�CA.�z0 +

a

cos θ0
�FI .�n

]
ψ̇∗ +

[
�CA.�zS + a�FI .�n

]
ϕ̇∗

Definition [7.79] gives:

The compound joint is perfect ⇔ P∗ = 0 for any compatible VV i.e. ∀ψ̇∗, ∀ϕ̇∗

⇔ cos θ0 �CA.�z0 + a �FI .�n = 0

and �CA.�zS + a �FI .�n = 0
[7.90]

7.6.2. Superimposition of two perfect elementary joints

We will now study the joint, not by considering it as a whole, as we did previously, but by

considering it to be the superimposition of two elementary joints. More precisely:

(i) we will first study the two elementary joints separately, by releasing the contact at I and

also the spherical joint at A. By assuming that each joint is perfect, we will derive from this

the conditions on the constraint efforts exerted on the rigid body,

(ii) the compound joint is then considered to be perfect if the two elementary joints that make

it up are perfect.

We will see that this procedure leads to stronger conditions than those obtained in the previous

section.
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Figure 7.13. Only the spherical joint at A

7.6.2.1. Perfect spherical joint at A

As said in section 7.5.1, to study the perfection of the spherical joint at A, we must release the

contact at I , i.e. remove the constraint equation [7.88] in the above parameterization. Let us thus

break off the contact at I and assume that the rigid body is subject to the spherical joint only

(Figure 7.13).

We will carry out the analysis using the following parameterization:

PARAMETERIZATION.

• Primitive parameters: x, y, z, ψ, θ, ϕ.

• Primitive constraint equations: these are those expressing the spherical joint, namely x = y =
z = 0.

• Retained parameters: ψ, θ, ϕ.

• No complementary constraint equation.

The VP of the constraint efforts exerted by the support on the rigid body S can be calculated

using [5.5] and [5.8]:

P∗(F0→S , t) = �FA.�V
∗
0S(A) + �CA.�Ω

∗
0S [7.91]

The VVs compatible with the joint are given by:

�Ω∗
0S = ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�zS �V ∗

0S(A) = �0

Hence, the VP [7.91] in a VV compatible with the ball joint:

P∗(F0↔S , t) = �CA.
(
ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�zS

)
Definition [7.79] thus gives:

The ball joint at A is perfect ⇔ P∗ = 0 for any compatible VV,

i.e. for any ψ̇∗, θ̇∗, ϕ̇∗

⇔ �CA = �0 : the torque at the spherical joint is zero [7.92]

7.6.2.2. Perfect point contact at I

This time, let us free the spherical joint at A and only retain the point contact at I (Figure 7.14).

The constraint equations x = y = z = 0 disappear. We choose the following

parameterization:



Perfect Joints 171

Figure 7.14. Only the point contact at I

PARAMETERIZATION.

• Primitive parameters: x, y, z, ψ, θ, ϕ.

• No primitive constraint equation.

• Retained parameters: x, y, z, ψ, θ, ϕ.

• Complementary constraint equation: it is the equation expressing the contact at I . Relationship

[7.87] is still valid. Projecting it onto �z0 this time gives:

z = a sin θ − e cos θ [7.93]

which is different from [7.88] obtained in the case of the compound joint.

The VP of the constraint efforts between the support and the rigid body S is calculated by

[5.5] and [5.8]:

P∗(F0→S , t) = �FI .�V
∗
0S(I) [7.94]

The VV �V ∗
0S(I) compatible with the joint is obtained from �V ∗

0S(I) =
�V ∗
0S(A) +

�Ω∗
0S × −→

AI ,

where

– on the one hand,

�V ∗
0S(A) = ẋ∗�x0 + ẏ∗�y0 + ż∗�z0 with ż∗ = (e sin θ + a cos θ) θ̇∗ according to [7.93]

= ẋ∗�x0 + ẏ∗�y0 + (e sin θ + a cos θ) θ̇∗�z0

– on the other hand, �Ω∗
0S = ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�zS ,

– as concerns
−→
AI , one only has to write it in the form

−→
AI = e�zS − a�v without further detail.

This gives

�V ∗
0S(I) = ẋ∗�x0 + ẏ∗�y0 + ψ̇∗(e sin θ+ a cos θ)�n+ θ̇∗ [(e sin θ + a cos θ)�z0 − e�v − a�zS ] + aϕ̇∗�n

By inserting this expression in the VP [7.94] and by applying definition [7.79], we find:

The contact joint at I is perfect ⇔ P∗ = 0 for any compatible VV,

i.e. ∀ẋ∗, ẏ∗, ψ̇∗, θ̇∗, ϕ̇∗

⇔
⎧⎨⎩

�FI .�x0 = �FI .�y0 = 0

and �FI .�n = 0

and �FI . [(e sin θ + a cos θ)�z0 − e�v − a�zS ] = 0
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Knowing that �v = cos θ�u+sin θ�z0 and �zS = − sin θ�u+cos θ�z0, it can be easily verified that

we arrive at the following equivalence:

The contact at I is perfect ⇔ �FI = FI �z0 : the contact is frictionless [7.95]

7.6.2.3. Conclusion

It can be observed that the union of the conditions for perfection [7.92] and [7.95] is stronger than

conditions [7.90]: conditions [7.92] and [7.95] imply [7.90], but not conversely. In other words:

– if the two elementary joints (spherical joint and point contact) are perfect, then the

combined joint resulting from the juxtaposition of these two joints is also perfect,

– however, the converse is not true: contrary to what we may believe, the compound joint

may be perfect without its component joints being perfect.

REMARK. The study of the perfection of the joints being achieved, let us now see how we can

solve the problem using Lagrange’s equations. We can specify two cases:

1. Let us consider that the two joints – spherical joint and point contact – are perfect. We thus

have conditions [7.92] and [7.95]. To write Lagrange’s equations, we choose the following

parameterization:

– Primitive parameters: x, y, z, ψ, θ, ϕ.

– Primitive constraint equations: these are those expressing the spherical joint, namely

x = y = z = 0.

– Retained parameters: ψ, θ, ϕ.

– Complementary constraint equation: the equation expressing the contact at I , namely

θ = θ0 ≡ arctan
e

a
.

We obtain seven equations in total – six Lagrange’s equations and the complementary

constraint equation – for seven unknowns, namely three kinematic unknowns ψ, θ, ϕ and

four unknown constraint efforts �FA, FI .

2. Let us now assume that the compound joint is perfect, without the elementary joints being

perfect. This time we have conditions [7.90]. To write Lagrange’s equations, let us choose

the same parameterizations as above.

We obtain nine equations in total – six Lagrange’s equations, the complementary constraint

equation and the two relationships [7.90] – for 12 unknowns, namely three kinematic

unknowns ψ, θ, ϕ and nine unknown constraint efforts �FA, �CA, �FI . Thus, the condition

for the perfection of the compound joint does not provide sufficient information and we are

faced with a hyperstatic system to the third degree. �
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Lagrange’s Equations in
the Case of Perfect Joints

Consider a system S composed of one or more rigid bodies. The mechanical joints existing in

this system are expressed by a certain number of constraint equations, which may be classified

in different manners, either as primitive equations or as complementary equations. The retained

parameters are q ≡ (q1, . . . , qn) and t.
It is assumed that we know a Galilean reference frame Rg. Let us recall that the Lagrange’s

equations are ∀i ∈ [1, n], Ci = Qi = Di + Li, where Di (respectively, Li) is the ith generalized

force corresponding to the given efforts (respectively, constraint efforts).

By decomposing the given efforts into those that are derivable from a potential VRg and those

that are not derivable from a potential, we have Di = −∂VRg

∂qi
+D′

i, and, as a result, the Lagrange’s

equations can be written as

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
= D′

i + Li [8.1]

Unlike the D′
i coefficients, the Li coefficients are more tedious to calculate. As said in [6.6],

in the general case, we must first analyze the existing mechanical joints and identify the constraint

efforts Fconstraint→S applied on the system; we must then calculate the VP of the constraint efforts

and, finally, from this we derive the Li coefficients.

In this chapter, it will be seen that the hypothesis of perfect joints enables one to obtain

expressions for the Li coefficients systematically, easily and quickly.

• As with the Lagrange’s equations in the general case (Chapter 6), we will adopt convention

[6.1], according to which, the Galilean reference frame Rg being known, we choose the common

reference frame R0 equal to Rg:

R0 = Rg

As was said at the beginning of Chapter 6, this choice simplifies the discussion later on as

the rotation tensor of Rg with respect to R0 is then equal to the identity tensor, ¯̄Q0g = ¯̄I , in

consequence of which the pair (Rg, R0) automatically satisfies hypothesis [2.33] on perfect joints,

which appears repeatedly, especially in Chapter 7:

HYPOTHESIS [2.33]: The rotation tensor ¯̄Q0g and the point Og fixed in Rg do not depend on q.

This hypothesis implies that the VV of a particle and the VP of an efforts system are

independent of the reference frame Rg and that they can, thus, be written without the reference
frame index:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i and P∗(F→S , t)

Lagrangian Mechanics: An Advanced Analytical Approach,
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Hypothesis [2.33] is essential to establish Lagrange’s equations in the presence of perfect

joints for the simple reason that the concept of the perfect joint itself was introduced in Chapter 7

under hypothesis [2.33].

Recall that this hypothesis implies the independence of the VP of constraint efforts with

respect to the reference frame and that, in turn, this independence makes the concept of a perfect

joint an intrinsic one. The weaker hypothesis, hypothesis [2.26], would not have been sufficient.

8.1. Lagrange’s equations in the case of perfect joints and an independent
parameterization

It is assumed here that the chosen parameterization is independent, i.e. that all constraint
equations are primitive.

8.1.1. Lagrange’s equations

Theorem
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg, as per convention [6.1].

(ii) All the joints are perfect.

(iii) There is no complementary constraint equation (i.e. the parameterization is independent).

The Lagrange’s equations then write as

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
= D′

i [8.2]

PROOF. Consider an arbitrary n-tuple (q̇∗1 , . . . , q̇
∗
n). According to definition [7.2], the associated

VVF, �V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i , is compatible with all joints since there are no complementary

equations expressing the joints. According to definition [7.79] of a perfect joint, the VP of the

constraint efforts in this VVF is zero. All this can be rendered in mathematical terms as follows:

∀t, ∀(q̇∗i )1≤i≤n, P∗(Fconstraint→S ) =
n∑

i=1

Liq̇
∗
i = 0

Hence, Li = 0, ∀i ∈ [1, n], and the Lagrange’s equation [8.1] gives [8.2]. �

8.1.2. Review

Since the generalized forces D′
i for given efforts that are not derivable from a potential are known,

the Lagrange’s equations [8.2] make up a system of n second-order differential equations in time,

for n unknown functions (qi)1≤i≤n.
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In connection with section 6.3 on the need of modeling joints, we see that the hypothesis of
perfect joints allows us to systematically obtain as many equations as unknowns, and that the

equations obtained form the equations of motion for the mechanical system. We will see that we

still have as many equations as unknowns in the presence of complementary constraint equations.

8.1.3. Particular case

The following particular case can immediately be derived from theorem [8.2]:

Definition and corollary.
HYPOTHESIS: In addition to the hypothesis in theorem [8.2], it is assumed that all the given

efforts admit a potential VRg (q, t).
By defining the Lagrangian of the system S as

L(q, q̇, t) ≡ Ec
RgS (q, q̇, t) − VRg (q, t)

we can write the Lagrangian equations as

∀i ∈ [1, n],
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 [8.3]

which shows that, under the adopted hypothesis, the Lagrangian L can alone determine the

equations of motion. We say that the system S under consideration is a Lagrangian system.

When the constraints are independent of time, Ec
RgS + VRg is the mechanical energy of the

system. We must be careful not to confuse Ec
RgS + VRg and the Lagrangian Ec

RgS − VRg .

REMARK. We can relate the previous corollary and the well-known Hamilton principle in

mechanics:

Hamilton’s Principle. Let S be a mechanical system defined by n parameters q ≡ (q1, . . . , qn)
and satisfying the hypotheses of this section. Let us assume that this system begins with a given

position at an instant t0 to arrive at another given position at t1. The trajectory described by the

system in the q space, between the two instants t0 and t1, is the trajectory that makes the integral∫ t1

t0

L(q, q̇, t)dt – called the action integral – stationary.

In other words, of all possible motions between t0 and t1, the actual motion is that which

makes the integral

∫ t1

t0

L(q, q̇, t)dt stationary.

Hamilton’s principle transforms the determination of the motion of a mechanical system into

a variational calculus, whose solutions (q1(t), . . . , qn(t)) necessarily satisfy the so-called Euler’s
equations. It can be verified here that Euler’s equations are equal to Lagrange’s equations [8.3].

Hamilton’s principle is, in the specific case in this section, to Lagrange’s equations what, in optics,

Fermat’s principle is to Descartes’ law sin i = n sin r. �

8.2. Lagrange’s equations in the case of perfect joints and in the presence of
complementary constraint equations

Let us now study the case where all the joints are perfect and where, unlike in section 8.1, it

is assumed here that the chosen parameterization contains � (� < n) complementary constraint
equations, which can always be written in the differential form:
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n∑
i=1

αhi(q, t) q̇i + βh(q, t) = 0 h ∈ [1, �] [8.4]

Moreover, it is assumed that the � previous relationships are linearly independent, i.e. rank

[α] = �, where [α] denotes the � × n matrix whose (h, i)-component is αhi.

We will show that there exists in this case a simple means of calculating the generalized forces

associated with the constraint efforts by means of the so-called Lagrange multipliers.

8.2.1. Lagrange’s equations with multipliers

The general form [8.1] of Lagrange’s equations always remains valid, where the generalized

forces Li corresponding to the constraint efforts may be determined by calculating the VP of the

constraint efforts.

Here, instead, we will use the hypothesis of perfect joints in order to obtain a systematic
expression for the Li. This is the so-called method of Lagrange multipliers.

Theorem
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg, as per convention [6.1].

(ii) All the joints are perfect.

(iii) There exist � (� < n) complementary constraint equations, written in the differential form

[8.4].

The generalized constraint forces Li are then given by

∀i ∈ [1, n], Li =
�∑

h=1

λh(t) αhi(q, t) [8.5]

where the parameters q in the terms αhi(q, t) must satisfy the complementary constraint

equations and the scalars λh(t), h ∈ [1, �], are unknown, a priori time dependent, called the
Lagrange multipliers.

Consequently, the Lagrangian equations are written as

∀t, ∀i ∈ [1, n],
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
= D′

i +
�∑

h=1

λh αhi︸ ︷︷ ︸
Li

[8.6]

PROOF.

(i) Let us return to the expression [6.3] for the PVP which led to the general Lagrangian

equations [8.1]. It is written as, with the decompositions [5.19] and [6.4] of the generalized

forces, Qi = Di + Li = −∂VRg

∂qi
+D′

i + Li, i ∈ [1, n]:
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∀t, ∀(q̇∗i )1≤i≤n,

n∑
i=1

(
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
− D′

i

)
q̇∗i

= P∗(Fconstraint→S ) =

n∑
i=1

Liq̇
∗
i [8.7]

As the n-tuple (q̇∗i )1≤i≤n is arbitrary, the previous relationship gives the general Lagrange

equations [8.1]. Here, we will make use of the perfection of the joints in order to specify

the expression for the generalized constraint forces Li. The difference from the proof of

theorem [8.2] is as follows: due to the presence of complementary constraint equations, the

VVF associated with the parameterization, namely �V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i with an arbitrary

(q̇∗1 , . . . , q̇
∗
n), is not, a priori, compatible with the joints, and consequently, even if the

joints are perfect the VP of the constraint efforts is not zero.

(ii) To specify the expression for the Li, let us restrict ourselves to a VVF �V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i

such that the n-tuple (q̇∗1 , . . . , q̇
∗
n) satisfies

n∑
i=1

αhiq̇
∗
i = 0, ∀h ∈ [1, �] and such that q in

−→
∂P

∂qi
(q, t) and αhi(q, t) satisfies the complementary constraint equations [8.4].

According to definition [7.2], the VVF �V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i is compatible with all the joints

and thus, by virtue of definition [7.79], the VP of the constraint efforts in this VVF is zero.

Put in mathematical terms: ∀(q̇∗i )1≤i≤n,

n∑
i=1

αhiq̇
∗
i = 0, ∀h ∈ [1, �] ⇒ P∗(Fconstraint→S ) =

n∑
i=1

Liq̇
∗
i = 0 [8.8]

By introducing three vectors of Rn: q̇∗ ≡

⎛⎜⎝ q∗1
...

q∗n

⎞⎟⎠ , L ≡

⎛⎜⎝ L1

...

Ln

⎞⎟⎠ and αh ≡

⎛⎜⎝ αh1

...

αhn

⎞⎟⎠ (the

components of αh are those of the hth row in the matrix [α]), [8.8] can be rewritten in a

more compact form, denoting the scalar product in Rn by a point : ∀q̇∗,

αh.q̇
∗ = 0, ∀h ∈ [1, �] ⇒ P∗(Fconstraint→S ) = 0, L.q̇∗ = 0

Any vector q̇∗ orthogonal to the � vectors αh is orthogonal to vector L. From the Rouché-

Fontenet theorem in mathematics, it follows that vector L belongs to the vector subspace

of Rn spanned by the vectors αh:

∃ (λ1, . . . , λn), L =
�∑

h=1

λhαh : this is [8.5]
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(iii) Inserting [8.5] in [8.7] gives

∀t, ∀(q̇∗i )1≤i≤n,
n∑

i=1

(
d

dt

∂Ec
RgS

∂q̇i
− ∂Ec

RgS

∂qi
+

∂VRg

∂qi
− D′

i

)
q̇∗i

= P∗(Fconstraint→S ) =
n∑

i=1

(
�∑

h=1

λhαhi

)
q̇∗i [8.9]

Because the n-tuple (q̇∗i )1≤i≤n is arbitrary, the previous relationship gives the Lagrange

equations [8.6]. �

We must take into account the complementary constraint equations to calculate the left-hand

side as well as the right-hand side of Lagrange’s equations [8.6], yet not at the same time:

– For the left-hand side: when we differentiate Ec
RgS (q, q̇, t) and VRg , we must consider that

the qi, q̇i are independent and we can only use the complementary constraint equations after

having obtained the derivatives
∂Ec

RgS

∂q̇i
(q, q̇, t),

∂Ec
RgS

∂qi
(q, q̇, t) and ∂V

∂qi
(q, t). This is the rule

stated in section 6.2.

– For the right-hand side: the generalized constraint forces Li are linear combinations of

αhi(q, t), and the parameters q that appear in the αhi(q, t) must satisfy all the existing

complementary constraint equations.

This comes directly from the very proof of expression [8.5] for the Li, where we have

used the VVFs compatible with the joints. Moreover, definition [7.2] of a compatible VVF

requires operation [7.6].

Having said this, the slight difference in time goes completely unnoticed in practice.

Finally, let us note that if we replace Li in [8.5] with its definition Li ≡
∫

S

�fconstraint.

−→
∂P

∂qi
dm,

where �fconstraint denotes the constraint forces, we have∫
S

�fconstraint.

−→
∂P

∂qi
dm =

�∑
h=1

λh(t) αhi(q, t)

The parameters q in
−→
∂P
∂qi

on the left-hand side and those in αhi(q, t) on the right-hand side all

satisfy the same complementary constraint equations, which is consistent.

8.2.2. Practical calculation using Lagrange’s multipliers

There is no use in learning by heart expression Li =
�∑

h=1

λhαhi in [8.5]–[8.6]. Instead, note

that the VP P∗(Fconstraint→S ) is written according to [8.5]:

P∗(Fconstraint→S ) =
n∑

i=1

Liq̇
∗
i =

n∑
i=1

�∑
h=1

λhαhiq̇
∗
i =

�∑
h=1

λh

(
n∑

i=1

αhiq̇
∗
i

)
[8.10]

From this, we can derive the following practical procedure to construct the right-hand side L
directly from the complementary constraint equations:
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1. First of all, we “virtualize” the complementary constraint equations [8.4]:

n∑
i=1

αhiq̇i + βh = 0, h ∈ [1, �] ⇒
n∑

i=1

αhiq̇
∗
i , h ∈ [1, �]

2. We then write the VP of the constraint efforts as a linear combination of the virtualized

forms, with the coefficients of the combination being the Lagrange’s multipliers λh:

P∗(Fconstraint→S ) =

�∑
h=1

λh

(
n∑

i=1

αhiq̇
∗
i

)

3. Finally, we derive the right-hand side Li by identifying the previous expression with

P∗(Fconstraint→S ) =
n∑

i=1

Liq̇
∗
i

EXAMPLE. Consider a disc S, with center C and radius R, homogeneous and of mass m,

rolling without slipping over the axis O�x0 of the Galilean reference frame Rg = R0 (see Figure

7.11). The disc is subjected to the gravity field −g�y0 and to a constant torque Γ�z0. The a priori
position of the disc in R0 is defined by the coordinates (x, y) of center C and the rotation angle ϕ
of the disc. We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: x, y, ϕ.

• No primitive constraint equation.

• Retained parameters: x, y, ϕ.

• Complementary constraint equations: y = R expressing the contact with the axis O�x0, and

ẋ+Rϕ̇ = 0, which is the no-slip condition.

We have seen in section 7.5.5 that the no-slip contact is a perfect joint. To obtain the

expressions for the Li coefficients in [8.6], we virtualize the complementary constraint equations

and then weight the relationships obtained using the λh:{
y = R ⇒ ẏ∗ ⇒ λ1ẏ

∗

ẋ+Rϕ̇ = 0 ⇒ ẋ∗ +Rϕ̇∗ ⇒ λ2(ẋ
∗ +Rϕ̇∗)

The VP of the constraint efforts is a linear combination of the virtualized forms:

P∗(Fconstraint→S) = Tλ1ẏ
∗ + λ2(ẋ

∗ +Rϕ̇∗).

By identifying this expression with P∗(Fconstraint→S) =
n∑

i=1

Liq̇
∗
i , we derive

⎛⎝ L1

L2

L3

⎞⎠ =

⎛⎝ λ2

λ1

λ2R

⎞⎠
Knowing that the parameterized kinetic energy is Ec

0S =
1

2
m(ẋ2 + ẏ2) +

1

2
Iϕ̇2

(I =
1

2
mR2) and the potential is V0 = mgy + const, Lagrange’s equations [8.6] can be
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written as
Lx : mẍ = λ2

Ly : mÿ = λ1 − mg
Lϕ : Iϕ̈ = Γ + λ2R �

By comparing the previous Lagrange equations with those found in section 6.7 using the

general method, it can be observed that λ1 = N and λ2 = T , i.e. the Lagrange multipliers are

equal to the constraint efforts at the contact point between the disc and the axis O�x0.

In general, we can draw out the mechanical significance of the multipliers λh by directly

calculating the VP of the constraint efforts and then by identifying this with expression [8.10],

P∗(Fconstraint→S ) =
n∑

i=1

�∑
h=1

λhαhiq̇
∗
i . That being said, the above-described operation is rather

useless inasmuch as the multipliers were introduced precisely to avoid actually calculating the

VP of constraint efforts.

8.2.3. Review

In connection with section 6.3, on the need of modeling the joints, it can be seen that, as in

the case of the absence of complementary constraint equations, the hypothesis of perfect joints
enables us to obtain as many equations as unknowns. The overview of equations and unknowns

is as follows:

– on the one hand, we have n+ � unknowns:

{
q1, . . . , qn : n unknowns

λ1, . . . , λ� : � unknowns

– on the other hand, we have n+ � equations:⎧⎪⎨⎪⎩
n Lagrange’s equations [8.6]

� complementary constraint equations [8.4]:

n∑
i=1

αhiq̇i + βh = 0, ∀h ∈ [1, �].

The perfection of the joints is a modeling, a law of physics that makes it possible to have as

many equations as there are unknowns and to solve the mechanical problem. It is the analog of

the so-called constitutive law in the mechanics of deformable media.

Instead of unknowns that are components of the constraint efforts, we have unknown

multipliers, introduced through mathematical argument. Of course, the multipliers do not

necessarily have any direct mechanical significance, but the multiplier method has the advantage

of yielding the Lagrange’s equations [8.6] directly from the constraint equations, without going

through the actual calculation of the VP of the constraint efforts.

We can decide to eliminate the unknown multipliers λh from the Lagrange’s equations [8.6]

in order to reduce these to a system of equations of motion of n equations with the n unknowns

(q1, . . . , qn). Elimination is easy as the multipliers are involved in a linear manner.

The multipliers method is particularly advantageous when one is only interested in the

kinematic unknowns and not in the unknown constraint efforts.

8.2.4. Remarks

1. The multipliers method applies only when all the joints are perfect. These are all the

external or internal joints in the studied mechanical system S .

Recall that the mechanical joints imposed on the system S are generally made up of internal

joints (joints between two rigid bodies in S) and joints with the exterior (joints between a

rigid body in S and a rigid body external to S).
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2. In Chapter 6 we saw that Lagrange’s equations contain the constraint efforts ensuring the

complementary constraint equations, not those ensuring the primitive constraint equations.

Thus, we must use the appropriate parameterization by choosing to classify such a

constraint equation as complementary, depending on the constraint efforts that we wish to

calculate.

Likewise, it can be seen that Lagrange’s equations [8.6] only contain information (via

the multipliers) concerning the constraint efforts that ensure complementary constraint

equations. Indeed, consider a perfect mechanical joint of which all constraint equations

are written as primitive; the VVF associated with the parameterization is automatically

compatible with this joint and thus, the VP of the constraint inter-efforts is zero in any

VVF. Consequently, the efforts ensuring this joint do not appear in the VP [8.10].

Given that the multipliers method provides information on the constraint efforts that ensure

the complementary constraint efforts, if we wish to have access to this information, we must

not use an independent parameterization but rather a parameterization with well-chosen

complementary equations.

We can even select among the constraint efforts and calculate the corresponding generalized

forces Li in two different ways:

– some Li are obtained using formula [8.5] (method of Lagrange multipliers);

– others are obtained using an actual calculation of the VP of constraint efforts.

8.3. Example: particle on a rotating hoop

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) and a system consisting of a hoop C with radius a and a particle p, whose position

in R0 is P and whose mass is m.

The position vector of p is denoted by
−−→
OP = r �z, where r is the radial distance and �z is a unit

vector (Figure 8.1). We define the unit vector �n such that the basis (�z0, �z, �n) is right-handed and

the unit vector �v ≡ �z × �n, which allows us to then define the angle θ ≡ (�z0, �z) measured around

�n and the angle ψ ≡ (�x0, �n) measured around �z0.

Figure 8.1. Particle moving around a hoop
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The primitive parameters of p are r, ψ, θ.

The hoop’s position is defined by the angle denoted by α ≡ (�x0,�c), measured around �z0,

where �c is a unit vector orthogonal to the hoop (the axis of the hoop is thus O�c).
The system moving in the gravity field −g�z0 is subjected to the following joints:

– The hoop (C) is pinned to axis O�z0, in such a way that its center coincides with the origin

O. A servomotor makes the hoop rotate at the constant angular velocity ω > 0. It is assumed

that �c = �x0 at the initial instant t = 0, and thus α = ωt.

– The particle p is constrained to remain on the hoop. The joint between the particle and

the hoop is expressed by two constraints equations: r = a and ψ = α (i.e. �n = �c). It is

assumed that the joint between the particle and the hoop is perfect. As seen in section 7.5.4,

this amounts to assuming that there is no friction between the particle and the hoop.

We will establish the Lagrange’s equations by choosing several different parameterizations

and we will see that the information obtained varies depending on the parameterization chosen.

8.3.1. Independent parameterization

We first choose the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equations: r = a, α = ωt and ψ = α = ωt.

• Retained parameters: θ, t. Hence
−−→
OP = a �z(ωt, θ). The position of the hoop (C) depends

only on t.

• No complementary constraint equation.

The velocity of the particle p associated with the independent parameterization is

�VR0(p) =
∂
−−→
OP

∂θ
θ̇ +

∂
−−→
OP

∂t
= −aθ̇ �v + aω sin θ �n

The kinetic energy of the particle is a function of θ, θ̇:

Ec
R0p =

1

2
m�V 2

0 (p) =
1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
The kinetic energy of the hoop is 1

2Iω
2, where I is the moment of inertia of the hoop about

the axis O�z0. This energy is constant and does not come into play in the Lagrange equations,

which involves the derivatives of the kinetic energy.

By denoting z the elevation of P in the coordinate system (O; �x0, �y0, �z0), the weight of the

particle is derivable from the potential

VR0 = mgz + const = mga cos θ + const

The potential due to the weight of the hoop is constant and does not come into play. As the

joint is perfect and the parameterization is independent, the Lagrange’s equation [8.2] gives

a(θ̈ − ω2 sin θ cos θ) − g sin θ = 0 [8.11]
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We obtain an equation of motion in θ, which is a nonlinear, second-order differential equation

in time.

By multiplying the equation of motion by θ̇ and then integrating with respect to time, we

arrive at a first integral of the form Aθ̇2 = F (θ, IC), where IC formally stands for the initial

conditions:

aθ̇2 = −aω2

2
cos 2θ − 2g cos θ + const [8.12]

8.3.2. Reduced parameterization no. 1

Let us now choose the following parameterization:

REDUCED PARAMETERIZATION NO. 1.

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equations: r = a and α = ωt.

• Retained parameters: ψ, θ, t. Hence
−−→
OP = a �z(ψ, θ) �z(ψ, θ). The position of the hoop (C)

depends only on t.

• Complementary constraint equation: ψ = α = ωt.

The velocity of the particle associated with this reduced parameterization is

�VR0(p) =
∂
−−→
OP

∂ψ
ψ̇ +

∂
−−→
OP

∂θ
θ̇ +

∂
−−→
OP

∂t
= a sin θ ψ̇ �n− aθ̇ �v

This time, the kinetic energy of the particle is, a priori, a function of (ψ, θ, ψ̇, θ̇) (actually,

here there is no ψ):

Ec
R0p =

1

2
m�V 2

0 (p) =
1

2
ma2

(
θ̇2 + ψ̇2 sin2 θ

)
The weight is derivable from the potential

VR0 = mgz + const = mga cos θ + const

The joint is still perfect, however this time as there is a complementary constraint equation,

we must apply the Lagrange equation [8.6], λ denoting the Lagrange multiplier:

Lθ : a(θ̈ − ψ̇2 sin θ cos θ) − g sin θ = 0

Lψ : ma2
d

dt
(ψ̇ sin2 θ) = λ

Taking into account the complementary constraint equation ψ = ωt, we arrive at two

equations for two unknowns θ and λ:

a(θ̈ − ω2 sin θ cos θ) − g sin θ = 0

2ma2ω sin θ cos θ θ̇ = λ
[8.13]

The first equation is the equation of motion [8.11] obtained above using the independent

parameterization. The second equation allows one to determine, if we wish to, the Lagrange

multiplier λ, once we have obtained θ(t).
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• Optionally, we can find the physical significance of the multiplier λ by directly calculating

the VP of the constraint efforts:

P∗(FC↔p, t) = �FC→p.�V
∗
C(p) [8.14]

where the constraint force exerted by the hoop (C) on the particle p is written as �FC→p = N�n+

Z�z, and the relative VV �V ∗
C(p) of p with respect to (C) is calculated using the composition

formula for velocities [4.43]:

�V ∗
C(p) = �V ∗

R0
(p) − �V ∗

R0C(P ) [8.15]

where �V ∗
R0C

(P ) is the VV, with respect to R0, of the particle of the hoop C that is located, at

instant t, at the position P of p (this is the background virtual velocity).

The VV �V ∗
R0

(p) associated with the parameterization under consideration is

�V ∗
R0

(p) =

−→
∂P

∂ψ
ψ̇∗ +

−→
∂P

∂θ
θ̇∗ = a sin θ ψ̇∗ �n − aθ̇∗ �v [8.16]

The background virtual velocity �V ∗
R0C

(P ) is calculated using the velocity field relationship

[4.35]:
�V ∗
R0C(P ) = �V ∗

R0C(O) + �Ω∗
R0C × −−→

OP = �0 [8.17]

since �V ∗
R0C

(O) = �0 and �Ω∗
R0C

= �0 (the position of the hoop (C) depends only on t). Inserting the

relationships [8.16] and [8.17] into [8.15] gives the relative VV �V ∗
C(p) = −aθ̇∗ �v + a sin θ ψ̇∗ �n.

Hence, by [8.14]:

P∗(FC↔p, t) = (N�n+ Z�z).(N�n+ Z�z).(a sin θ ψ̇∗ �n − aθ̇∗ �v) = Na sin θ ψ̇∗

Identifying this expression with P∗ = λψ̇∗ yields

λ = Na sin θ

The multiplier λ has the dimensions of a torque; its value is proportional to the normal

constraint force N exerted by the hoop on to the particle, directed along vector �n.

In general, if we consider that the VP of constraint efforts has the dimensions of a power,

we can derive from relationship [8.10] the physical dimension of the Lagrange multipliers λh,

knowing those of the virtual parameters q̇∗i and the functions αhi. Thus, we often find that the

multipliers are linear combinations of constraint efforts (i.e. constraint forces or torques).

8.3.3. Reduced parameterization no. 2

Consider the following parameterization where the constraint equation r = a is put into

complementary equations:

REDUCED PARAMETERIZATION NO. 2.

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equation: α = ωt.

• Retained parameters: r, ψ, θ, t. Hence
−−→
OP = r �z(ψ, θ) �z(ψ, θ). The position of the hoop (C)

depends only on t.

• Complementary constraint equations: r = a and ψ = α = ωt.
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The velocity of the particle associated with this reduced parameterization is

�VR0(p) =
∂
−−→
OP

∂r
ṙ +

∂
−−→
OP

∂ψ
ψ̇ +

∂
−−→
OP

∂θ
θ̇ +

∂
−−→
OP

∂t
= ṙ �z + r sin θ ψ̇ �n− rθ̇ �v

The kinetic energy of the particle is, a priori, a function of (r, ψ, θ, ṙ, ψ̇, θ̇) (actually, here

there is no ψ):

Ec
R0p =

1

2
m�V 2

0 (p) =
1

2
m
(
r2θ̇2 + r2ψ̇2 sin2 θ + ṙ2

)
The weight is derivable from the potential

VR0 = mgz + const = mgr cos θ + const

The Lagrange’s equations [8.6] give three equations by denoting the Lagrange multipliers by

λ and μ:

Lθ :
d

dt
(r2θ̇) − r2ψ̇2 sin θ cos θ − gr sin θ = 0

Lψ : m
d

dt
(r2ψ̇ sin2 θ) = λ

Lr : m
[
r̈ − r(θ̇2 + ψ̇2 sin2 θ)

]
+mg cos θ = μ

Taking into account the complementary constraint equations r = a, ψ = ωt, we arrive at

three equations for three unknowns θ, λ and μ:

a(θ̈ − ω2 sin θ cos θ) − g sin θ = 0

2ωma2 sin θ cos θ θ̇ = λ

−ma(θ̇+ω2 sin2 θ) +mg cos θ = μ

[8.18]

The first equation is the same equation of motion obtained above by means of the other

parameterizations. The two other equations allows us to determine, if we wish to, the Lagrange

multipliers λ, μ, once θ(t) has been obtained.

Direct calculation of the VP of the constraint efforts gives

P∗(FC↔p, t) = �FC→p.�V
∗
C(p) = (N�n+ Z�z).(N�n+ Z�z).(ṙ∗ �z + r sin θ ψ̇∗ �n− rθ̇∗ �v)

= Zṙ∗ +Nr sin θ ψ̇∗

By identifying this expression with P∗ = λψ̇∗ + μṙ∗, we arrive at

λ = Nr sin θ μ = Z

From the last two equations in [8.18], we can derive the constraint forces

N = 2maω cos θ θ̇ Z = −ma(θ̇2 + ω2 sin2 θ) +mg cos θ

By replacing θ̇ with its expression from the first integral [8.12], we can express the forces N
and Z as functions of cos θ (and the initial conditions) alone. We can also obtain the maximal

values of the constraint force exerted by the particle on the hoop.

8.3.4. Calculation of the engine torque

We now wish to calculate the engine torque exerted on the hoop and which ensures the hoop

rotation at a constant angular velocity. In order to do this, let us choose the following

parameterization:
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REDUCED PARAMETERIZATION NO. 3.

• Primitive parameters: r, ψ, θ and α.

• Primitive constraint equations: ψ = α and r = a.

• Retained parameters: α, θ. Hence
−−→
OP = a �z(ψ, θ) = a �z(α, θ). The position of the hoop (C)

is determined by α.

• Complementary constraint equation: α = ωt.

The kinetic energy of the hoop (C) is Ec
0C =

1

2
Iα̇2. The velocity of the particle p associated

with this parameterization is

�VR0(p) =
∂
−−→
OP

∂θ
θ̇ +

∂
−−→
OP

∂α
α̇+

∂
−−→
OP

∂t
= −aθ̇ �v + a sin θ α̇ �n

Hence the kinetic energy of the particle is

Ec
0p =

1

2
m�̄V 2(p) =

1

2
ma2

(
θ̇2 + α̇2 sin2 θ

)
The kinetic energy of the system S ≡ p ∪ C is, therefore, Ec

R0S =
1

2
Iα̇2 +

1

2
ma2(

θ̇2 + α̇2 sin2 θ
)

.

The weight is derivable from the potential

VR0
= mgz + const = mga cos θ + const

The VP of the engine torque Γ is P∗
motor→C = Γα̇∗.

Let us now study the VP of the inter-efforts between the hoop and the particle. By denoting

the force exerted by the hoop on the particle by �FC→p ≡ N�n+Z�z and by denoting the opposing

force exerted by the particle on the hoop by �Fp→C , the VP of the inter-efforts can be written as

P∗(FC↔p, t) = �FC→p.�V
∗
R0

(p) + �Fp→C .�V
∗
R0C(P ) = �FC→p.

(
�V ∗
R0

(p) − �V ∗
R0C(P )

)
[8.19]

This is another way of obtaining relationship [8.15].

In accordance with definition [7.2], the VV �V ∗
R0

(p) of the particle as well as the VVF

�V ∗
R0C

(P ) of the hoop are automatically compatible with the joint between the hoop and the

particle, since there is no complementary constraint equation that expresses the joint (the

complementary constraint equation α = ωt does not concern the joint in question!). In addition,

as the joint is assumed to be perfect, the VP in these VVFs of the inter-efforts between the hoop

and the particle is zero.

REMARK. Let us verify this statement through a direct calculation. The VV of the particle is

�V ∗
R0

(P ) =

−→
∂P

∂θ
θ̇∗ +

−→
∂P

∂α
α̇∗ = −aθ̇∗ �v(α, θ) + a sin θ α̇∗ �n(α)

On the other hand, the VV �V ∗
R0C

(P ) can be obtained through

�V ∗
R0C(P ) = �V ∗

R0C(O) + �Ω∗
R0C × −−→

OP = �0 + α̇∗�z0 × a�z = a sin θ α̇∗ �n(α)
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Hence, the VP of the inter-efforts [8.19] gives

P∗(FC↔p, t) = (N�n+ Z�z).(−aθ̇∗ �v) = 0

which is exactly what we had predicted above. �

Finally, the Lagrange’s equations can be written as

Lα : Iα̈+ma2
d

dt
(α̇ sin2 θ) = Γ

Lθ : a(θ̈ − α̇2 sin θ cos θ) − g sin θ = 0

Now taking into account the complementary constraint equation α = ωt, we arrive at two

equations for two unknowns, namely θ(t) and Γ(t):

Γ = 2ma2ω sin θ cos θ θ̇

a(θ̈ − ω2 sin θ cos θ) − g sin θ = 0

The second equation is the equation of motion. After having solved this equation to obtain θ as

a function of time, we obtain the engine torque Γ(t) exerted on the hoop using the first equation.

8.4. Example: rigid body connected to a rotating rod by a spherical joint (no. 1)

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate

system (O; �x0, �y0, �z0) and a system composed of a rigid rod OA and a rigid body S (Figure 8.2).

The whole system is subjected to the gravity field −g�z0.

Figure 8.2. Rigid body connected to a rotating rod by a spherical joint

The rod OA has the length 2a and negligible mass. Pivoted to the vertical axis O�z0, it moves

in the plane O�x0�y0. We shall denote
−→
OA = 2a�x1 and α = (�x0, �x1), angle measured around �z0.

The rigid body S consists of a disc with center G, radius 2a and negligible thickness,

homogenous and of mass m; a rod with length a and negligible mass is welded onto the disc

along its axis. One end of this rod is connected to the end A of the rod OA by a spherical joint.

We shall denote
−→
AG = a�zS . All existing joints are perfect.

In this problem, the Euler angles (ψ, θ, ϕ) of the rigid body S are defined relative to the
rotating basis (�x1, �y1, �z0). We thus move from the fixed basis (�x0, �y0, �z0) to the basis (�xS , �yS , �zS)
attached to S through four successive rotations: α around �z0, and then ψ around �z0, θ around �n,

and ϕ around �zS , as summarized in the following sketch:

(�x0, �y0, �z0)
α/�z0→ (�x1, �y1, �z0)

ψ/�z0→ (�n, �u, �z0)
θ/�n→ (�n,�v, �zS)

ϕ/�zS→ (�xS , �yS , �zS)
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The parameterization is as follows:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters: α, ψ, θ, ϕ.

• No primitive constraint equation.

• Retained parameters: α, ψ, θ, ϕ.

• No complementary constraint equation.

Let us calculate the kinetic energy of the system using König’s formula: Ec
0S = Ec

RG
0 S +

1

2
m�V 2

0S(G), where Ec
RG

0 S
denotes the kinetic energy calculated in the barycentric reference frame

RG
0 , which has its origin in the center of mass G.

To calculate Ec
RG

0 S
, on the one hand, we need the angular velocity of the rigid body S

�Ω0S = θ̇ �n+ (α̇+ ψ̇) sin θ �v +
[
ϕ̇+ (α̇+ ψ̇) cos θ

]
�zS

and on the other hand, we need the inertia matrix of the disc, which can be written in any

coordinate system whose origin is G and whose third vector is �zS :

IS(G; •, •, �zS) = ma2

⎡⎣ 1
1
2

⎤⎦. We thus obtain

Ec
RG

0 S =
1

2
ma2

{
θ̇2 + (α̇+ ψ̇)2 sin 2θ + 2

[
ϕ̇+ (α̇+ ψ̇) cos θ

]2}
[8.20]

As the velocity of the disc center is

�V0S(G) = 2aα̇ �y1 + a(α̇+ ψ̇) sin θ �n− aθ̇ �v

we get

�V 2
0S(G) = 4a2α̇2 + a2(α̇+ ψ̇)2 sin 2θ + a2θ̇2 + 4a2α̇(α̇+ ψ̇) sin θ sinψ − 4a2α̇θ̇ cos θ cosψ

Hence the kinetic energy of the system:

Ec
0S = ma2

{
θ̇2 + (α̇+ ψ̇)2 sin 2θ +

[
ϕ̇+ (α̇+ ψ̇) cos θ

]2
+ 2α̇2+

2α̇(α̇+ ψ̇) sin θ sinψ − 2α̇θ̇ cos θ cosψ
}

[8.21]

The potential corresponding to the system’s weight is

V = mga cos θ + const [8.22]

The Lagrange’s equations [8.2] give

Lα :
d

dt

{
2(α̇+ ψ̇)sin2θ + 2

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
cos θ + 4α̇+

(4α̇+ 2ψ̇) sin θ sinψ − 2θ̇ cos θ cosψ

}
= 0 [8.23]



Lagrange’s Equations in the Case of Perfect Joints 189

Lψ :
d

dt

{
2(α̇+ ψ̇)sin2θ + 2

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
cos θ + 2α̇ sin θ sinψ

}
− 2α̇(α̇+ ψ̇) sin θ cosψ − 2α̇θ̇ cos θ sinψ = 0 [8.24]

Lθ : 2
d

dt
(θ̇ − α̇ cos θ cosψ) − 2(α̇+ ψ̇)2 sin θ cos θ + 2 sin θ(α̇+ ψ̇)

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
− 2α̇(α̇+ ψ̇)cosθ sinψ − 2α̇θ̇ sin θ cosψ − g

a
sin θ = 0 [8.25]

Lϕ :
d

dt

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
= 0 [8.26]

We have four equations [8.23]–[8.26] with the four unknowns α, ψ, θ and ϕ. The equations

in α and ϕ immediately give two first integrals (these will be studied in Chapter 9) and it will be

seen in section 9.5 that there exists a third first integral, which may advantageously be used to

replace one of the two Lagrange equations in ψ and θ obtained above.

8.5. Example: rigid body connected to a rotating rod by a spherical joint (no. 2)

We consider again the system in the previous example, assuming this time that an engine whose

stator is attached to R0 makes the rod OA rotate at a constant angular velocity: α̇ = ω > 0.

8.5.1. Total parameterization

We choose the following parameterization where the only existing constraint equation, namely

α̇ = ω, is written as a complementary equation:

TOTAL PARAMETERIZATION.

• Primitive parameters: α, ψ, θ, ϕ.

• No primitive constraint equation.

• Retained parameters: α, ψ, θ, ϕ.

• Complementary constraint equation: α̇ = ω.

The kinetic energy of the system is given by expression [8.21], the potential due to the

system’s weight by [8.22]. By applying [8.6], we obtain the same Lagrange equations as

[8.23]–[8.26], except that here the right-hand side of the equation in α is no longer zero:

Lα : the same left-hand side as [8.23] =
λ

ma2
,

where λ denotes the Lagrange multiplier associated with the complementary constraint equation

α̇ = ω.

Now taking into account the complementary equation α̇ = ω, these Lagrange equations

become:

Lα :
d

dt

{
2(ω + ψ̇)sin2θ + 2

[
ϕ̇+ (ω + ψ̇) cos θ

]
cos θ + 4ω+

(4ω + 2ψ̇) sin θ sinψ − 2θ̇ cos θ cosψ

}
=

λ

ma2
[8.27]
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Lψ :
d

dt

{
(ω + ψ̇)sin2θ +

[
ϕ̇+ (ω + ψ̇) cos θ

]
cos θ + ω sin θ sinψ

}
−ω(ω+ ψ̇) sin θ cosψ

− ωθ̇ cos θ sinψ = 0 [8.28]

Lθ :
d

dt
(θ̇ − ω cos θ cosψ) − (ω + ψ̇)2 sin θ cos θ + sin θ(ω + ψ̇)

[
ϕ̇+ (ω + ψ̇) cos θ

]
− ω(ω + ψ̇)cosθ sinψ − ωθ̇ sin θ cosψ − g

2a
sin θ = 0 [8.29]

Lϕ :
d

dt

[
ϕ̇+ (ω + ψ̇) cos θ

]
= 0 [8.30]

Solving the three equations [8.28]–[8.30] provides ψ, θ and ϕ as functions of time. Once the

angles ψ, θ, ϕ are known, relationship [8.27] enables us to calculate the multiplier λ as a function

of time.

• Let us find the mechanical significance of the multiplier λ. Let Γ�z0 denote the torque exerted

on the rod OA by the engine, which enforces α̇ = ω. Let R1 denote the rotating reference frame

defined by the coordinate system (O; �x1, �y1, �z0), such that the virtual angular velocity of R1 with

respect to R0 is �Ω∗
01 = α̇∗�z0. The VP of the torque Γ�z0 is

P∗(Γ�z0) = Γ�z0.�Ω
∗
01 = Γα̇∗

By identifying this expression with P∗(Γ�z0) = λα̇∗, we arrive at λ = Γ: the multiplier λ is

the engine torque imposing the constant rotation rate of the rod OA.

• As an exercise, let us once again find the mechanical significance of the multiplier λ using

Newtonian mechanics. Let σ0S(O�z0) and δ0S(O�z0), respectively, denote the angular momentum

and the dynamic moment of the rigid body S about the axis O�z0, calculated with respect to R0

(see [1.76] for the definition of the dynamic moment).

Since the axis O�z0 is fixed in R0, we have

d

dt
σ0S(O�z0) = δ0S(O�z0) = Mext→S(O�z0) = Γ

where σ0S(O�z0) is related to the angular momentum �σRG
0 S(G) of S about G, calculated with

respect to the barycentric reference frame RG
0 through

σ0S(O�z0) = �σ0S(O) · �z0 with �σ0S(O) = �σRG
0 S(G) +

−−→
OG × m�V0S(G)

On the one hand, using the matrix representations in the basis (�n,�v, �zS), we have

�σRG
0 S(G) = ma2

⎡⎣ 1
1
2

⎤⎦⎧⎨⎩
θ̇

(α̇+ ψ̇) sin θ

ϕ̇+ (α̇+ ψ̇) cos θ

⎫⎬⎭ = ma2

⎧⎪⎨⎪⎩
θ̇

(α̇+ ψ̇) sin θ

2
[
ϕ̇+ (α̇+ ψ̇) cos θ

]
⎫⎪⎬⎪⎭

Hence:

�σRG
0 S(G).�z0 = ma2

{
(α̇+ ψ̇) sin 2θ + 2

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
cos θ

}
On the other hand:

(
−−→
OG × m�V0S(G)).�z0 = ma2

{
4α̇+ 2(α̇+ ψ̇) sin θ sinψ − 2θ̇ cos θ cosψ

+2α̇ sin θ sinψ + (α̇+ ψ̇) sin2 θ
}
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Eventually:

σ0S(O�z0) = ma2
{
(α̇+ ψ̇) sin 2θ+ 2

[
ϕ̇+ (α̇+ ψ̇) cos θ

]
cos θ+ 4α̇+ 2(α̇+ ψ̇) sin θ sinψ

− 2θ̇ cos θ cosψ + 2α̇ sin θ sinψ + (α̇+ ψ̇) sin2 θ

}
[8.31]

Comparing this expression with the Lagrange’s equation [8.27] gives Γ = λ.

8.5.2. Independent parameterization

We transform the semi-holonomic constraint equation α̇ = ω into the holonomic constraint

equation α = ωt by assuming that α = 0 at the initial instant. We choose the following

parameterization where the constraint equation α = ωt is classified as primitive:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters: α, ψ, θ, ϕ.

• Primitive constraint equation: α = ωt.

• Retained parameters: ψ, θ, ϕ.

• No complementary constraint equation.

The kinetic energy of the system is obtained by making α̇ = ω in [8.21]:

Ec
0S = ma2

{
θ̇2 + (ω + ψ̇)2 sin 2θ +

[
ϕ̇+ (ω + ψ̇) cos θ

]2
+ 2ω2+

2ω(ω + ψ̇) sin θ sinψ − 2ωθ̇ cos θ cosψ
}

[8.32]

The potential due to the system’s weight is always given by [8.22]: V = mga cos θ + const.
By applying [8.2], we once again arrive at Lagrange’s equations [8.28]–[8.30], which form three

equations for the three unknowns ψ, θ and ϕ.

The advantage of this parameterization is that, as will be seen in section 9.6, it provides

Painlevé’s first integral.

8.6. Example: rigid body subjected to a double contact

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) and a rigid body (S1), composed of a disc (D) and a rod (T ), in contact with a

rotating plate and the axis O�z0 (Figure 8.3). The disc (D) is of center C and radius 2a. It is of

negligible thickness, is homogeneous and has the mass m. The rod (T ) is welded perpendicular

to the disc at the point C, and has negligible mass and cross-sectional area. The whole system is

subjected to the gravity field −g�z0.

The disk (D) is in contact at a point I with a plate (S2) of center O, and spinning at a uniform

angular velocity ω around its vertical axis O�z0. It is assumed that the disc rolls and pivots without
slipping on (S2). Through a suitable perfect mechanical joint, the rod (T ) is forced to remain in

contact with the axis O�z0 at a point K that is variable over (T ) and over O�z0. The system studied

is the rigid body (S1) alone.
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Figure 8.3. Rigid body in contact with a rotating plate and the vertical axis

8.6.1. Preliminary analysis

If the rigid body (S1) is completely free in space, its position in R0 is defined by six parameters

that are taken to be equal to three cylindrical coordinates of the center C and to three Euler

angles, ψ, θ and ϕ. The cylindrical coordinates of C are defined with respect to the coordinate

system (O; �x0, �y0, �z0) and denoted by (r, α, z), with r being the polar radius of C, α the polar

angle of C and z the elevation of C. The position of C in R0 is thus written as

−−→
OC = r�er(α) + z�z0, [8.33]

where �er(α) is the radial unit vector of the point C, a function of the angle α. Three Euler angles

ψ, θ and ϕ are defined in the conventional manner:

– The precession angle ψ is defined as being the angle between �x0 and the line of nodes �n,

which is the intersection of the plane of the disc (D) with the plane O�x0�y0. This angle is

measured around �z0.

– The nutation angle θ is the angle between �z0 and �z1, measured around �n.

– The angle ϕ is the spin angle of (S1) around �z1.

The a priori position of (S1) is, thus, defined by six parameters: r, α, z and ψ, θ, ϕ.

The rigid body (S1) is subjected to two mechanical joints: the non-slip contact at I between

the disc (D) and the plate (S2), and the contact at K between the rod (T ) and the axis O�z0. We

will now show that the set of joints can be expressed by four scalar relationships, which signifies

that the position of (S1) depends on two independent parameters alone. In order to obtain the

constraint equations specific to each joint, we will study the joints separately.

1. The contact at K between the rod (T ) and the axis O�z0 is expressed by the fact that

the three vectors
−−→
OC,�z1, �z0 are coplanar. In other words, their mixed product is zero:

(
−−→
OC,�z1, �z0) = 0 (see Figure 8.4(a)), where we have represented the contact at K alone,

excluding the contact at I .
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a) b)

Figure 8.4. Contact at point K

Since

−−→
OC = r�er(α) + z�z0

�z1 = − sin θ�u+ cos θ�z0

}
⇒ (

−−→
OC,�z1, �z0) = −r sin θ �er(α).�n

the condition for contact at K can be written as �er(α).�n = 0, that is (see Figure 8.4(b))

�er(α) = −�u or α = ψ − π

2
(which implies �̇er = ψ̇�n) [8.34]

The contact at K is, thus, expressed by a scalar relationship.

2. The contact at I consists of two conditions: the geometric contact condition (holonomic

condition) and the kinematic condition of no-slip contact (semi-holonomic condition).

The geometric contact at I between the disc (D) and the plate (S2) is simply expressed by

z = a sin θ [8.35]

The no-slip condition at I is expressed by �V21(I) = �0. Let us calculate the relative velocity
�V21(I) by means of the composition formula for velocities [1.68]:

�V21(I) = �V01(I) − �V02(I)

Figure 8.5. Contact at point I
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The velocity �V02(I) can be easily obtained knowing that the distance OI has the value

r + 2a cos θ (Figure 8.5):
�V02(I) = ω(r + 2a cos θ)�n

Let us calculate �V01(I) using the formula �V01(I) = �V01(C) + �Ω01 × −→
CI . We have

�Ω01 = ψ̇�z0 + θ̇�n+ ϕ̇�z1−→
CI = −2a�v

}
⇒ �Ω01 × −→

CI = 2a
[
(ϕ̇+ ψ̇ cos θ)�n − θ̇�z1

]
−−→
OC =

[8.33]
r�er(α)+z�z0 =

[8.35]
r�er(α)+2a sin θ�z0 ⇒ �V01(C) = ṙ�er+r�̇er+2aθ̇ cos θ�z0

[8.36]

Finally, taking into account �z1 = cos θ�z0 − sin θ�u, we arrive at

�V21(I) = ṙ�er + r�̇er +
{
2a
[
ϕ̇+ (ψ̇ − ω) cos θ

]
− ωr

}
�n+ 2aθ̇ sin θ�u [8.37]

The condition �V21(I) = �0 then gives

ṙ�er + r�̇er +
{
2a
[
ϕ̇+ (ψ̇ − ω) cos θ

]
− ωr

}
�n+ 2aθ̇ sin θ�u = �0 [8.38]

As the vectors �er, �̇er, �n, �u are in the plane �x0�y0, the no-slip condition at I is equivalent to

two scalar relationships.

• If we take into account the two contacts at I and K at the same time (that is, [8.34] and

[8.38]), then, by inserting [8.34] in [8.38], we obtain[
2aϕ̇+ (r + 2a cos θ)(ψ̇ − ω)

]
�n+ (2aθ̇ sin θ − ṙ)�u = �0

⇔
{
ṙ − 2aθ̇ sin θ = 0

2aϕ̇+ (r + 2a cos θ)(ψ̇ − ω) = 0

The first relationship amounts to saying that r + 2a cos θ is equal to a constant, which we set

to 2ka (k being a dimensionless constant):

OI = r + 2a cos θ = 2ka [8.39]

The constant 2ka is determined by the initial conditions: 2ka = r0+2a cos θ0. The holonomic

relationship [8.39] makes it possible to then recast the second relationship above as follows:

ϕ̇+ k(ψ̇ − ω) = 0

This is a semi-holonomic relationship that we can integrate assuming the zero initial

conditions on ϕ0, ψ0:

ϕ = k(ωt − ψ) [8.40]

8.6.2. Independent parameterization

Given that the contact at K is expressed by the simple holonomic relationship [8.34], in this

study we decide to count this contact from the beginning, in other words, to use relationship

α = ψ − π

2
from the beginning to eliminate angle α in favor of ψ. There will, thus, be five

retained parameters for the problem: the two cylindrical coordinates (r, z) of center C and the

three Euler angles ψ, θ, ϕ.
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We choose the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters: r, z, ψ, θ, ϕ.

• Primitive constraint equations:

– [8.35]: z = 2a sin θ,

– [8.39]: r + 2a cos θ = 2ka,

– [8.40]: ϕ = k(ωt − ψ).

• Retained parameters: ψ, θ.

• No complementary constraint equation.

Let us calculate the kinetic energy of the system using König’s formula: Ec
01 = Ec

RC
0 S1

+

1

2
m�V 2

01(C), where Ec
RC

0 S1
denotes the kinetic energy calculated in the barycentric reference

frame RC
0 which has its origin in the center of mass C.

Knowing that the inertia matrix of the disc with radius 2a and mass m in any coordinate

system with origin C and the third vector equal to �z1 is IS1(C; •, •, �z1) =

⎡⎣ A
A

C

⎤⎦, with

C = 2A = 2ma2 (no confusion possible with the point C), we have

Ec
RC

0 S1
=

1

2
ma2

[
(θ̇2 + ψ̇2 sin 2θ) + 2(ϕ̇+ ψ̇ cos θ)2

]
where ϕ̇ = k(ω − ψ̇)

=
2

1
ma2

{
(θ̇2 + ψ̇2 sin 2θ) + 2[kω − (k − cos θ)ψ̇]2

}
[8.41]

To calculate the velocity of the center C, let us develop [8.36] using relationship α = ψ − π

2
and the primitive constraint equation [8.39]:

�V01(C) = ṙ�er + r�̇er + 2aθ̇ cos θ�z0 with

{
r = 2a(k − cos θ) ⇒ ṙ = 2aθ̇ sin θ

�er(α) = −�u ⇒ �̇er = ψ̇�n

= −2aθ̇ sin θ�u+ 2a(k − cos θ)ψ̇�n+ 2aθ̇ cos θ�z0

Thus
1

2
m�V 2

01(C) = 2ma2
[
θ̇2 + (k − cos θ)2ψ̇2

]
[8.42]

Hence

Ec
01 =

1

2
ma2

{
5θ̇2 +

[
6(k − cos θ)2 + sin2 θ

]
ψ̇2 − 4kω(k − cos θ)ψ̇ + 2k2ω2

}
[8.43]

The potential due to the system’s weight is

V = mgz + const = 2mga sin θ + const [8.44]

The Lagrange’s equations [8.2] give

Lθ : 5θ̈ − ψ̇2(6k − 5 cos θ) sin θ + 2kωψ̇ sin θ +
2g

a
cos θ = 0 [8.45]

Lψ :
d

dt

{[
6 (k − cos θ)

2
+ sin 2θ

]
ψ̇ − 2kω (k − cos θ)

}
= 0 [8.46]

or [
6 (k − cos θ)

2
+ sin 2θ

]
ψ̇ − 2kω (k − cos θ) = const
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8.6.3. Reduced parameterization

We keep the five primitive parameters as before, namely: r, z, ψ, θ, ϕ, but we will change the

parameterization by classifying certain constraint equations as complementary. The preliminary

analysis carried out at the beginning shows that the constraint equations are obtained in the

following order:

[8.34]: contact at K

[8.35]: z = 2a sin θ ⇒ [8.38]: �V21(I) = �0

}
⇒ [8.39]: r + 2a cos θ = 2ka

⇒ [8.40]: ϕ = k(ωt − ψ)

It follows from this that the complementary constraint equations cannot be freely chosen in

an arbitrary manner:

– we can, for example, classify [8.40] alone – or [8.39] and [8.40] – as a complementary

equation,

– on the contrary, we cannot count [8.39] as a complementary equation and leave [8.40] as a

primitive equation.

In this section, we decide to take the following reduced parameterization:

REDUCED PARAMETERIZATION.

• Primitive parameters: r, z, ψ, θ, ϕ.

• Primitive constraint equations:

– [8.35]: z = 2a sin θ,

– [8.39]: r + 2a cos θ = 2ka.

• Retained parameters: ψ, θ, ϕ.

• Complementary constraint equation: [8.40]: ϕ = k(ωt − ψ).

The kinetic energy of the rigid body S1 with respect to R0 is always calculated using König’s

formula: Ec
01 = Ec

RC
0 S1

+
1

2
m�V 2

01(C), where 1
2m

�V 2
01(C) was obtained in [8.42] and Ec

RC
0 S1

in

[8.41]1:

Ec
RC

0 S1
=

1

2
ma2

[
(θ̇2 + ψ̇2 sin 2θ) + 2(ϕ̇+ ψ̇ cos θ)2

]
Hence

Ec
01 =

1

2
ma2

{
5θ̇2 +

[
4(k − cos θ)2 + sin2 θ

]
ψ̇2 + 2(ϕ̇+ ψ̇ cos θ)2

}
The potential of the rigid body S1 is always given by [8.44]. The Lagrange’s equations

[8.6] give three equations, with λ denoting the multiplier corresponding to the complementary

constraint equation:

Lψ : ma2
d

dt

{[
4(k − cos θ)2 + sin 2θ

]
ψ̇ + 2(ϕ̇+ ψ̇ cos θ) cos θ

}
= kλ

Lθ : 5θ̈ − sin θ
[
(4k − 5 cos θ)ψ̇2 − 2ψ̇ϕ̇

]
+ 2

g

a
cos θ = 0

Lϕ : 2ma2
d

dt
(ϕ̇+ ψ̇ cos θ) = λ
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Taking into account the complementary constraint equation ϕ = k(ωt−ψ), we arrive at three

equations for three unknowns ψ, θ and λ.

• Let us find the mechanical significance of the multiplier λ. By denoting �FI the force at I
exerted by the plate S2 on the rigid body S1, we can write the VP of the constraint force exerted

by S2 on S1 as

P∗(�FI) = �FI .�V
∗
21(I)

The relative VV �V ∗
21(I) is calculated by the composition formula for velocities [4.49]:

�V ∗
21(I) = �V ∗

01(I) − �V ∗
02(I)

As the rotation tensor ¯̄Q02 does not depend on the retained parameters, relationship [4.30]

gives �Ω∗
02 = �0. Hence, �V ∗

02(I) = �0 and thus �V ∗
21(I) =

�V ∗
01(I), which is predictable from [4.54].

Let us calculate �V ∗
01(I) using formula [4.35]: �V ∗

01(I) =
�V ∗
01(C) + �Ω∗

01 × −→
CI . We have

−−→
OC =

[8.33]
r�er(α) + z�z0 with

⎧⎨⎩ α = ψ − π
2 or �er(α) = −�u

[8.35] : z = 2a sin θ
[8.39] : r + 2a cos θ = 2ka

= 2a(cos θ − k)�u+ 2a sin θ�z0

Hence

�V ∗
01(C) =

−→
∂C

∂ψ
ψ̇∗ +

−→
∂C

∂θ
θ̇∗

= 2a(k − cos θ)�nψ̇∗ + 2a (− sin θ�u+ cos θ�z0)︸ ︷︷ ︸
�z1

θ̇∗

On the other hand

�Ω∗
01 = ψ̇∗�z0 + θ̇∗�n+ ϕ̇∗�z1

−→
CI = −2a�v

}
⇒ �Ω∗

01 × −→
CI = 2a

[
(ϕ̇∗ + ψ̇∗ cos θ)�n− θ̇∗�z1

]
Finally, we arrive at

�V ∗
21(I) = 2a(ϕ̇∗ + kψ̇∗)�n

Hence

P∗(�FI) = 2a(ϕ̇∗ + kψ̇∗)�FI .�n

By identifying this expression with P∗(�FI) = λ(ϕ̇∗ + kψ̇∗), we find

λ = 2a �FI .�n

Thus, the multiplier λ appears as the moment of the force �FI about the axis C�z1.

• We can also find the mechanical meaning of the multiplier using Newtonian mechanics. By

resolving the force �FI into components relative to the basis (�n, �u, �z0), we can see that

Mext�1(C�z1) = 2a �FI .�n

On the other hand,

Mext�1(C�z1) = δ01(C�z1) = 2ma2︸ ︷︷ ︸
C

d

dt
(ϕ̇+ ψ̇ cos θ) = λ

We do indeed once again find λ = 2a �FI .�n.



9

First Integrals

Consider a mechanical system S moving in a Galilean reference frame Rg . The parameterization

chosen for S may or may not be independent, that is, it may or may not contain complementary

constraint equations. The retained parameters for S are q ≡ (q1, . . . , qn) and t.

Definition. A first integral of the motion of S (or the first integral of S) is, by definition, a

first-order differential equation in q and satisfied by the solutions t �→ q(t) of the equations of

motion of S . A first integral is of the form

ψ(q(t), q̇(t), t) = const [9.1]

where ψ is a scalar function of (2n + 1) variables (q, q̇, t) and const denotes a constant that

usually depends on the initial conditions q(t0) and q̇(t0) at t0.

By definition, the constraint equations, if they exist, are the first integrals of the motion.

• The first integrals that we will see in the sequel are derived from the Lagrange’s equations

obtained in Chapter 8 in the case of perfect joints. Consequently, we continue to adopt (as was

done in Chapter 8) convention [6.1] according to which, the Galilean reference frame Rg being

known, we choose the common reference frame R0 equal to Rg:

R0 = Rg

This choice allows the pair (Rg, R0) to automatically satisfy hypothesis [2.33], which is

required for the definition of perfect joints.

• NOTATION CONVENTION. To simplify the writing in this chapter, the kinetic energy and the

potential will be written without subscript: Ec, V, instead of Ec
RgS , VRg .

9.1. Painlevé’s first integral

9.1.1. Painlevé’s lemma

Painlevé’s first integral involves the parameterized kinetic energy Ec(q, q̇, t) of the system S with

respect to a reference frame Rg defined by [2.54] and its decomposition [2.57]:

Ec = Ec(2) + Ec(1) + Ec(0)

Lagrangian Mechanics: An Advanced Analytical Approach,

First Edition. Anh Le van and Rabah Bouzidi. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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where Ec(2), Ec(1) and Ec(0) are defined as the parts of Ec which are respectively of second, first

and zero degree with respect to the derivatives q̇i. Let us first establish the following preliminary

result:

Painlevé’s lemma. We have the following identity:

d

dt

(
Ec(2) − Ec(0)

)
=

n∑
i=1

Qiq̇i − ∂Ec

∂t
[9.2]

where Qi is the ith generalized force applied on S . This identity is general, in the sense that it is

valid regardless of the joints (perfect or not) and regardless of the efforts applied to the system

(whether derivable from a potential or not).

PROOF. Let us begin with the Lagrange’s equations [6.2]:

∀t, ∀i ∈ [1, n],
d

dt

∂Ec

∂q̇i
− ∂Ec

∂qi
= Qi

By multiplying the Lagrange’s equation number i by q̇i and by summing the equalities thus

obtained over i, we arrive at what is called Painlevé’s combination:

n∑
i=1

d

dt

∂Ec

∂q̇i
q̇i −

n∑
i=1

∂Ec

∂qi
q̇i =

n∑
i=1

Qiq̇i [9.3]

which, in fact, is simply the PVP written with q̇ instead of q̇∗ (see [8.9]).

Let us transform the left-hand side of [9.3] using the decomposition
d

dt

∂Ec

∂q̇i
q̇i =

d

dt

(
∂Ec

∂q̇
q̇i

)
− ∂Ec

∂q̇i
q̈i:

n∑
i=1

d

dt

∂Ec

∂q̇i
q̇i −

n∑
i=1

∂Ec

∂qi
q̇i =

d

dt

n∑
i=1

∂Ec

∂q̇
q̇i −

(
n∑

i=1

∂Ec

∂qi
q̇i +

n∑
i=1

∂Ec

∂q̇i
q̈i

)
[9.4]

homogeneous functions of the generalized velocities of order n = 2,1,0.

Further, since the velocity parameterization is affine in q̇, the kinetic energy Ec is of second

order in q̇: Ec = Ec(2) + Ec(1) + Ec(0), where Ec(k) is a (positively) homogeneous function

of q̇j of order k. Recalling that a function Rn � x �→ f(x) (positively) homogeneous of order k

satisfies the Euler identity

n∑
i=1

xi
∂f

∂xi
(x) = kf(x), we arrive at

n∑
i=1

∂Ec

∂q̇i
q̇i = 2 × Ec(2) + 1 × Ec(1) + 0 × Ec(0) = 2Ec(2) + Ec(1)

On the other hand, from the identity
dEc

dt
=

n∑
i=1

∂Ec

∂qi
q̇i +

n∑
i=1

∂Ec

∂q̇i
q̈i +

∂Ec

∂t
, we get

n∑
i=1

∂Ec

∂qi
q̇i +

n∑
i=1

∂Ec

∂q̇i
q̈i =

dEc

dt
− ∂Ec

∂t
[9.5]

Thus, [9.4] becomes

n∑
i=1

d

dt

∂Ec

∂q̇i
q̇i −

n∑
i=1

∂Ec

∂qi
q̇i =

d

dt

(
2Ec(2) + Ec(1)

)
− dEc

dt
+

∂Ec

∂t

=
d

dt

(
Ec(2) − Ec(0)

)
+

∂Ec

∂t
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By inserting this result in [9.3], we obtain the desired result. �

REMARK. In the above proof, depending on the context, Ec is either the parameterized kinetic

energy Ec(q, q̇, t), defined by [2.54] and function of the 2n + 1 parameters (q, q̇, t), or it is the

conventional kinetic energy, composite function of time via a given motion t �→ q(t). �

9.1.2. Painlevé’s first integral

Theorem. Painlevé’s first integral
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg as per convention [6.1].

(ii) The joints are perfect.

(iii) The given efforts on S are derivable, in Rg, from a potential V(q, t) (using the chosen

parameterization).

(iv) The parameterization is such that the Lagrangian L(q, q̇, t) = Ec(q, q̇, t)−V(q, t) is time
independent:

∂L

∂t
=

∂

∂t
(Ec − V) = 0

(a sufficient, but not necessary, condition for this hypothesis is that
∂Ec

∂t
=

∂V

∂t
= 0).

(v) The complementary constraint equation written in differential form is homogeneous:

n∑
i=1

αhi q̇i + βh︸︷︷︸
=0

= 0, h ∈ [1, �]

The system then has Painlevé’s first integral:

Ec(2) − Ec(0) + V = const [9.6]

FIRST PROOF. Owing to hypothesis (ii), the ith generalized force Qi is given by (see the proof

of Lagrange’s equation [8.6]):

Qi = Di + Li = Di +
�∑

h=1

λh αhi

where Di (respectively, Li) is the ith generalized force corresponding to the given efforts

(respectively, the constraint efforts). Consequently, the sum

n∑
i=1

Qiq̇i in identity [9.2] can be

written as

n∑
i=1

Qiq̇i =
n∑

i=1

Diq̇i +
n∑

i=1

(
�∑

h=1

λh αhi

)
q̇i [9.7]
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On the one hand, hypothesis (iii) implies that ∃V(q, t), Di = − ∂V

∂qi
, ∀i. Hence

n∑
i=1

Diq̇i = −
n∑

i=1

∂V

∂qi
q̇i

= −dV

dt
+

∂V

∂t
noting that

dV

dt
=

n∑
i=1

∂V

∂qi
q̇i +

∂V

∂t
[9.8]

On the other hand, the last term in [9.7] can be recast as follows:

n∑
i=1

(
�∑

h=1

λhαhi

)
q̇i =

�∑
h=1

λh

(
n∑

i=1

αhiq̇i

)
︸ ︷︷ ︸

=−βh

= −
�∑

h=1

λhβh =
hypothesis

(v)

0 [9.9]

Taking into account [9.7] and [9.8], identity [9.2] becomes

d

dt

(
Ec(2) − Ec(0) + V

)
= − ∂

∂t
(Ec − V)

The right-hand side vanishes because of hypothesis (iv) above. �

SECOND PROOF. Below is another proof for Painlevé’s first integral, which may be instructive.

This proof makes use of the hypothesis of perfect joints without using Lagrange multipliers.

As in the first proof, we begin by writing Qi = Di + Li, which gives

n∑
i=1

Qiq̇i =
n∑

i=1

Diq̇i +
n∑

i=1

Liq̇i

The sum

n∑
i=1

Diq̇i is transformed as in the first proof and we will examine, here, the sum

n∑
i=1

Liq̇i. Consider the particular VVF defined with q̇∗i = q̇i:

�V ∗(p) =
n∑

i=1

−→
∂P

∂qi
q̇∗i =

n∑
i=1

−→
∂P

∂qi
q̇i [9.10]

According to hypothesis (v), the q̇i satisfy

n∑
i=1

αhi q̇i = 0, ∀h ∈ [1, �]. Consequently,

according to hefinition [7.2], the VVF [9.10] is compatible with the joints of the system.

Since the joints are perfect (hypothesis (ii)), the VP of the constraint efforts in the compatible

VVF [9.10] is zero:

0 = P∗
Rg

(Fconstraint→S ) =
n∑

i=1

Liq̇
∗
i =

n∑
i=1

Liq̇i

This is the same result as in [9.9]. We conclude as in the first proof. �

Instead of memorizing the hypotheses for Painlevé’s first integral, it would be better to start

from identity [9.2] and see, in each given problem, which hypotheses will enable one to optimally

simplify [9.2].

For the same mechanical system S , there may or may not exist a Painlevé’s first integral

depending upon the chosen parameterization. Indeed, the expressions for the kinetic energy Ec

and the potential V depend on the parameterization used and it may be that with a certain unnatural

parameterization, they will not satisfy hypothesis (iv), for instance.
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9.2. The energy integral: conservative systems

The following theorem can be obtained as a particular case of Painlevé’s first integral.

Theorem and definition. The energy integral.
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg according to convention

[6.1].

(ii)
∂Rg

−−→
OgP

∂t
= �0 (where Og is a point fixed in Rg).

(iii) The joints are perfect.

(iv) The given efforts on S are derivable, in Rg , from a time-independent potential V(q) (this

hypothesis is a little stronger than Painlevé’s first integral).

(v) The complementary constraint equations written in differential form are homogeneous:

n∑
i=1

αhi q̇i + βh︸︷︷︸
=0

= 0, h ∈ [1, �]

Under these hypotheses, we have the energy integral:

Ec + V = const [9.11]

The sum Ec + V is called the mechanical energy of system S . We say that the system is

conservative.

FIRST PROOF. Hypothesis (ii) makes it possible to apply [2.59] and to have

Ec(0) = Ec(1) = 0 and Ec = Ec(2)(q, q̇) independent of t

Since
∂Ec

∂t
= 0 and since, according to (iv),

∂V

∂t
= 0, the hypothesis

∂

∂t
(Ec − V) = 0 for

Painlevé’s first integral is satisfied.

Thus, the set of hypotheses adopted, (i)–(v), yields Painlevé’s first integral [9.6]:

Ec(2)︸ ︷︷ ︸
=Ec

−Ec(0)︸ ︷︷ ︸
=0

+V = const �

SECOND PROOF. Here is a direct proof for [9.11] without using Painlevé’s first integral and

[2.59]. Differentiating the kinetic energy Ec =
1

2

∫
S

�V 2
Rg

(p, t)dm with respect to time gives

dEc

dt
=

∫
S

�VRg
(p, t).�ΓRg

(p, t) dm where, from hypothesis (ii), �VRg
(p, t) =

∑
i

−→
∂P

∂qi
q̇i

=
∑
i

∫
S

−→
∂P

∂qi
.�ΓRg (p, t) dm q̇i =

∑
i

Ciq̇i according to definition [5.40] of Ci

=
∑
i

Qiq̇i as Ci = Qi according to Lagrange’s equation [6.2]

[9.12]
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The decomposition [5.19], Qi = Di + Li, gives∑
i

Qiq̇i =
∑
i

Diq̇i +
∑
i

Liq̇i

where, according to hypothesis (iv):∑
i

Diq̇i = −
∑
i

∂V

∂qi
q̇i = −dV

dt

Inserting these last results into [9.12] gives

d

dt
(Ec + V) =

∑
i

Liq̇i [9.13]

Using the same reasoning in the proof for Painlevé’s first integral, it can be shown that the

sum
∑
i

Liq̇i is zero. �

REMARK. The energy integral in Newtonian mechanics differs slightly from the first integral

[9.11]. In Newtonian mechanics:

– There is no need for hypothesis
∂Rg

−−→
OgP

∂t
= �0.

– The hypotheses do not involve the parameterization, unlike hypotheses (i), (ii), (iv) and (v)

adopted here for analytical mechanics.

– The first integral brings into play the potential energy Ep(q(t), t) instead of the

time-independent potential V(q).

– The proof of the first integral is carried out starting from the kinetic energy theorem:

d

dt

[
Ec

RgS (t) + Ep
Rg

(t)
]
= PRg (F̄→S , t),

where F̄→S denotes the efforts that are not derivable from a potential energy; in this case

these are the constraint efforts. The previous relationship resembles [9.13]. �

9.2.1. Energy considerations in addition to the energy integral

Definition. A system of efforts F→S applied to the system S is dissipative if, in any motion of

S , the real power of F→S with respect to a Galilean reference frame is negative or zero:

P (F→S ) ≤ 0

Theorem on the inequality of mechanical energy.
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg according to convention

[6.1].

(ii)
∂Rg

−−→
OgP

∂t
= �0.
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(iii) There are two types of efforts acting upon S :

– some are derivable, in Rg , from a time-independent potential V(q);

– others, denoted Fdissipative→S , are dissipative.

(iv) The complementary constraint equations written in differential form are homogeneous:

n∑
i=1

αhi q̇i + βh︸︷︷︸
=0

= 0, h ∈ [1, �]

Thus, in any motion t �→ q(t) and for any t ≥ t0, the mechanical energy of the system

decreases:

d

dt
(Ec + V) ≤ 0 or Ec(q(t), q̇(t)) + V(q(t)) ≤ Ec(q(t0), q̇(t0)) + V(q(t0))

PROOF. The reasoning is the same as in the second proof for the energy integral [9.11], except

that here relationship [9.13] ibid becomes

d

dt
(Ec + V) = P(Fdissipative→S ) ≤ 0 �

9.3. Example: disk rolling on a suspended rod

Consider a Galilean reference frame Rg = R0 endowed with the orthonormal coordinate system

(O; �x0, �y0, �z0) and a system S made up of two rigid bodies (Figure 9.1):

– A disk S1 with radius R, mass m and center C.

– A rod S2 = AB, with length 2L, mass M and center of mass J .

The system is moving in the plane O�x0�y0 under the gravity field −g�y0. The disk S1 rolls along

the rod S2 without sliding, the point of contact being denoted by I . The rod S2 is suspended from

two parallel, identical wires AD and BE, with length l, with no mass and with the attachment

points D,E fixed in R0, such that the motion of the rod is a circular translation.

Figure 9.1. Disk rolling along a suspended rod

The position of the rod S2 in R0 is defined by the angle θ formed by the wires AD, BE and

�y0 (Figure 9.1). The position of the disk S1 is defined relative to S2, by the coordinates x, y of

center C with respect to the coordinate system (J ; �x0, �y0) and the angle ϕ between �x0 and a given

radius of the disk.
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The contact between the disk and the rod is expressed by y = R. The no-slip condition at

point I is expressed by �V21(I) = �0, where the index 2 denotes the reference frame R2 defined by

S2. The slip velocity �V21(I) is calculated using the formula

�V21(I) = �V21(C) + �Ω21 × −→
CI

where
−→
CI = −R�y0 and �Ω21 = ϕ̇�z0. As concerns �V21(C), it can be calculated using definition

[1.47]:

�V21(C) =
dR2

−→
JC

dt
≡ ¯̄Q02.

d

dt

(
¯̄Q20.

−→
JC
)

knowing that J is a fixed point in R2. Since the rod S2 is in translation with respect to R0, the

rotation tensor ¯̄Q02 is the identity tensor and, consequently

�V21(C) =
d
−→
JC

dt
= ẋ�x0 knowing that

−→
JC = x�x0 +R�y0

Thus, the slip velocity is �V21(I) = (ẋ+Rϕ̇)�x0 and the condition for no-slip contact at point

I is finally expressed by ẋ+Rϕ̇ = 0.

Given the above results, we choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: θ, x, y, ϕ.

• Primitive constraint equation: y = R.

• Retained parameters: θ, x, ϕ.

• Complementary constraint equation: ẋ+Rϕ̇ = 0.

The kinetic energy of the system is

Ec = Ec
01 + Ec

02 with

⎧⎪⎨⎪⎩
Ec

01 = Ec
RC

0 S1
+

1

2
m�V 2

01(C)

Ec
02 =

1

2
M�V 2

02(J)

where Ec
RC

0 S1
denotes the kinetic energy with respect to the barycentric reference frame RC

0 ,

which has its origin in the center of mass C of S1. By defining the vector �i as being the unit

vector parallel to
−−→
DA and the vector �j ≡ �z0 ×�i (Figure 9.1), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ec
RC

0 S1
=

1

2

1

2
mR2ϕ̇2

−−→
DC =

−−→
DA+

−→
AI +

−→
IC = ��i+ (L+ x)�x0 +R�y0 ⇒ �V01(C) = �θ̇�j + ẋ�x0

−→
DJ =

−−→
DA+

−→
AJ = ��i+ L�x0 ⇒ �V02(J) = �θ̇�j

We thus obtain

Ec =
1

2
(M +m)�2θ̇2 +

1

2
mẋ2 +m�θ̇ẋ cos θ +

1

4
mR2ϕ̇2

The potential comes from the weight of the two rigid bodies:

V = −Mg� cos θ − mg� cos θ +mgR+ const = −(M +m)g� cos θ + const
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• The Lagrange’s equation [8.6] can be written as follows, with λ denoting the multiplier

associated with the complementary constraint equation ẋ+Rϕ̇ = 0:

Lθ : (M +m)�θ̈ +mẍ cos θ + (M +m)g sin θ = 0

Lx : mẍ+m�
d

dt
(θ̇ cos θ) = λ

Lϕ :
1

2
mRϕ̈ = λR

Now taking into account the complementary constraint equation ẋ+Rϕ̇ = 0, we can eliminate

ẋ in favor of ϕ̇ and arrive at a system of three equations for the three unknowns θ, ϕ, λ:

(M +m)�θ̈ − mRϕ̈ cos θ + (M +m)g sin θ = 0

−mRϕ̈+m�
d

dt
(θ̇ cos θ) = λ

1

2
mϕ̈ = λ

[9.14]

By eliminating λ from equations [9.14]2 and [9.14]3, we arrive at

−ẍ = Rϕ̈ =
2�

3

d

dt
(θ̇ cos θ) [9.15]

Using this relationship, we can transform [9.14]1 into a differential equation in θ:(
1 − 2m

3(M +m)
cos2 θ

)
θ̈ +

2m

3(M +m)
θ̇2 sin θ cos θ +

g

�
sin θ = 0 [9.16]

Solving this equation provides θ as a function of time. Relationship [9.15] then enables one

to derive the functions x(t) and ϕ(t).

• The hypotheses for the energy integral [9.11] are satisfied here:

– the position of a current particle of the system is not explicitly time dependent:

∂Rg

−−→
OP

∂t
= �0,

– the joints are perfect,

– the given efforts on the system are derivable in Rg from a time-independent potential V,

– the complementary constraint equation ẋ+Rϕ̇ = 0 is homogeneous.

Thus, we have the energy integral Ec + V = const:

1

2
(M +m)�2θ̇2 +

1

2
mẋ2 +m�θ̇ẋ cos θ +

1

4
mR2ϕ̇2 − (M +m)g� cos θ = const

or, with ẋ = −Rϕ̇:

1

2
(M +m)�2θ̇2 +

3

4
mR2ϕ̇2 − m�Rθ̇ϕ̇ cos θ − (M +m)g� cos θ = const [9.17]

This first integral may also be obtained through the following combination of Lagrange’s

equations:

[9.17] =

∫ (
[9.14]1 × �θ̇ + [9.15] × 3mR

2
ϕ̇

)
dt

In other problems that concern first integrals, it is not always easy to arrive at these first

integrals through a combination of Lagrange’s equations.
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9.4. Example: particle on a rotating hoop

Consider the example of the particle on a rotating hoop, which is studied in section 8.3 using

the independent parameterization. The hypotheses for Painlevé’s first integral [9.6] are satisfied.

Indeed:

– The joint between the particle p and the hoop (C) is frictionless and, thus, perfect. The

joint between the hoop (C) and the engine that makes it rotate at a constant velocity is

also perfect. Indeed, the VP of the engine torque exerted on the hoop is P∗
engine→C =

Γ�z0.�Ω
∗
R0C

= 0 because �Ω∗
R0C

= �0.

– The kinetic energy of the system consisting of the particle and the hoop is

Ec =
1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
+

1

2
Iω2

The potential of the system is

V = mga cos θ + const

Thus, the hypothesis
∂

∂t
(Ec − V) = 0 is satisfied.

– Finally, there is no complementary constraint equation.

Painlevé’s first integral [9.6] is written as

θ̇2 − ω2 sin2 θ + 2
g

a
cos θ = const

a relationship that is identical to [8.12], which was directly obtained through the transformation

of the Lagrange’s equation [8.11].

9.5. Example: a rigid body connected to a rotating rod by a spherical joint (no. 1)

Consider the rigid body connected by a spherical joint to a rotating rod, which is studied in

section 8.4 (Figure 8.2). The equations for α and ϕ, [8.23] and [8.26], immediately give two first

integrals:

2(α̇+ψ̇)sin2θ+2
[
ϕ̇+ (α̇+ ψ̇) cos θ

]
cos θ+4α̇+(4α̇+2ψ̇) sin θ sinψ−2θ̇ cos θ cosψ = const

[9.18]

ϕ̇+ (α̇+ ψ̇) cos θ = const [9.19]

Furthermore, all the conditions are fulfilled to obtain the energy integral [9.11]: Ec + V =
const (in fact, there is no complementary constraint equation here). Using expressions [8.21] and

[8.22] for the kinetic energy and the potential, the energy integral gives

θ̇2 + (α̇+ ψ̇)2 sin 2θ +
[
ϕ̇+ (α̇+ ψ̇) cos θ

]2
+ 2α̇2 + 2α̇(α̇+ ψ̇) sin θ sinψ

− 2α̇θ̇ cos θ cosψ +
mg

a
cos θ = const [9.20]
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Figure 9.2. Rigid body connected to a rotating rod by a spherical joint

9.5.1. First integrals via Newtonian mechanics

The first integrals found above may also be obtained using Newtonian mechanics.

• Since Mext→S(O�z0) = 0 (see Figure 9.2) where the axis O�z0 is fixed, we have the angular

momentum first integral σ0S(O�z0) = const.
With the angular momentum σ0S(O�z0) obtained in [8.31], we do indeed arrive again at the

first integral [9.18].

• Furthermore, the moment of external efforts exerted on the rigid body S1 about axis C�zS
is zero, where C is the center of mass of S1, �zS is attached to S1, the inertia operator in C
is axisymmetric about the axis C�zS and the moment of inertia of S1 about the same axis is

non-zero. All this leads to Euler’s first integral:

ϕ̇+ (α̇+ ψ̇) cos θ = const

which is the same as the first integral [9.19].

• Finally, as the efforts exerted on S do no power (perfect joint at A) or are derivable from a

potential energy Ep (here Ep = V), we also have the energy integral: Ec + Ep = const: this is

[9.20].

9.6. Example: rigid body connected to a rotating rod by a spherical joint (no. 2)

Consider the mechanical system in section 8.5 where the rod OA is constrained to rotate at a

constant velocity ω.

Equation [8.30] immediately gives the first integral:

ϕ̇+ (ω + ψ̇) cos θ = const

Using the total parameterization from section 8.5.1, we do not have a Painlevé’s first integral

because the complementary constraint equation α̇ = ω is not homogeneous.

However, let us prove that there exists a Painlevé’s first integral using the independent

parameterization from section 8.5.2. The hypotheses for Painlevé’s first integral [9.6] are

satisfied. Indeed:
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– The spherical joint at point A between the rigid body S1 and the rod OA is perfect.

– Recall expression [8.32] for the kinetic energy obtained using the independent

parameterization:

Ec
0S = ma2

{
θ̇2 + (ω + ψ̇)2 sin 2θ +

[
ϕ̇+ (ω + ψ̇) cos θ

]2
+ 2ω2+

2ω(ω + ψ̇) sin θ sinψ − 2ωθ̇ cos θ cosψ
}

as well as expression [8.22] for the potential due to the weight of the system:

V = mga cos θ + const

Thus, the hypothesis
∂

∂t
(Ec − V) = 0 is satisfied.

– There is no complementary constraint equation.

From the previous expression for the kinetic energy, we can derive

Ec(2) = ma2
[
θ̇2 + ψ̇2 sin 2θ + (ϕ̇+ ψ̇ cos θ)2

]
Ec(0) = ma2ω2(3 + 2 sin θ sinψ)

Hence, Painlevé’s first integral is

ma2
[
θ̇2 + ψ̇2 sin 2θ + (ϕ̇+ ψ̇ cos θ)2 − ω2(3 + 2 sin θ sinψ)

]
− mga cos θ = const

9.7. Example: rigid body subjected to a double contact

Consider the rigid body subjected to a double contact, which is studied in section 8.6 with the

independent parameterization.

The Lagrange’s equation [8.46] immediately gives a first integral:[
6 (k − cos θ)

2
+ sin 2θ

]
ψ̇ − 2kω (k − cos θ) = const [9.21]

Let us show that there exists a Painlevés first integral. In order to do this, let us verify that the

hypotheses for Painlevé’s first integral [9.6] are satisfied:

– The contacts at points I and K between the rigid body S1 and the exterior are perfect joints.

– The kinetic energy and the potential of the rigid body S1 with respect to R0 are obtained in

[8.43] and [8.44], respectively:

Ec
01 =

1

2
ma2

{
5θ̇2 +

[
6(k − cos θ)2 + sin2 θ

]
ψ̇2 − 4kω(k − cos θ)ψ̇ + 2k2ω2

}
V = mgz + const = 2mga sin θ + const

Thus, the hypothesis
∂

∂t
(Ec − V) = 0 is satisfied.
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– Finally, there is no complementary constraint equation.

Painlevé’s equation [9.6] is written as

5θ̇2 +
[
6(k − cos θ)2 + sin2 θ

]
ψ̇2 − 2k2ω2 + 4

g

a
sin θ = const [9.22]

The two first integrals [9.21] and [9.22] constitute two equations for the two unknowns ψ and

θ, which are simpler to solve than the Lagrange’s equations [8.45] and [8.46].

9.7.1. Using Newtonian mechanics to find a first integral

We propose arriving at the first integral [9.21] using Newtonian mechanics. The forces exerted on

the rigid body (S1) are:

– the force �FK exerted by the axis O�z0 at point K. It is parallel to �n because it is orthogonal

to both �z0 and ⊥ �z1;

– the force �FI exerted by the plate at point I , which is resolved in the basis (�n, �u, �z0) as
�FI = X�n+ Y �u+ Z�z0;

– the weight of the system, applied at center C.

By using σ01(O�z0) and δ01(O�z0) to denote the angular momentum and the dynamic moment,

with respect to R0, about the axis O�z0 of the rigid body S1 (see [1.76] for the definition of the

dynamic moment), we have the following implications:

Mext�1(O�z0) = OI X = 2akX
Mext�1(C�z1) = 2aX

}
→ Mext�1(O�z0) − kMext�1(C�z1) = 0

→ δ01(O�z0) − kδ01(C�z1) = 0

→ d

dt
σ01(O�z0) − k 2ma2︸ ︷︷ ︸

C

d

dt
(ϕ̇+ ψ̇ cos θ) = 0

We thus arrive at the first integral:

σ01(O�z0) − 2kma2(ϕ̇+ ψ̇ cos θ) = const [9.23]

We obtain the explicit expression for the angular momentum σ01(O�z0) in the previous

relationships as follows:

σ01(O�z0) = σ01(C�z1) +m(
−−→
OG, �V01(C), �z0)

= ma2
[
ψ̇ sin2 θ + 2(ϕ̇+ ψ̇ cos θ) cos θ

]
+ 4ma2(k − cos θ)2ψ̇ where ϕ̇ = k(ω − ψ̇)

= ma2
[(
4(k − cos θ)2 + sin 2θ

)
ψ̇ + 2(cos θ − k)ψ̇ cos θ + 2kω cos θ

]
On the other hand, taking into account the constraint equation [8.40], ϕ = k(ωt − ψ), the

second term of [9.23] can be written as

2kma2(ϕ̇+ ψ̇ cos θ) = 2kma2
[
−(k − cos θ)ψ̇ + kω

]
By inserting these results in [9.23], we once again arrive at the first integral [9.21].
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Equilibrium

This chapter is devoted to equilibrium, which is a particular case of motion.

• We will work in the Galilean reference frame Rg and we will adopt the same convention

[6.1] as used for the Lagrange’s equations, namely, we choose the common reference frame R0

equal to Rg:

R0 = Rg

• NOTATION CONVENTION: To simplify the writing in this chapter, the kinetic energy and

the potential will be written without subscript: Ec, V, instead of Ec
RgS , VRg .

10.1. Definitions

10.1.1. Absolute equilibrium

Consider a system S made up of one or more rigid bodies.

Definition. The system S is in absolute equilibrium (implicitly: with respect to, or relative to,

the Galilean reference frame Rg) if it is at rest with respect to Rg, that is, if each particle of the

system has the same position in Rg over time.

The constant position occupied by S is called an absolute equilibrium position. [10.1]

Thus, if the system S is in absolute equilibrium relative to the Galilean reference frame Rg,

the position vector
−−−−→
OgP

(g) of the current particle p of the system in Rg does not depend on time:

−−−−→
OgP

(g) = ¯̄Qg0.
−−→
OP = const with respect to t

where Og is a fixed point in Rg and P (g) is the position of p in Rg. By virtue of [1.47], the

velocity, with respect to Rg , of any particle of the system is zero:

�VRg (p, t) =
dRg

−−→
OgP

dt
= ¯̄Q0g.

d

dt

(
¯̄Qg0.

−−→
OgP

)
= �0

Theorem. Necessary condition for absolute equilibrium. If a system of rigid bodies S is in

absolute equilibrium with respect to a Galilean reference frame Rg, then, in any VVF q̇∗, the VP

of the external constraint efforts applied to S is zero.

This result should be compared with the analogous theorem in Newtonian mechanics,

resulting from Newton’s laws:

Lagrangian Mechanics: An Advanced Analytical Approach,

First Edition. Anh Le van and Rabah Bouzidi. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Theorem. Necessary condition for absolute equilibrium. If a system of rigid bodies S is in

absolute equilibrium with respect to a Galilean reference frame Rg , then the moment field of the

external efforts applied to S is zero.

10.1.2. Parametric equilibrium

We will introduce a new concept of equilibrium, slightly different from absolute equilibrium and

related to the position parameters of the system. The existing mechanical joints in the system

S are expressed by a certain number of constraint equations, which may be classified as either

primitive or complementary. The retained parameters are q ≡ (q1, . . . , qn) and t.

Definition. [10.2]

The system S is in parametric equilibrium if the position parameters q take a constant value

qe over time; in other words, if the motion t �→ q(t) = qe = const is one solution to the problem

whose initial conditions are, necessarily, (t0, q0 = qe, q̇0 = 0).
The position of the system S defined by qe = const is called a parametric equilibrium

position. The term “parametric” will often be implied, so that the term equilibrium carries the

meaning parametric equilibrium.

Using a contracted form, we also say that qe = const is a (parametric) equilibrium position.

As the position of the system is defined by q and t, the fact that q is constant does not mean

that the system is at rest with respect to Rg. A parametric equilibrium is not necessarily an

absolute equilibrium.

EXAMPLE. Consider, for example, the reference frame R1 rotating, with respect to Rg, about

the axis O�zg at the angle αt. Let (O; �xg, �yg, �zg) and (O; �x1, �y1, �z1) (with �z1 = �zg) be the

coordinate systems attached to Rg and R1 respectively (Figure 10.1). Consider the system made

up of a single particle p and assume that the position of p in Rg is defined by four parameters: the

three coordinates x, y, z of P in the rotating coordinate system (O; �x1, �y1, �z1), and the time t via

the rotation angle αt.
We have a parametric equilibrium if the parameters x, y, z are constant over time, that is, if

the position of the particle p in the rotating reference frame R1 is fixed. This does not, however,

mean that the particle is at rest in Rg . �

Figure 10.1. Example of parametric equilibrium

Consider a reference frame R1 whose motion relative to Rg (the background motion, see

definition [1.70]) is known and assume that the position of the system S in R1 is defined by the
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parameters q, not by time. Then, a parametric equilibrium position of S is a relative equilibrium
position in R1.

The following theorem is a case of a simple situation:

Theorem. If the position P of the current particle of the system satisfies
∂Rg

−−→
OgP

∂t
= �0 (see the

definition of this derivative in [1.41]), then the concepts of absolute equilibrium and parametric

equilibrium are identical.

PROOF. Taking into account the hypothesis, relationship [2.25] gives

�VRg (p, t) =
¯̄Q0g.

n∑
i=1

∂

∂qi

(
¯̄Qg0.

−−→
OgP

)
q̇i +

∂Rg

−−→
OgP

∂t
= ¯̄Q0g.

n∑
i=1

∂

∂qi

(
¯̄Qg0.

−−→
OgP

)
q̇i

Consequently:

– Consider a parametric equilibrium position defined by q = qe = const, then the previous

relationship gives �VRg (p, t) = �0 for any particle p of the system at any instant: this is an

absolute equilibrium.

– Reciprocally, consider an absolute equilibrium, �VRg (p, t) = �0, then, because ¯̄Q0g is

invertible:
n∑

i=1

∂

∂qi

(
¯̄Qg0.

−−→
OgP

)
q̇i = �0

By accepting that the vectors ∂
∂qi

(
¯̄Qg0.

−−→
OgP

)
are independent, we derive that q̇i = 0, ∀i ∈

[1, n]. �

Let us indicate that in mechanics, we also encounter the concept of steady motion, which is

close to the concept of parametric equilibrium but which will not be studied here:

Definition. A steady motion is a motion in which:

– certain parameters remain constant,

– while the velocities of other parameters also remain constant.

10.2. Equilibrium equations

It has been seen in section 6.3 that in the general framework of dynamics, we have n + nf�

unknowns (n kinematic unknowns q and nf� effort unknowns) and n + nf� equations [6.7] to

solve: ⎧⎨⎩
• n Lagrange’s equations,
• � complementary constraint equations,
• nf� − � contact laws.

Here, in an equilibrium problem, according to definition [10.2], we must make q(t) equal to

qe in all these equations.

Definition. An equilibrium equation is a Lagrange’s equation written at an equilibrium position

qe, in other words, a Lagrange’s equation in which we replace q(t) by qe. [10.3]
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As concerns the possible complementary constraint equations, it can be seen that:

– when we make q = qe in holonomic relationships, these are written as f(qe, t) = 0, which

implies that the holonomic constraint equations, if they exist, must not explicitly depend on
time. They must, thus, be of the form

f(q) = 0

– when we make (q, q̇) = (qe, 0) in non-holonomic relationships of the differential form

[2.12], these give β(qe, t) = 0: the non-holonomic, complementary constraint equations, if

they exist, must be homogeneous, thus they must be of the form

n∑
i=1

αi(q, t) q̇i = 0

Thus, at equilibrium, these constraint equations become the identities

n∑
i=1

αi(q, t). 0 = 0

and give no equations.

To conclude, in an equilibrium problem, we have n + nf� unknowns (n cinematic unknowns

qe = const and nf� unknown constraint efforts) and n+ nf� equations to be solved:⎧⎪⎨⎪⎩
• the n equilibrium equations,
• the holonomic, complementary constraint equations written at equilibrium: f(qe) = 0
• the nf� − � contacts laws, to be made explicit on a case-by-case basis.

[10.4]

The parametric equilibrium positions q(t) = qe = const with respect to Rg are the constant
solutions of this system of equations.

We will list the equations and unknowns later in this section, after having obtained an explicit

expression for the equilibrium equations.

In the case of an independent parameterization, there is no constraint equations and we have

only to solve the equilibrium equations and any possible contact laws.

Finally, we may have to verify, at the equilibrium positions, the inequalities imposed by

unilateral joints. For example, in the case of a point contact, the normal contact force N must

satisfy N ≥ 0; if we assume no-slip contact, another inequality must be verified, of the type

‖�T‖ ≤ fN , where �T is the tangential contact force and f is the coefficient of friction.

• Let us now establish an explicit expression for the equilibrium equations. In order to do this,

let us first recall expression [2.55] for the parameterized kinetic energy Ec(q, q̇, t):

2Ec(q, q̇, t) =

n∑
i=1

n∑
j=1

aij(q, t) q̇iq̇j + 2

n∑
i=1

bi(q, t) q̇i + c(q, t) [10.5]

where, since convention [6.1], which automatically satisfies hypothesis [2.33], is adopted, the

coefficients aij , bi and c simplify a little here, in comparison with [2.56]:

aij =

∫
S

−→
∂P

∂qi
.

−→
∂P

∂qj
dm bi =

∫
S

−→
∂P

∂qi
.
∂Rg

−−→
OgP

∂t
dm c =

∫
S

(
∂Rg

−−→
OgP

∂t

)2

dm ≥ 0
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The parameterized kinetic energy Ec
R1S (q, q̇, t) is decomposed according to [2.57]:

Ec = Ec(2) + Ec(1) + Ec(0) with Ec(0)(q, t)) ≡ 1

2
c(q, t) ≥ 0

Furthermore, we divide the given efforts into two categories, as usual:

– those derivable from a potential V, which yield the generalized forces − ∂V

∂qi
, i ∈ [1, n],

– those which are not derivable from a potential, which yield the generalized forces denoted

by D′
i, i ∈ [1, n].

This makes it possible to express the generalized forces Di associated with given efforts and

the generalized forces Qi in the form

Di = − ∂V

∂qi
+D′

i and Qi = − ∂V

∂qi
+D′

i + Li

Theorem.
HYPOTHESIS: The reference frame Rg is Galilean and we choose R0 = Rg according to

convention [6.1].

Then, the equilibrium equations are written as

∀t, ∀i ∈ [1, n],
∂bi
∂t |qe

− ∂Ec(0)

∂qi |qe
+

∂V

∂qi |qe
= D′

i(qe, 0, t) + Li [10.6]

PROOF. Recall the Lagrange’s equations [6.5]:

∀i ∈ [1, n],
d

dt

∂Ec

∂q̇i
− ∂Ec

∂qi
+

∂V

∂qi
= D′

i + Li [10.7]

A parametric equilibrium position q(t) = qe = const satisfies the same equations obtained by

replacing (t, q, q̇, q̈) with (t, qe, 0, 0). On account of [10.5], it is possible to get explicit expressions

for the derivatives of kinetic energy in [10.7]. After simple but tedious calculations, we obtain

∀i ∈ [1, n],
d

dt

∂Ec

∂q̇i
− ∂Ec

∂qi
=
∑
j

aij q̈j +
∑
j,k

(
∂aij
∂qk

− 1

2

∂ajk
∂qi

)
q̇j q̇k +

∑
j

∂aij
∂t

q̇j

+
∑
j

(
∂bi
∂qj

− ∂bj
∂qi

)
q̇j +

∂bi
∂t

− ∂Ec(0)

∂qi

By making (q, q̇, q̈) = (qe, 0, 0), we obtain the desired result. Q.E.D. �

To better understand how the equilibrium equations are obtained and to better understand their

nature, let us write the Lagrange’s equations [10.7] in shortened form:

Φi(t, q, q̇, q̈) = Li(t, q, q̇,Fconstraint), i ∈ [1, n],

where Φi denotes the terms other than Li in [10.7]. In the general case, the generalized force Li

depends on (t, q, q̇) and the constraint efforts denoted, symbolically, as Fconstraint.

The equilibrium equations [10.6] are obtained by making q(t) = qe = const:

∀i ∈ [1, n], Φi(t, qe, 0, 0) = Li(t, qe, 0,Fconstraint|qe)
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10.2.1. List of equations and unknowns

Let us assume that there are � complementary constraint equations, made up of �1 holonomic

equations and of �2 non-holonomic equations (� = �1 + �2).

– There are n kinematic unknowns qe, and nf� constraint efforts that appear in the

expressions for the generalized forces Li. That is, n+ nf� unknowns in total.

– Consider the set of equations [10.4] to be solved. The equilibrium equations [10.6] and

the equations f(qe) = 0 give n + �1 equations. It has been seen that at equilibrium the

non-holonomic, complementary constraint equations do not yield any equations.

According to the discussion in section 6.3, we know that the contact laws normally give

nf� − � ≥ 0 equations. Thus, we have a total of n+ nf� − �2 equations.

In general, there are more unknowns than equations and the found solution depends on �2
arbitrary constants and we obtain ranges of equilibrium positions, rather than a finite number of

equilibrium positions. An example of this is given in section 10.9.

In the case where there is no non-holonomic complementary constraint equation (�2 = 0) (this

is, in particular, the case when the parameterization is independent), we have as many equations

as unknowns.

We will see, further on, that in the different cases of perfect joints we get more information

on the number nf� of constraint efforts.

Existence and uniqueness of the solution
The problem of the existence and uniqueness of the solution has been discussed in section 6.4

in the general dynamic framework. It is formulated as follows for an equilibrium problem:

Given an initial instant t0 and the initial condition q0 = qe, is there a solution t �→ q(t) = qe
to equations [10.4] that satisfies q(t0) = qe and q̇(t0) = 0? If yes, then is this solution unique?

We saw, in section 6.4, that when the solution exists, it is often unique if there are no

inequalities to satisfy in addition to equations [10.4]. Assuming the existence and uniqueness

of the solution, we have the following result, which justifies seeking solutions to the system of

equations [10.4]:

Theorem.
HYPOTHESES:

i) The solution exists and is unique.

ii) qe satisfies equations [10.4].

iii) At the initial instant t0, the system S is released from rest at position qe.

Then, ∀t ≥ t0, the system S remains at equilibrium with respect to Rg.

PROOF. The equilibrium t �→ q(t) = qe is a possible motion and is the only possible motion

by virtue of the uniqueness hypothesis (i). �

10.2.2. The explicit presence of time in equilibrium equations

The system of equations [10.4] does not necessarily accept constant solutions qe:

– Very often, this system does not explicitly contain the time variable t and we find constant

solutions qe.
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– However, in certain cases, t appears explicitly in the equations, for example, when the given

forces are dependent on time (and possibly on q, q̇). The system [10.4] then may not have

solutions or may have solutions that are not constant.

When trying to find equilibrium, if t appears explicitly in the equations, we must retain only

constant solutions from the existing solutions.

EXAMPLE. Consider a mechanical system with two retained parameters q = (q1, q2) and

assume that equations [10.4] are reduced to two equations of motion:{
tq1 − q2 = 0
q1 − t2q2 = 0

We find a single solution, q1 = q2 = 0, which is a constant solution and which is, therefore,

an equilibrium position.

On the other hand, if equations [10.4] are{
tq1 − q2 = 0
1 − t2q2 = 0

we then find a single solution, q2 = tq1 = 1/t2, and there is no equilibrium position. �

The previous example shows that we may have equilibrium even if time appears explicitly in

the equations in the problem. Having said this, the case where time is explicitly involved in the

equations remains exceptional.

10.3. Equilibrium equations in the case of perfect joints and independent
parameterization

We will study the case of perfect joints where more specified expressions for the equilibrium

equations can be found, and we will start with an independent parameterization.

Theorem.
HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg according to Convention

[6.1].

(ii) All the joints are perfect.

(iii) There is no complementary constraint equation (i.e. the parameterization is independent).

Then, the equilibrium equations are written as

∀t, ∀i ∈ [1, n],
∂bi
∂t |qe

− ∂Ec(0)

∂qi |qe
+

∂V

∂qi |qe
= D′

i(qe, 0, t) [10.8]

PROOF. Under the above-mentioned hypotheses, the Lagrange’s equations are [8.2]:

∀t, ∀i ∈ [1, n],
d

dt

∂Ec

∂q̇i
− ∂Ec

∂qi
+

∂V

∂qi
= D′

i

A parametric equilibrium position q(t) = qe = const satisfies these equations with

(t, q, q̇, q̈) = (t, qe, 0, 0). The explicit expressions for the derivatives of the kinetic energy are

obtained as in the proof for [10.6]. �
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10.3.1. List of equations and unknowns

– The generalized forces D′
i due to the given efforts, which do not admit of a potential, are

known as a function of (qe, t). There is no unknown constraint efforts in the equilibrium

equations [10.8].

– Consider the set of equations [10.4] to be solved. Apart from the equilibrium equations,

there is no other equation to be satisfied, as there is no complementary constraint equation.

The contact laws mentioned in section 10.2 are already rendered through the hypothesis of

perfect joints.

We thus have as many equations as unknowns. The equilibrium equations [10.8] constitute a

system of n algebraic equations with n unknowns qe.

It turns out that among all the equilibrium cases studied in this chapter, it is only in this

section that the equations/unknowns list is so clear and that finding equilibrium solutions is so

simple. Thus, when the joints are perfect, we had better choose an independent parameterization,

whenever possible, so as to fall into the framework in this section.

Nonetheless, it is not always possible to choose an independent parameterization: when there

are non-holonomic constraint equations or when there are holonomic equations that cannot be

written in resolved form, these equations must be classified as complementary. We then fall into

the framework in section 10.4.

From [10.8], we can derive some common specific cases.

Corollary 1.
In addition to the hypotheses in [10.8], the following hypotheses are assumed:

HYPOTHESES:

(iv) The kinetic energy Ec does not explicitly depend on time t.

(v) All the given efforts are derivable from a potential V.

Then, the equilibrium equations are written as

∀t, ∀i ∈ [1, n],
∂V∗

∂qi |qe
≡ ∂(V − Ec(0))

∂qi |qe
= 0 [10.9]

where V∗ ≡ V − Ec(0) is called the modified potential.

PROOF. Hypothesis (iv) implies that ∀i, ∂bi
∂t

= 0 in [10.8]. Hypothesis (v) implies that D′
i =

0. �

Equation [10.9] and hypothesis (iv) entail that it must be assumed, consistently, that the

potential V is time independent: V = V(q).
Note in passing that if we adopt the hypotheses for [10.9] and the hypothesis V = V(q), we

obtain Painlevé’s first integral [9.6]: Ec(2) − Ec(0) + V = const.

Corollary 2.
In addition to the hypotheses from [10.8], the following hypotheses are assumed:

HYPOTHESES:

(iv)b
∂Rg

−−→
OgP

∂t
= �0, that is, the system does not undergo any background motion. (This

hypothesis is different from hypothesis (iv) above.)
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(v) All the given efforts are derivable from a potential V.

Then, the equilibrium equations can be written as

∀t, ∀i ∈ [1, n],
∂V

∂qi |qe
= 0 [10.10]

The equilibrium positions are stationary points of the potential.

PROOF. If
∂Rg

−−→
OgP

∂t
= �0, then ∀i, bi = 0 and Ec(0) = 0 in [10.8]. Hypothesis (v) implies that

D′
i = 0. �

10.4. Equilibrium equations in the case of perfect joints and in the presence of
complementary constraint equations

Let us now examine the case where all the joints are perfect and where the chosen

parameterization includes complementary constraint equations.

Theorem :

HYPOTHESES:

(i) The reference frame Rg is Galilean and we choose R0 = Rg according to convention

[6.1].

(ii) All the joints are perfect.

(iii) There exist � (� < n) (independent) complementary constraint equations made up of:

– �1 holonomic equations of the form f(q) = 0, which do not explicitly depend on

time,

– �2 non-holonomic equations in homogeneous differential form

n∑
i=1

αi(q, t) q̇i = 0.

Thus, the equilibrium equations are written as

∀t, ∀i ∈ [1, n],
∂bi
∂t |qe

− ∂Ec(0)

∂qi |qe
+

∂V

∂qi |qe
= D′

i(qe, 0, t) +

�=�1+�2∑
h=1

λh αhi(qe, t)

[10.11]

In the above expression:

– To write the sum

�=�1+�2∑
h=1

λh αhi(qe, t), we recast the �1 holonomic constraint equations

into differential forms as with the �2 non-holonomic equations, in such a way as to have

� = �1 + �2 constraint equations written in a differential form

n∑
i=1

αhi(q, t) q̇i = 0,

h ∈ [1, � = �1 + �2].

– The Lagrange multipliers λh are unknown scalars.

PROOF. Under the above-mentioned hypotheses, any motion t �→ q(t) satisfies the Lagrange’s
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equations [8.6]:

∀t, ∀i ∈ [1, n],
d

dt

∂Ec

∂q̇i
− ∂Ec

∂qi
+

∂V

∂qi
= D′

i +
�∑

h=1

λh αhi [10.12]

and the � complementary constraint equations. In particular, a parametric equilibrium position

q(t) = qe = const satisfies the same equations where (t, q, q̇, q̈) is replaced with (t, qe, 0, 0).
The explicit expressions for the derivatives of the kinetic energy in [10.12] are obtained as in

the proof for [10.6] and we obtain the desired result. Q.E.D. �

10.4.1. List of equations and unknowns

– We have n unknowns qe and � = �1 + �2 multipliers λh, that is, a total of n + �1 + �2
unknowns.

– Consider the set of equations [10.4] to be solved. The equilibrium equations [10.11] and

the equations f(qe) = 0 give only n + �1 equations. At equilibrium, the non-holonomic

complementary constraint equations do not provide any equations.

Thus, the solution found depends on �2 arbitrary constants: we obtain ranges of equilibrium
positions rather than a finite number of equilibrium positions.

If there are no non-holonomic constraint equations (�2 = 0), we return to the case of section

10.3 where there are as many equations as unknowns.

Finally, as in the general case in section 10.2, we must also satisfy, in these equilibrium

positions, the inequalities imposed by the unilateral joints.

REMARK. The constraint equation was assumed to be independent. If the holonomic equations

are not independent, then, even in the case where �2 = 0 and where there are as many equations

as unknowns, certain multipliers may be indeterminate (the joints are redundant and the system is

hyperstatic). Assuming the independence of the constraint equations allows us to discard the case

of hyperstatic systems, which serves no purpose here. �

Corollary.
In addition to the hypotheses in theorem [10.11], the following hypotheses are assumed:

HYPOTHESES:

(iv)
∂Rg

−−→
OgP

∂t
= �0 (the system does not undergo any background motion).

(v) All the given efforts are derivable from a potential V.

Then, the equilibrium equations are written as

∀t, ∀i ∈ [1, n],
∂V

∂qi |qe
=

�∑
h=1

λh αhi(qe, t) [10.13]

PROOF. If
∂Rg

−−→
OgP

∂t
= �0, then ∀i, bi = 0, Ec(0) = 0 in [10.11]. Hypothesis (v) implies that

D′
i = 0. �
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10.5. Stability of an equilibrium

In mechanics, it is interesting to not only know the possible (parametric) equilibria of the studied

system, but also to know whether or not a given equilibrium is stable. Roughly speaking, an

equilibrium qs is stable, if initial conditions “close” to (t0, qe, 0) engender a motion of the system

that remains “close” to the equilibrium in question over time. In other words, the equilibrium qe
is stable if any motion corresponding to the initial conditions “close” to the conditions that yield

the equilibrium remains “in the neighborhood of qe”. Conversely, we say that the equilibrium qe
is unstable if there are initial conditions “close” to (t0, qe, 0) which cause the system to deviate

significantly from the equilibrium.

Thus, for instance, a pendulum moving in the downward vertical gravitational field has two

equilibrium positions (equilibrium instead of parametric equilibrium as there is only a single

position parameter here). The equilibrium position where the center of mass of the pendulum is

below the pivot is stable. This is because if at the initial instant the pendulum is slightly shifted

from this position, the resulting motion is a small oscillation about this point. On the other hand,

the equilibrium position where the center of mass of the pendulum is above the pivot is unstable.

This is because all that is needed is a small shift from this position at the initial instant for the

pendulum to deviate significantly.

The following definition is a formal, precise and rigorous, statement of the previous idea about

stability.

Lyapunov stability. The parametric equilibrium position qe is stable if, by definition:

∀ε, μ > 0, ∃δ, ν > 0, ∀ motion t �→ q(t) defined by the initial conditions (t0, q0, q̇0)

satisfying ‖q0 − qe‖ < δ, ‖q̇0‖ < ν, we have ∀t ≥ t0, ‖q(t) − qe‖ < ε, ‖q̇(t)‖ < μ

This is stability in position and velocity, that is, (q, q̇) remains in an arbitrarily small

neighborhood of (qe, 0) (in R2n).

It was seen that in the large majority of cases, there is only a single motion defined by the

initial conditions (t0, q0, q̇0). However, the previous definition remains valid even if there is no

uniqueness.

We accept the following theorem, which gives a sufficient condition of stability.

Lagrange–Dirichlet theorem.
HYPOTHESES: We adopt the hypotheses that lead to the equilibrium equation [10.9], yet

slightly reinforcing hypothesis (v) below:

(i) The reference frame Rg is Galilean and we choose R0 = Rg in accordance with

convention [6.1].

(ii) All the joints are perfect.

(iii) There is no complementary constraint equation (that is, the parameterization is

independent).

(iv) The kinetic energy Ec does not explicitly depend on time t.

(v) All the given efforts are derivable from a time-independent potential V(q).

Under the above hypotheses, if the modified potential V∗ ≡ V − Ec(0) of variable q has a

strict local minimum at qe, then the position defined by qe is a stable parametric equilibrium

position.
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If some parameters qj do not appear in V − Ec(0), the minimum, if it exists, cannot be strict.

The Lagrange–Dirichlet theorem does not give a sufficient condition for stability. Thus, if qe
is not a strict local minimum, this theorem does not allow us to state that the equilibrium position

qe is stable. It does not either allow us to state that qe is unstable.

The following theorem gives a sufficient condition for V∗ to have a strict local minimum at qe
based on the second derivatives of V∗ at qe:

Theorem (Energy criterion).
HYPOTHESIS (Always satisfied in practice): V∗, function of q alone, is of class C2 in the

neighborhood of qe.

Let [K] denote the symmetrical square matrix of order n whose (i, j)-component is
∂2V∗

∂qi∂qj
(qe).

We then have the following implication: [K] is positive definite, in other words, all the

eigenvalues of [K] are strictly positive (as matrix [K] is symmetric, it is diagonalizable and its

eigenvalues are real)

⇒ V∗ has a strict local minimum about qe.

PROOF. The second-order Taylor expansion of V∗ about qe is written as

V∗(q) = V(qe) +
n∑

i=1

∂V∗

∂qi
(qe)︸ ︷︷ ︸

=0

(qi − qie) +
1

2

n∑
i=1

n∑
j=1

∂2V∗

∂qi∂qj
(qe)(qi − qie)(qj − qje)

+ o(‖q − qe‖n)
or, in shortened form, denoting {q} the column-vector containing the components (q1, · · · , qn):

V∗(q) = V(qe) +
1

2
{q − qe}T [K]{q − qe} + o(‖q − qe‖n) �

In the particular case where there are two retained parameters, q = (q1, q2), the matrix [K] is

written as

[K] =

[
r s
s t

]
with r =

∂2V∗

∂q21
(qe) s =

∂2V∗

∂q1∂q2
(qe) t =

∂2V∗

∂q22
(qe)

If r > 0 and s2 − rt < 0, then the equilibrium qe is stable.

10.6. Example: equilibrium of a jack

Consider a lifting system similar to a car jack and remaining in the vertical plane O�x�y of a

Galilean reference frame Rg = R0 (Figure 10.2). It is made up of:

– two rods AE and BD of mass 2m and length 2�,

– two rods DH and EH of mass m and length � and whose center of mass is G1 and G2,

– a mass m placed at H .

The rods are pinned at their ends. The point A coincides with the origin O. The rods AE and

BD are pinned at their midpoints C. All these joints are perfect. An actuator, not shown in the

figure, exerts a given force �F = −F�x at B.

We wish to determine the equilibrium position of the jack as a function of the applied force

F . The chosen parameterization is given below:
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Figure 10.2. Equilibrium of a jack

INDEPENDENT PARAMETERIZATION.

• Primitive parameter: The angle α shown in Figure 10.2. For physical reasons, α lies between

0 and π/2.

• No primitive constraint equation.

• Retained parameter: α.

• No complementary constraint equation.

All the requirements are met so as to apply the equilibrium equation [10.10], which is written

as
∂V

∂α |αe

= 0

The potential of the system is calculated using [5.22] and [5.23]:

V = F�y · −−→OB + 4mg�y · −−→OC +mg�y · −−→OG1 +mg�y · −−→OG2 +mg�y · −−→OH + const

= 2F� cosα+ 12mg� sinα+ const

The equilibrium equation thus gives

−2F� sinαe + 12mg� cosαe = 0 ⇔ tanαe =
6mg

F

10.7. Example: equilibrium of a lifting platform

Consider a Galilean reference frame Rg = R0, endowed with an orthonormal coordinate system

(O; �x, �y, �z) and a lifting platform made up of two massless parallel arms I1J1, I2J2 of length

�, and of a horizontal platform that carries a load of mass M . These components are pinned as

shown in Figure 10.3. The problem can be reduced to a plane motion in the vertical plane O�x�y.
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An actuator outside the system exerts a force �F on the system, at the point J2, parallel to I1J2.

We write �F = F

−−→
I1J2

‖−−→I1J2‖
.

Figure 10.3. Equilibrium of a lifting platform

We wish to determine the force F developed by the actuator as a function of the position of

the platform and the weigh Mg of the lifted load.

We choose the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameter: The angle θ between �x and
−−→
I1J1.

• No primitive constraint equation.

• Retained parameter: θ. For physical reasons, it is assumed that θ �= ±π

2
.

• No complementary constraint equation.

Given the dimensions shown in Figure 10.3, the position vector of the mass center G of the

lifted load is
−−→
OG = (� cos θ + b)�x+ (� sin θ + h+ d)�y. Hence, the potential due to the system’s

weight using [5.23] is given as:

V = Mg�y · −−→OG+ const = Mg� sin θ + const

On the other hand, the force �F exerted by the actuator at J2 is directed along the axis I1J2 of

the actuator:

�F = F

−−→
I1J2

‖−−→I1J2‖
= F

� cos θ�x+ (� sin θ + h) �y√
�2 cos2 θ + (� sin θ + h)

2

The force �F by the actuator is indeed a given force according to definition [3.6]. We do not

know whether this force is derivable or not from a potential. In any case, as it depends on θ, we

cannot apply relationship [5.22].
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In these conditions, let us apply the equilibrium equation [10.8], knowing that here bθ = 0
and Ec(0) = 0:

∂V

∂θ |θe
= D′

θ(θe, 0, t) [10.14]

where D′
θ is the generalized force due to the force �F .

Let us calculate the virtual power of the force �F : P∗(�F ) = �F .�V ∗
RgS2

(J2) where S2 denotes

the rigid body I2J2. The virtual velocity �V ∗
RgS2

(J2) is calculated by the VVF relationship [4.35]:

�V ∗
RgS2

(J2) = �V ∗
RgS2

(I2) + θ̇∗�z × −−→
I2J2 where

−−→
I2J2 = � cos θ�x+ � sin θ�y

= �(− sin θ�x+ cos θ�y)θ̇∗

Hence

P∗(�F ) =
Fh� cos θ√

�2 cos2 θ + (� sin θ + h)
2
θ̇∗

The equilibrium equation [10.14] thus gives

Mg cos θe =
Fh cos θe√

�2 cos2 θe + (� sin θe + h)
2

or, since θ �= ±π
2 :

F =
Mg

h

√
h2 + �2 + 2h� sin θe

In particular, if h = �, the last relationship gives F = Mg�
√
2
√
1 + sin θe.

10.8. Example: equilibrium of a rod in a gutter

Let there be a cylindrical surface with a cross-section defined in the vertical plane O�x�y of a

Galilean reference system Rg = R0 by a semicircle of axis O�z and radius R. On this surface is

placed a thin, homogeneous rod of length �, mass m and center of mass G (Figure 10.4). The rod is

subjected to the gravational field −g�y and is constrained to remain in the plane O�x�y. The contacts

at the points A and B between the rod and the cylindrical surface are assumed frictionless.

Figure 10.4. Equilibrium of a rod in a gutter
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We choose the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameter: the angle θ = (
−−→
AB, �x), measured around �z. Let us note that the angle θ

is defined by starting from
−−→
AB and not from �x, such that in Figure 10.4, θ is positive and

lies in the interval [0, π/2] and we have sin θ ≥ 0 and cos θ ≥ 0.

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.

The hypotheses and the chosen parameterization make it possible to apply the equilibrium

equation [10.10], which is written as
∂V

∂θ |θe
= 0

The potential V due to the weight of the system is obtained through [5.23], V = −mg�y ·−−→OG+
const, with

−−→
OG =

−−→
OB − −−→

GB = R (cos 2θ�x− sin 2θ�y) − �

2
(cos θ�x− sin θ�y)

Hence

V = −mg

(
2Rcosθ − �

2

)
sin θ + const

The equilibrium equation then gives

4R cos2 θe − �

2
cos θe − 2R = 0

that is, a priori, two solutions for cos θe:

cos θe =
1

16

⎡⎣ �

R
+

√
128 +

(
�

R

)2
⎤⎦ > 0 and cos θe =

1

16

⎡⎣ �

R
−
√

128 +

(
�

R

)2
⎤⎦< 0

[10.15]

We retain only the first solution, which is positive.

The equilibrium position θe as a function of the length � of the rod is represented in Figure

10.5.

Let us verify that the contact inequalities are satisfied. With NA, NB denoting the contact

forces at A,B, which are perpendicular to AB and to OB, respectively, these inequalities are

written as

NA ≥ 0 and NB ≥ 0 [10.16]

The equilibrium of the rod gives

NA =
cos 2θe
cos θe

mg NB = tan θe mg

Knowing cos θe, which was found in [10.15], we can express NA, NB as a function of �/R
and derive the �/R ratios that satisfy conditions [10.16].
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Figure 10.5. Equilibrium position of the rod as a function of ratio �/R

The stability of the equilibrium position can be determined using the second derivative of the

potential:

∂2V

∂θ2
= mg

(
8R cos θ +

�

2

)
sin θ > 0 for θ ∈ [0, π/2]

The found equilibrium position θe is, thus, stable.

10.9. Example: existence of ranges of equilibrium positions

Consider a homogeneous disk of center C, radius R and mass m, lying in the vertical plane O�x�y
of a Galilean reference frame Rg = R0. It is rolling without slipping over the horizontal axis O�x
(Figure 10.6). A load of mass M is welded at point A on the circumference of the disk. A spring

of stiffness k and unstretched length L connects the center C to the fixed point B(0, R).

Figure 10.6. Equilibrium of a disk connected to a spring

As all the joints are perfect, we can use an independent parameterization and search for

equilibrium positions using equation [10.8]. However, in order to verify the inequality of the

no-slip condition at the contact point I , we prefer to use the following parameterization that

directly gives us access to the contact efforts:

PARAMETERIZATION.

• Primitive parameters: The coordinates (x, y) of the center C, the angle ϕ between the vector

�x and the radius
−→
AC of the disk.



230 Lagrangian Mechanics

• No primitive constraint equation.

• Retained parameters: x, y, ϕ.

• Complementary constraint equations: y = R and the no-slip condition ẋ+Rϕ̇ = 0.

Let us apply [10.6] knowing that, here, bi = 0 and Ec(0) = 0:

∀i ∈ [1, 3],
∂V

∂qi |qe
= Li

where the potential is

V =
1

2
k(x − L)2 +mgy +MgR sinϕ+ const

The generalized forces Li due to the constraint efforts, in this case the contact force T�x+N�y
at point I , are derived from the virtual power of these efforts:

P∗
contact force = (T�x+N�y).�V ∗(I) where �V ∗(I) = (ẋ∗ +Rϕ̇∗)�x+ ẏ∗�y

= T (ẋ∗ +Rϕ̇∗) +Nẏ∗

The equilibrium equations thus give

k(xe − L) = T
mg = N
Mg cosϕe = T

Taking into account the complementary constraint equation ye = R, we have four equations

for five unknowns xe, ye, ϕe and T,N . We find

xe =
Mg

k
cosϕe + L N = mg T = Mg cosϕe

The angle ϕe is not completely arbitrary as there remains the no-slip condition |T | ≤ fN
(where f is the coefficient of friction) to be satisfied:

| cosϕe| ≤ f
m

M

We thus find not a finite number, but an infinite set of equilibrium positions (a range of
equilibrium positions), where the abscissa xe is expressed as a function of the angle ϕe and

where this angle takes any value that satisfies the above inequality.

10.10. Example: relative equilibrium with respect to a rotating reference frame

Consider a centrifugal governor formed of several spinned arms and masses as represented in

Figure 10.7. The point A is at a fixed elevation h on the vertical axis O�z of a Galilean reference

frame Rg = R0, while the point B moves freely along the same axis. The suspension pins are

at a distance a from the axis of the governor. The rods are of length b or � and are massless. The

joints are perfect.

The guide sleeve has the mass M located at the point B. The two centrifugal weights of mass

m are each attached to the points C and D, which are symmetric with respect to the axis. The

whole device rotates about the axis O�z at a constant angular velocity ω.
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Figure 10.7. Relative equilibrium with respect to a rotating reference frame

The rods lie in the plane O�x1�z normal to �y1; let us define the rotating reference frame R1

by the coordinate system (O; �x1, �y1, �z) and let us study the equilibrium positions of the device

relative to this reference frame.

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: the opening angle θ between the vertical and the arms, the time t via the

rotation of R1 with respect to Rg .

• No primitive constraint equation.

• Retained parameter: θ, t.

• No complementary constraint equation.

Since
−−→
AB = (h− 2� cos θ)�z, the velocity of the mass at B is

�V (B) =
d
−−→
AB

dt
= �θ̇ sin θ�z

Since
−−→
AD = (a+ � sin θ)�x1 +(h− � cos θ)�z, the velocity of the centrifugal weight at D with

respect to the Galilean reference frame Rg is

�V (D) =
d
−−→
AD

dt
= �θ̇ cos θ�x1 + (a+ � sin θ)ω�y1 + �θ̇ sin θ�z

Consequently, the kinetic energy of the system (considering the mass at B to be a point mass)

is

Ec =
1

2
M�V 2(B) + 2

1

2
m�V 2(D) =

1

2
M�2 sin2 θθ̇2 +m[�2θ̇2 + (a+ � sin θ)2ω2] [10.17]

where the coefficient 2 before 1
2m takes into account the presence of two identical and

symmetrical centrifugal weights at C and D.
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The potential due to the system’s weight is

V = MgzB + 2mgzD + const = −2(Mb+m�)g cos θ + const

The relative equilibrium positions are given by equation [10.9] since here the kinetic energy

Ec does not explicitly depend on the time t and all the given efforts are derivable from a potential:

∂(V − Ec(0))

∂θ |θe
= 0,

where Ec(0) is obtained from [10.17] (refer again to definition [2.58]): Ec(0) = mω2(a+� sin θ)2.

The equilibrium equation is written as

(Mb+m�)g sin θe = m�ω2(a+ � sin θe) cos θe [10.18]

Solving this equation provides the equilibrium position θe for each given angular velocity ω.

Two obvious solutions are θe = 0 when ω = 0 and θe = 90◦ when ω → ∞.

Differentiating the relationship [10.18] gives the derivative of θe with respect to ω:

dθe
dω

=
2m�ω(a+ � sin θe) cos θe

(Mb+m�)g cos θe − m�ω2[� cos2 θe − (a+ � sin θe) sin θe]
[10.19]

For θe values within the interval [0, 90◦], the numerator on the right-hand side is positive. Let

us show that this is also the case for the denominator. Because θe satisfies equation [10.18], we

can use this equation to have

(Mb+m�)g = m�ω2(a+ � sin θe)
cos θe
sin θe

Using this result, the denominator of the right-hand side of [10.19] becomes

(Mb+m�)g cos θe − m�ω2[� cos2 θe − (a+ � sin θe) sin θe] =
a+ � sin3 θe

sin θe
> 0

We finally arrive at
dθe
dω

=
m�ω(a+ � sin θe) sin 2θe

a+ � sin3 θe
> 0

The opening angle θe increases with the angular velocity ω.

10.11. Example: equilibrium in the presence of contact inequalities

Consider a massless rod AB of length a, lying in a fixed plane in a Galilean reference frame Rg.

The rod is connected, at its end B, to the fixed support through a perfect pivot joint. A spring

of stiffness k and unstretched length �1 connects the end A to a point C located at a distance a
below B (Figure 10.8). The rotation of the road is limited by a rigid wall on the left, at a distance

d = a/2 from BC.

We will study the equilibrium positions of the rod and their stability. The parameterization is

as follows:

PARAMETERIZATION.

• Primitive parameter: the angle θ positioning the rod BA, as defined in Figure 10.8.

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.
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Figure 10.8. Equilibrium of a rod connected to a spring in the presence of a wall

Due to the presence of the wall, the angle of rotation θ of the rod cannot take arbitrary values.

For the sake of convenience, let us consider that a complete rotation around B corresponds to

−7π/6 ≤ θ ≤ 5π/6 or − 210◦ ≤ θ ≤ 150◦

rather than the usual interval 0◦ ≤ θ ≤ 360◦. Thus, the forbidden values of θ are 30◦ < θ < 150◦,

the permitted values are −210◦ ≤ θ ≤ 30◦ (or −7π/6 ≤ θ ≤ π/6).

The reaction force exerted by the wall on the rod (force perpendicular to the wall, assuming

that the contact between the wall and rod occurs is frictionless) is denoted by �F = N�x. The force

N is

– non-zero if point A touches the wall, i.e. if the angle θ = −210◦ or 30◦,

– zero if −210◦ < θ < 30◦,

– infinite if 30◦ < θ < 150◦ (this is a way of expressing that this interval is inaccessible).

In all the cases, N must satisfy the inequality N ≥ 0. Accordingly, the force �F can be written

in the condensed form
�F = N H(θ)�x,

where H(θ) denotes a function similar to the Heaviside step function, equal to 1 between 30◦ and

150◦, and zero elsewhere, as represented in Figure 10.9.

Figure 10.9. The function H(θ) used in this example

The equilibrium positions of the rod AB are given by equation [10.6] with bi = 0 and

Ec(0) = 0:
∂V

∂θ |θe
= Lθ, [10.20]
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where Lθ is the generalized force corresponding to the reaction force �F . Here, the potential due

to the spring AC is V = 1
2 (� − �1)

2 + const, where the length � of the spring is

� =
√
a2 + a2 + 2a2 cos θ = 2a| cos θ

2
|

(the vertical bars for the absolute value are necessary as cos θ
2 may have negative values). Hence,

with θ1 denoting the value of θ when the spring is unstretched:

V = 2ka2
(
| cos θ

2
| − cos

θ1
2

)2

+ const

From this, we derive

dV

dθ
= −2ka2 sin

θ

2

(
| cos θ

2
| − cos

θ1
2

)
sgn cos

θ

2

where sgn stands for “sign of”. To obtain the generalized force Lθ, let us calculate the virtual

power of the force �F :

P∗
�F
= N H(θ)�x.�V ∗(A)

where, with �j denoting the unit vector in the sense of
−−→
BA and�i ≡ �j × �z (see Figure 10.8):

�V ∗(A) = �V ∗(B) + �Ω∗ × −−→
BA = �0 + θ̇∗�z × a�j = −aθ̇∗�i

From this, we derive

Lθ = −Na H(θ) cos θ

The equilibrium equation [10.20] is thus written as

2ka sin
θe
2

(
| cos θe

2
| − cos

θ1
2

)
sgn cos

θe
2

= N H(θe) cos θe [10.21]

In view of the graph for H(θ) in Figure 10.9, we will solve this equation by distinguishing

between two cases: (i) −210◦ < θe < 30◦ and (ii) θe = −210◦ or 30◦. The interval 30◦ < θ <
150◦ is not retained as N is then infinite and equation [10.21] has no solution.

1. If −210◦ < θe < 30◦, then H(θe) = 0 and equation [10.21] simply becomes
∂V

∂θ |θe
= 0:

sin
θe
2

(
| cos θe

2
| − cos

θ1
2

)
= 0 ⇔

⎧⎪⎨⎪⎩
or sin

θe
2

= 0 ⇔ θe = 0

or cos
θe
2

= ± cos
θ1
2

⇔ θe = ±θ1

We obtain the equilibrium values θe = 0,±θ1. For the last two values, it must be verified

that they do indeed belong to the interval [−210◦, 30◦].

2. If θe = −210◦ or 30◦, then H(θe) = 1 and equation [10.21] becomes

2ka sin
θe
2

(
| cos θe

2
| − cos

θ1
2

)
sgn cos

θe
2

= N cos θe

This relationship, where θe is known, gives the reaction force N :

N = 2ka
sin θe

2

cos θe

(
| cos θe

2
| − cos

θ1
2

)
sgn cos

θe
2

[10.22]

What remains to be verified is that we do indeed have N ≥ 0. If this is the case, the angle

θe under consideration is an equilibrium position. If not, it is not an equilibrium position.
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In what follows, we assume for the sake of definiteness that the unstretched length of the

spring is �1 = a
√
2, that is, that θ1 = π/2. The variation of the potential V versus the angle θ is

then given in the following table, as well as in Figure 10.10.

θ −7π
6 −π −π

2 0 π
6

dV
dθ ] + || - 0 + 0 - [

V 0.4ka2 ↗ ka2 ↘ 0 ↗ 0.17ka2 ↘ 0.134ka2

�

Figure 10.10. Variation of V vs. θ

1. According to case no. 1 above, we have two equilibrium values: θe = 0 and −π/2 (the

value π/2 is excluded).

2. Case no. 2 corresponds to 30◦ or θe = −210◦. From [10.22], we get the reaction force N :

– If θe = 30◦, then N =
4√
3
ka sin

π

12

(
cos

π

12
− cos

π

8

)
= 0.0251ka > 0: θe = 30◦

is an equilibrium position. From the physical point of view, as the spring is stretched
in the position θ = 30◦, the force N is positive and the position 30◦ is, indeed,

an equilibrium position. If we took the unstretched length of the spring such that

θ1 = 15◦, for example, the spring would be compressed at θ = 30◦, we would have

had N < 0 and the position 30◦ would not be an equilibrium position.

– If θe = −210◦, then N = − 4√
3
ka sin

7π

12

(
| cos 7π

12
| − cos

π

8

)
= 1.484ka > 0:

θe = −210◦ is an equilibrium position.

• The position θ = −π is special. It must be studied separately because the potential V is not

differentiable at point θ = −π and we cannot apply [10.20]. The potential does, however, have

the left and right derivatives at this point:

dV

dθ |θ=−π−
=

√
2ka2 and

dV

dθ |θ=−π+
= −

√
2ka2

We can show that θ = −π is an unstable equilibrium point.
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10.12. Calculating internal efforts

In the previous sections, we considered a mechanical system subjected to a static load and we

studied the equilibrium position or positions of the system under this load. As the considered

system has some degrees of mobility, it changes its shape under the effect of the load, to arrive at

a certain equilibrium position.

In the following sections, we still consider a system of rigid bodies. However, this time the

system has no mobility. When an external load is applied, the system does not change shape and

if it is in equilibrium, its equilibrium position is the same as before the load was introduced.

Even if the form of the system remains unchanged, efforts are still developed at the internal

or external joints (in addition to the efforts internal to each rigid body, which are inaccessible in

the framework of rigid bodies mechanics). If the system is isostatic, it is possible to determine the

constraint efforts (i) by subdividing the system and studying the equilibrium of each rigid body

(this is the Newtonian approach) or (ii) by using the Lagrange equilibrium equations, which is

what will be illustrated in the following examples.

10.13. Example: internal efforts in a truss

Consider a Galilean reference frame Rg = R0 endowed with the orthonormal coordinate system

(O; �x, �y, �z) and a structure that is made up of eight pinned bars subjected to the gravitational field

−g�y (Figure 10.11). The outside bars form a regular hexagon. They are identical and all have the

length a and the mass m. The inside bars AA′ and BB′ are massless. All the joints are assumed

to be perfect. One of the vertices of the hexagon is suspended from the point O.

Figure 10.11. Hexagonal system with eight bars

The system has no degrees of freedom if it is assumed that the point C remains on the vertical

axis O�y. As the bars OA′, OA, B′C and BC have a mass, they are simultaneously subjected

to tension-compression, bending and shear. Due to their positions, the vertical bars undergo only

traction-compression. The horizontal bars A′A and B′B, which are massless, also undergo only

traction-compression. The objective here is to determine the tension force in these horizontal bars.

10.13.1. Tension force in bar A′A

To calculate the tension force in bar A′A, the idea is to divide this bar into two equal parts A′D′

and DA, as shown in Figure 10.12. This operation exhibits the constraint efforts internal to the

bar, which are the tension forces denoted by N1�x and −N1�x, applied at D′ and D, respectively.
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From the initial problem with no mobility, we thus shift to another problem that has one

degree of freedom, here taken to be equal to the angle θ positioning the bar OA and defined as in

Figure 10.12. We will first consider that N1 is a given force and we calculate the opening angle θe
at equilibrium, under the effect of N1 and of the system’s weight. At the end of the calculations,

we will determine the force N1 that is required for θe to be equal to π/3. The found value for N1

is precisely the tension force desired in the initial problem, where the system at equilibrium has

the form of a regular hexagon.

Figure 10.12. New system with the bar A′A cut

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameter: θ.

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.

The equilibrium equation [10.8] can be applied here with bi = 0 and Ec(0) = 0:

∂V

∂θ |θe
= D′

θ(θe, 0, t), [10.23]

where D′
θ is the generalized force due to forces N1 at points D,D′.

The position of the system is completely determined by the angle θ. The coordinates of some

specific points are given by

Point x y
A a sin θ −a cos θ

B a
√
3
2 yB = yA − a cosψ = −a cos θ − a cosψ

C 0 yC = yB − a
2 = −a cos θ − a cosψ − a

2

D a sin θ − a
√
3

2 −a cos θ

where the angle ψ denotes the angle of inclination of the vertical bar AB, as shown in Figure

10.12. A simple geometric calculation gives the relation between the angle ψ and θ:

sinψ = sin θ −
√
3

2
⇔ ψ = arcsin

(
sin θ −

√
3

2

)
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The virtual power of the force at D is

P∗(force at D) = (−N1�x) · �V ∗(D) = −N1�x · ∂
−−→
OD

∂θ
θ̇∗ = −N1a cos θθ̇

∗

On account of the symmetry, we get P∗(forces at D and D′) = −2N1a cos θθ̇
∗. Hence, the

generalized force due to the forces at D and at D′:

D′
θ = −2N1a cos θ

By denoting the centers of mass of the bars OA,AB,BC by G1, G2, G3, the potential due to

weight is

V = 2(mgyG1 +mgyG2 +mgyG3) + const

= 2(mg
yA
2

+mg
yA + yB

2
+mg

yB + yC
2

) + const = 2mg(yA + yB +
yC
2
) + const

= −mga(5 cos θ + 3 cosψ) + const

Finally, the equilibrium equation [10.23] gives

mg

(
5 sin θe + 3 sinψe

∂ψ

∂θ |θe

)
= −2N1 cos θe, [10.24]

where ψe is the value of ψ when θ = θe. This relationship gives the opening angle θe at

equilibrium versus N1. In fact, it turns out that we do not need to know the derivative
∂ψ

∂θ
=

cos θ√
1 −

(
sin θ −

√
3
2

)2 as we will make ψe = 0 in [10.24].

The desired tension force in the initial problem (without cutting the bar A′A) is the force that

makes θe =
π
3 (thus, ψe = 0). Equation [10.24] then gives

N1 = −5
√
3

2
mg

The tension force in the bar A′A is negative, which means that the bar is under compression.

REMARK. This is assuming that we wish to solve the problem using Newton’s law, that is,

through the equilibrium of forces and moments. If, for example, we isolate the node A and study

its equilibrium, we must be careful not to replace the bar OA by a force parallel to OA, since the

bar is not under pure traction-compression. �

10.13.2. Tension force in bar B′B

To calculate the tension force in bar B′B, we proceed in a similar manner. We divide this bar into

two equal parts B′E′ and EB, as shown in Figure 10.13 and we make the tension forces, denoted

by N2�x and −N2�x, appear at E′ and E, respectively.
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Figure 10.13. New system with the bar B′B cut

This time, the degree of freedom introduced, denoted again by θ, is the angle positioning the

bar CB. We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameter: θ.

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.

The calculation, similar to those for the bar AA′, will not be explained in detail. The

coordinates of some specific points are given by

Point x y

A a
√
3

2 −a
2

B a
√
3
2 + a sinψ −a

2 − a cosψ
C 0 yC = yB − a cos θ = −a

2 − a cosψ − a cos θ

E a sin θ − a
√
3

2 yE = yB = −a
2 − a cosψ

The virtual power of the forces at D and D′ is

P∗(forces at D and D′) = −2N2a cos θθ̇
∗

The potential due to the weight is

V = 2(mgyG1 +mgyG2 +mgyG3) + const = 2mg(yA + yB +
yC
2
) + const

= −mga(cos θ + 3 cosψ) + const

Thus, the equilibrium equation [10.23] gives

N2 = −
√
3

2
mg: the bar B′B is under compression
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10.14. Example: internal efforts in a tripod

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x, �y, �z) and a tripod made up of three identical rods, each of which has mass m and length �,
pin-jointed at their vertex D and standing on a flat, horizontal ground O�x�y (Figure 10.14). The

three rods are attached at their midpoints by the ropes A′B′, B′C ′ and C ′A′ of the same length,

such that the support points A,B and C form an equilateral triangle. The rods have the same

angle of inclination α with respect to the vertical. A mass M is attached to the vertex D.

Figure 10.14. Tripod

Given the symmetry of the geometry and the load, the tensions in the ropes have the same

value, denoted by T . We propose calculating the tension T by following the same steps as in the

previous example. In order to do this, we do away with the three ropes, replacing them by the

tensions T exerted at the points A′, B′, C ′, and we thus create a new system, where the three rods

may move (Figure 10.15). By assuming that the geometric symmetry is conserved, that is, each

rod moves while remaining in its original plane (the plane defined by the vertical axis O�z and the

initial position of the rod), the position of the system is defined by a single parameter, chosen to

be equal to the inclination angle θ of the rods with respect to the vertical. We will first consider

that T is a given force and we calculate the angle of inclination θe at equilibrium, under the effect

of T and of the system’s weight. The tension T , which we wished to find in the initial problem,

is ultimately found by forcing θe to be equal to the given angle α.

The equilibrium equation is still [10.23], where D′
θ is, here, the generalized force due to the

tensions N in the ropes. The position of the system is completely determined by θ. In particular,

the coordinates of specific points are given by

Point x z
A � sin θ 0
D 0 � cos θ
A′ �/2 sin θ �/2 cos θ

Owing to symmetry, the virtual power of the tensions is equal to three times that of the tensions

applied at point A′ (see Figure 10.15). We thus only have to calculate the virtual power of the
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Figure 10.15. New system with the degree of freedom θ

resultant force
√
3T of the two tensions at A′:

P∗(tensions at A′) = (−
√
3T�x) · �V ∗(A′) = −

√
3T�x · ∂

−−→
OA′

∂θ
θ̇∗ = −

√
3

2
T� cos θθ̇∗

Hence, the generalized force due to the tensions at A′, B′ and C ′:

D′
θ = −3

√
3

2
T� cos θ

The potential of the system is due to its weight:

V = MgzD + 3mgz′A + const = Mg� cos θ +
3

2
mg� cos θ + const

Finally, the equilibrium equation [10.23] gives T as a function of the angle θe at equilibrium:

T =
2M + 3m

3
√
3

g tan θe

The desired tension in the initial problem (without cutting the ropes A′B′, B′C ′ and C ′A′) is

that force which makes θe = α:

T =
2M + 3m

3
√
3

g tanα
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Revision Problems

In this chapter, we treat some additional problems as review problems in Lagrangian mechanics.

The first part of this chapter will cover equilibrium problems and the second part will study

dynamic problems. For the dynamic problems, we will first consider plane motions and then

motions in space.

11.1. Equilibrium of two rods

Consider a planar system S made up of two rods AB and BC, at rest in a Galilean reference frame

Rg = R0 endowed with an orthonormal coordinate system (O; �x0, �y0, �z0) with �x0 downward

vertical (Figure 11.1):

– AB: a homogeneous rod of 2a, mass 2m and center of mass D;

– BC: a homogeneous rod of length 2a, mass m and center of mass E;

– the pin joints at the ends of the rods are perfect. The end A is constantly located at O, while

the end C slides without friction on the axis O�y0.

The system is in equilibrium under the action of the gravity field g�x0 and a force F�y0 at C
applied on the rod BC.

Figure 11.1. Equilibrium of two rods

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameter: θ ≡ (�x0,
−−→
AB).

• No primitive constraint equation.

Lagrangian Mechanics: An Advanced Analytical Approach,

First Edition. Anh Le van and Rabah Bouzidi. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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• Retained parameter : θ.

• No complementary constraint equation.

The joints are perfect, the parameterization is independent and the given forces are derivable

from a potential. The equilibrium equation is, thus, reduced to the stationary condition [10.10] of

the potential:
∂V

∂θ |θe
= 0.

Let us calculate the potential of the given forces applied on the system:

V = −m�g · −−→OC − 2m�g · −−→OD − �F · −−→OB

= −3mga cos θ − 4Fa sin θ

The equilibrium equation thus gives

3mga sin θe − 4Fa cos θe = 0 ⇒ tan θe =
4F

3mg

REMARK. If we wished to calculate the reactions �RO on O and XB�x0 on B due to the

supports, we should have adopted the more complicated parameterization given below, where

the constraint equations associated with the reaction forces in question are classified as

complementary equations:

PARAMETERIZATION.

• Primitive parameters:

– we define the position of rod AB in the plane by the coordinatesxA, yA of end A

and the angle θ = (
−̂→
Ox,

−−→
AB),

– once the position of AB is defined, we decide to define the position of rod BC by

the coordinate xC of the end C.

We have, therefore, four primitive parameters: xA, yA, θ, xC .

• No primitive constraint equation.

• Retained parameters: xA, yA, θ, xC .

• Complementary constraint equations: xA = yA = 0, and xC = 0. �

11.1.1. Analysis using Newton’s law

– Calculation of the reaction XB : The moment equilibrium of system S about axis O�z0 is

given as:

−2mga sin θ − mg3a sin θ − XB4a sin θ = 0 ⇒ XB = −5

4
mg

– Moment equilibrium condition for AB about axis A�z0 is given as:

−mga sin θ − XB2a sin θ − F2a cos θ = 0

By taking into account the value of XB , we have

tan θ =
4F

3mg
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The action of the support O on OA is obtained by writing that the resultant force on S is zero:∑
�Fext→S = �0 ⇒ �RO + 3mg�x0 + F�y0 +XB�x0 = 0

Hence, �RO = −7/4mg�x0 − F�y0.

11.2. Equilibrium of an elastic chair

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x, �y, �z) and a mechanical system composed of two identical, rigid rods AC and BD with

length l and pinned at point E. The two rods are connected at their ends B and C through a

spring of stiffness k. The rod AB is pinned at A to the support and the end D slides horizontally

parallel to �x. All the joints are perfect.

Figure 11.2. Equilibrium of an elastic chair

The position of the system is defined by the angle α ≡ (�x,
−−→
AB). It is assumed that the spring

is unstretched when α = 45◦. When we apply two identical forces �F = −F�y at points B and C,

the system moves down to an equilibrium position that we wish to calculate. We use the following

parameterization:

PARAMETERIZATION.

• Primitive parameters: α.

• No primitive constraint equation.

• Retained parameter: α.

• No complementary constraint equation.

The joints are perfect, the parameterization is independent and the given forces are derivable

from a potential. The equilibrium equation is, thus, given by [10.10]:
∂V

∂α |αe

= 0.
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Let us calculate the potential of the given forces applied to the system:

– As the elongation of the spring is given by

Δl = lcurrent − linitial = l cosα − l cos 45o = l

(
cosα −

√
2

2

)
,

the potential of the spring is written as

Vspring =
1

2
kΔl2 + cte =

1

2
kl2

(
cosα −

√
2

2

)2

+ const

– The potential of the given forces applied at B and C is

VF = −�F · −−→AB − �F · −→AC + const = 2Fl sinα+ const

The total potential is, thus

V = Vspring + VF =
1

2
kl2

(
cosα −

√
2

2

)2

+ 2Fl sinα+ const

The equilibrium equation thus gives

∂V

∂α

∣∣∣∣
α=αe

= −kl2

(
cosα −

√
2

2

)
sinα+2Fl cosα = 0 ⇒ F

kl
=

1

2

(
cosα −

√
2

2

)
tanα

We may also determine the stability of the equilibrium with the help of the second derivative

of the potential:

∂2V

∂α2
= kl2

(
sin2 − cos2 α

)
+

√
2

2
kl2 cosα − 2Fl sinα

= kl2

[(
sin2 − cos2 α

)
+

√
2

2
cosα −

(
cosα −

√
2

2

)
tanα sinα

]
Figure 11.3 shows the dimensionless force F/kl as well as the second derivative of the

potential versus the angle α. The equilibrium is stable in the interval [27◦, 45◦], where the second

derivative of potential is positive. It is unstable in the interval [0◦, 27◦].

11.3. Equilibrium of a dump truck

Here, we study the equilibrium of a dump truck in a Galilean reference frame Rg = R0 endowed

with an orthonormal coordinate system (O; �x, �y, �z) with �y defining the upward vertical. The truck

comprises several rigid bodies:

– the rigid body S1 made up of the chassis and the cabin,

– the rigid body S2 made up of the tipper and the material being transported, with mass

m and center of mass G2, such that
−−→
OG2 = h

2 [(3 cos θ − sin θ) �x+ (3 sin θ + cos θ) �y],

where θ ≡ (�x,
−−→
OD),

– a lifting system, made up of two arms CD and CG1, connecting the two above-mentioned

rigid bodies. These arms are assumed to be weightless and equipped with an actuator AB
(this deformable actuator is not a component of the system being studied). It is assumed

that CB = CA = h, CD = CG1 = 2h.
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Figure 11.3. Force and second derivative of the potential versus angle α.

Figure 11.4. Equilibrium of a dump truck

The whole system is subjected to the gravity field −g�y. We wish to determine the force in the

actuator AB as a function of the equilibrium position θ of the tipper.

PARAMETERIZATION.

• Primitive parameter: θ ≡ (�x,
−−→
OD).

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.

The virtual power of the forces �FA and �FB in the actuator, exerted at points A and B, is

P∗ (actuator) = �FA · �V ∗(A) + �FB · �V ∗(B)
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Further, the equilibrium of the actuator implies that �FA = −�FB and �FA is parallel to
−−→
AB. By

writing �FB = F�i, where�i denotes the unit vector orienting
−−→
AB, we have

P∗ (actuator)= �F .
[
�V ∗(B) − �V ∗(A)

]
= �F .

d
−−→
AB

dθ
θ̇∗

=F�i.
d(AB�i)

dθ
θ̇∗ where

d(AB�i)

dθ
= AB

d�i

dθ
+

dAB

dθ
�i

=F.
dAB

dθ
θ̇∗ taking into account�i.

d�i

dθ
= 0

=
d

dθ

(
3h sin

θ

2

)
θ̇∗ =F

(
3

2
h cos

θ

2

)
θ̇∗ knowing that AB =

1

2
G1D = 3h sin

θ

2

To obtain the virtual power of the weight of tipper S2, applied at G2, let us calculate the

virtual velocity of the center of mass G2:

�V ∗
02(G2) =

∂
−−→
OG2

∂θ
θ̇∗ =

h

2
[(−3 sin θ − cos θ)�x+ (3 cos θ − sin θ)�y] θ̇∗

Hence, the virtual power of the weight of the tipper is given as

P∗ (weight) = m�g · �V ∗
02(G2) = −mg

h

2
(3 cos θ − sin θ) θ̇∗

The total virtual power of the external forces is given as

P∗ (total) = P∗ (actuator) + P∗ (weight)

=

[
F

(
3

2
h cos

θ

2

)
− mg

h

2
(3 cos θ − sin θ)

]
θ̇∗ = Qθ θ̇

∗

The Lagrange equations are reduced to

Qθ = 0 ⇒ F =
mg

3

3 cos θ − sin θ

cos θ/2

Figure 11.5 represents the ratio of the actuator force to the tipper’s weight versus angle θ.

The angle at which the center of mass G2 of the tipper passes above the pivot O is θ1 = π/2 −
tan−1(1/3) = 71.57◦. The actuator force is then reversed.

11.4. Equilibrium of a set square

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) and a rigid body S made up of two rods (B1), (B2) welded to a right angle between

them. The rod (B1) has length l and mass m, whereas the rod (B2) has length 2l and mass 2m.

A perfect pivot joint parallel to the axis O�z0 allows the rigid body to rotate about this axis. The

rigid body is at equilibrium in the downward gravity field g�x0.

We define the orthogonal unit vectors �x1, �y1 as shown in the figure, and we use the following

parameterization:

PARAMETERIZATION.

• Primitive parameter: θ ≡ (̂�x0, �x1).

• No primitive constraint equation.

• Retained parameter: θ.

• Complementary constraint equation.
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Figure 11.5. Ratio F/mg versus θ

Figure 11.6. Equilibrium of a set square

The position vector of the center of mass G is

−−→
OG =

m1
−−→
OG1 +m2

−−→
OG2

m1 +m2
=

2l

3
�x1 − l

6
�y1

Here, only the weight does work. We thus have

P∗ (weight → S) = 3m�g · �V ∗
R0

(G) = 3mg�x0 ·
(
l

6
�x1 +

2l

3
�y1

)
θ̇∗

= 3mgl

(
1

6
cos θ − 2

3
sin θ

)
θ̇∗ = Qθ θ̇

∗

At equilibrium, Lagrange’s equations reduce to

Qθ = 0 ⇒ 1

6
cos θ − 2

3
sin θ = 0 ⇒ θ = tan−1

(
1/6

2/3

)
= 14.03◦

This equilibrium position can also be obtained easily using statics laws, knowing that at

equilibrium, the center of mass G of S must be located above the pivot O.
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11.5. Motion of a metronome

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) with �y0 upward vertical and a metronome modeled as a two-dimensional system S
moving in the plane O�x0�y0. The system is made up of three rigid bodies:

– a base S, schematized as a homogeneous rectangle, with center O and mass m;

– a rod OA, of length 4a, of negligible mass, connected at O to S through a perfect pivot;

– a homogeneous disk D, with center C, radius a and mass m, welded to OA such that

OC = 2a.

Figure 11.7. Motion of a metronome

We define �y as the unit vector orienting
−→
OA, �x = �z0 × �y and the angle θ ≡ (�̂y0, �y). A

mechanism, not represented in the figure, allows S to exert on OA a restoring torque �Γ =
−3mga sin θ�z0. The base S is laid on a table T , whose upper surface is the plane O�x0�y0. The

system is subjected to the gravity field −g�y0.

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: θ.

• No primitive constraint equation.

• Retained parameter: θ.

• No complementary constraint equation.

11.5.1. Equation of motion

We first assume that the base S is fixed on the table T . With the velocity of the center C being
�V0D(C) = −2aθ̇�x, the kinetic energy of the system is written as

Ec
0D =

9

4
ma2θ̇2

The potential V1 due to the weight of D is V1 = 2mga cos θ+const. The virtual power of the

torque �Γ being P∗
(
�Γ
)
= −3mga sin θθ̇∗, the potential V2 of the torque is V2 = −3mga cos θ+

const. Hence, the total potential of the system:

V = −mga cos θ + const [11.1]
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Lagrange’s equation corresponding to parameter θ is written as (conservative system)

9

2
ma2θ̈ +mga sin θ = 0 [11.2]

11.5.2. First integral

All the requirements are met for the energy integral [9.11], Ec + V = const:

9

4
ma2θ̇2 − mga cos θ = const

We could also have obtained this by multiplying [11.2] by θ̇ and then integrating the result

with respect to time. The motion is an oscillation of large amplitude.

Let us assume the initial conditions θ0 = π
3 and θ̇0 = 0. The above first integral then becomes

θ̇2 =
4g

9a

(
cos θ − 1

2

)
The amplitude θmax of the oscillations is calculated using the condition θ̇|θmax

= 0 (reversal

point of the metronome). We find θmax = π
3 .

11.5.3. The case of small oscillations

If we now consider the case of small oscillations, the motion equation [11.2] is reduced to

θ̈ +
9g

2a
θ = 0

This is a periodic oscillatory motion with the circular frequency ω =

√
9g

2a
.

11.5.4. Case where the base S may slide without friction on the table T

From now on, it is assumed that the base S may slide without friction on the table T .

PARAMETERIZATION.

• Primitive parameters: θ and λ ≡ −−→
O0O · �x0.

• No primitive constraint equations.

• Retained parameters: θ, λ.

• No complementary constraint equation.

The kinetic energy is

Ec
0S = Ec

0S + Ec
0D = mλ̇2 +

9

4
ma2θ̇2 − 2maλ̇θ̇ cos θ

The potential has the same expression [11.1] as in the first parameterization. Hence,

Lagrange’s equations are

Lλ :
d

dt
(λ̇− aθ̇ cos θ) = 0 ⇔ λ̇ = aθ̇ cos θ + const

Lθ :
9

4
aθ̈ − d

dt
(λ̇ cos θ) − λ̇θ̇ sin θ +

g

2a
sin θ = 0
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Using Lλ to eliminate λ̇ in Lθ, in favor of θ̇, we arrive at the equation of motion governing

θ:
9

4
θ̈ + θ̇2 sin θ cos θ − θ̈ cos2 θ︸ ︷︷ ︸

− d

dt
θ̇2 cos2 θ

+
g

2a
sin θ = 0 [11.3]

11.5.5. First integral

We once again have the energy integral [9.11], Ec + V = const, which is written as

λ̇2 +
9

4
a2θ̇2 − 2aλ̇θ̇ cos θ − ga cos θ = const

Using Lλ to eliminate λ̇, we arrive at the so-called equation for the principal parameter θ:

θ̇2
(
9

4
− cos2 θ

)
=

g

a
cos θ + const

This same result may also be obtained by multiplying [11.3] by θ̇ and then integrating the

result with respect to time.

11.6. Analysis of a hemispherical envelope

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �x0, �y0, �z0) with �x0 downward vertical and a rigid body S, which has the form of a

homogeneous hemispherical envelope, with center O, radius a, mass m and center of mass G.

The rigid body S is in no-slipping contact at a point I with the horizontal plane O�y0�z0.

We define the orthonormal coordinate system (O; �x, �y, �z) attached to S such that O�x is the

axis of revolution of S and we assume a planar motion of S, such that the plane O�x�y remains

identical to the plane O�x0�y0.

The rigid body is subjected to the gravity field g�x0.

Figure 11.8. Equilibrium and motion of a hemispherical envelope

Let η, λ = O0I denote the coordinates of the point O with respect to the coordinate system

(O0; �x0, �y0, �z0) and θ the angle (̂�x0, �x) = (�̂y0, �y). The contact at I between the envelope and the
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horizontal plane is expressed by η = a. The relative velocity at the contact point I between the

rigid body S and the plane O�y0�z0 is

�V0S(I) = �V0S(I) + �Ω0S × −→
OI = η̇�x0 + (λ̇+ aθ̇)�y0 =

η=a
(λ̇+ aθ̇)�y0

The no-slip condition at I is expressed by λ̇+ aθ̇ = 0. This is a semi-holonomic relationship

that can be integrated into

λ+ aθ = λ0 + aθ0,

where λ0, θ0 are the known initial values of λ, θ. We will take this relationship as a primitive

equation in order to eliminate λ in favor of θ. Thus, the parameterization used is as follows:

PARAMETERIZATION.

• Primitive parameters: η, λ, θ.

• Primitive constraint equation: η = a, λ = λ0 + a(θ0 − θ).

• Retained parameter: θ.

• No complementary constraint equation.

11.6.1. Studying the static equilibrium

A vertical force �F = F�x0 is applied at point A on the edge of S, defined by
−→
OA = −a�y. We

wish to find the equilibrium position of S.

As the contact point I does not slip, the contact joint is perfect. Let us calculate the virtual

power of the given forces �F and m�g. The virtual velocities at the points of application A,G are

(recall that OG = a/2 for a hemispherical envelope) given as:

−−→
O0A = λ�y0 − a�x0 − a�y = [λ0 + a(θ0 − θ)] �y0 − a�x0 − a�y ⇒ �V ∗

0S(A) = −aθ̇∗�y0 + aθ̇∗�x−−→
O0G = λ�y0 +

a
2�x = [λ0 + a(θ0 − θ)] �y0 +

a
2�x ⇒ �V ∗

0S(G) = −aθ̇∗�y0 + a
2 θ̇

∗�y

Hence, the virtual power of the given forces is written as:

P∗ (S) = m�g · �V ∗
0S(G) + �F · �V ∗

0S(A) =
[
−mga

2
sin θ + Fa cos θ

]
θ̇∗ = Qθ θ̇

∗ [11.4]

The equilibrium equation Qθ = 0 gives the equilibrium angle:

tan θ =
2F

mg

As expected, the result is independent of the initial value λ0 (as concerns the initial value θ0,

it is, of course, equal to the above-found equilibrium value). We can also determine the angle of

equilibrium θ0 by using the potential of the two given forces �F and m�g:

V = −m�g · −−→OG − �F · −→OA+ const

= −mga

2
cos θ − Fa sin θ + const

The potential is stationary at equilibrium:

∂V

∂θ
=

mga

2
sin θ − Fa cos θ = 0 ⇒ tan θ =

2F

mg

We, thus, clearly arrive at the same result as above.
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11.6.2. Studying the oscillatory motion

As the rigid body S is initially at rest at θ0 = π/3, we suddenly remove the force �F at the instant

t = 0. Under the effect of gravity alone, we then have large oscillations between θ0 and −θ0.

Knowing that the moment of inertia of S with respect to axis G�z is IS(G�z) = 5/12ma2, we

can calculate the kinetic energy of S:

Ec
0S =

1

6
(5 − 3 cos θ)ma2θ̇2

The generalized force Qθ taken from [11.4] is still valid, with F = 0 here:

Qθ = −mga

2
sin θ

Lagrange’s equation gives the differential equation of motion governing θ:

1

3
(5 − 3 cos θ)ma2θ̈ +

3

2
ma2θ̇2 sin θ = −mga

2
sin θ

As expected, the motion in θ is independent of the initial value λ0.

If we consider small oscillations of S around θ = 0, we have the following approximations:

sin θ ≈ θ, cos θ ≈ 1, θ̇2 ≈ 0

The equation of motion is transformed into a second-order linear differential equation:

θ̈ +
3g

4a
θ = 0

The motion is oscillatory, with the circular frequency ω =

√
3g

4a
.

11.7. A block rolling on a cylinder

We study a parallelepiped (P ) moving in a Galilean reference frame Rg = R0 endowed with

an orthonormal coordinate system (O; �x0, �y0, �z0) with �y0 upward vertical. The parallelepiped is

homogenous, with mass m and center of mass G, with length l and height h. It is in non-slipping

contact at a point I with a cylinder (C) of radius R, fixed in Rg. The whole system is subjected

to gravity −g�y0.

The a priori position of the parallelepiped (P ) in the plane O�x0�y0 is defined by three

parameters. To be more explicit, let us introduce the following notations (Figure 11.10):

– H is the projection of O on the line (AB) (the lower face of (P )),

– d is the distance OH ,

– �x, �y are the unit vectors orienting
−−→
AB and

−−→
OH , respectively.

– θ is the angle (�̂y0, �y) and λ is the abscissa of the center of mass G with respect to the

coordinate system (H; �x, �y).
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Figure 11.9. A block rolling on a cylinder

To define the position of (P ):

– we need ϕ and d to define the position of the line (AB),

– once we know the position of (AB), we use λ to define the position of the center G along

(AB).

Figure 11.10. The primitive parameters of the block

Let us calculate the velocity of the mass center G of (P ) with respect to R0:

−−→
OG =

−→
OI+

−→
IJ+

−→
JG = λ�x+(R+

h

2
)�y ⇒ �V0P (G) = λ̇�x−(R+

h

2
)ϕ̇�x+λϕ̇�y [11.5]
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From this, we derive the slip velocity at the contact point I between the parallelepiped (P )
and the cylinder (C):

�V0P (I) = �V0P (G) + �Ω0P × −→
GI

= λ̇�x − (R+
h

2
)ϕ̇�x+ λϕ̇�y + ϕ̇�z0 × (−λ�x− h

2
�y)

= (λ̇ − Rϕ̇)�x

The no-slip condition at I is, thus, expressed by λ̇ = Rϕ̇, a semi-holonomic relationship that,

after time integration, gives

λ = R(ϕ − ϕ0) + λ0,

where λ0, ϕ0 are the known initial values of λ, ϕ. Let us assume that at the initial instant, (P ) is

in the horizontal position, the contact point I is at the midpoint J of the side (AB) and also the

vertex S of (C). Thus, λ0 = 0 and ϕ0 = 0 and, therefore,

λ = Rϕ

This relationship will be taken as a primitive equation in order to eliminate λ in favor of ϕ.

Thus, the parameterization used is as follows:

PARAMETERIZATION.

• Primitive parameters: λ, d, ϕ.

• Primitive constraint equations: d = R, λ = Rϕ.

• Retained parameter: ϕ.

• No complementary constraint equation.

Using this parameterization, relationship [11.5] becomes

−−→
OG = Rϕ�x+ (R+

h

2
)�y and �V0P (G) =

(
Rϕ�y − h

2
�x

)
ϕ̇ [11.6]

11.7.1. Studying the equilibrium

Let us first study the equilibrium positions of (P ) and their stability.

As there is no slipping contact at I , the contact joint is perfect. Let us calculate the virtual

power of the weight of (P ). The virtual velocity of the center G can be easily obtained from

[11.6]:

�V ∗
0P (G) =

(
Rϕ�y − h

2
�x

)
ϕ̇∗

The virtual power of the weight of (P ) is, therefore

P∗ (P ) = m�g · �V ∗
0P (G) = mg

(
h

2
sinϕ − Rϕ cosϕ

)
ϕ̇∗ = Qϕϕ̇

∗

The equilibrium equation Qϕ = 0 gives the equilibrium angle:

tanϕ =
2R

h
ϕ

whose solution in the interval [−π/2, π/2] is the trivial solution ϕ = 0.
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This result can also be obtained via the potential of the weight of (P ). According to [11.6],

we have

V = −m�g · −−→OG+ const = mg

((
R+

h

2

)
cosϕ+Rϕ sinϕ

)
+ const [11.7]

The equilibrium position is given by

∂V

∂ϕ
= 0 ↔ mg

[
−h

2
sinϕ+Rϕ cosϕ

]
= 0

We find the same solution ϕ = 0 for equilibrium as above. The stability of the position ϕ = 0
is guaranteed if

∂2V

∂ϕ2

∣∣∣∣
ϕ=0

= mg

(
R − h

2

)
> 0 ↔ h < 2R

11.7.2. Dynamic analysis

The kinetic energy is

Ec
0P =

1

2
m�V 2

0P (G) +
1

2
Iϕ̇2 where I ≡ IP (G�z0) =

m

12

(
l2 + h2

)
=

1

2
m

(
h2

4
+R2ϕ2

)
ϕ̇2 +

m

24

(
l2 + h2

)
ϕ̇2

The potential is still given by [11.7]. Hence, Lagrange’s equation is given as[
m

(
h2

4
+R2ϕ2

)
+ I

]
ϕ̈+mR2ϕϕ̇2 − mg

(
h

2
sinϕ − Rϕ cosϕ

)
= 0

11.7.3. Case of small oscillations

We now examine the oscillations of (P ) around its equilibrium position ϕ = 0. The oscillation

magnitude around this position are assumed to be an infinitesimal quantity, so that we have the

following approximations: sinϕ ≈ ϕ, cosϕ ≈ 1. On the other hand, the terms ϕ2 and ϕ̇2 are

negligible as they are infinitesimals of second order. The equation of motion then simplifies to(
mh2 + 4I

)
ϕ̈+mg (4R − 2h)ϕ = 0

We derive the period of oscillation around the equilibrium position:

T = 2π

√
mh2 + 4I

mg(4R − 2h)

The period is defined only for R < h
2 . It tends to infinity when R = h

2 , that is, when the block

P is moved away from its equilibrium position ϕ = 0, it takes an infinite time to return to this

position. In other words, it will not return to this position. We thus indirectly arrive at the result

of the previous analysis on the stability around the equilibrium position.

11.8. Disk welded to a rod

Consider a Galilean reference frame Rg = R0 endowed with an orthonormal coordinate system

(O; �xg, �yg, �zg) with upward vertical �yg , and a system S made up of two rigid bodies (T ) and (D)
moving in the plane O�xg�yg:
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– (T ) is a homogeneous rod AB with length 4a and mass 3m,

– (D) is a homogeneous disk of center C, radius a and mass 2m.

We define a basis (�xT , �yT , �zg) attached to the rod (T ) such that �xT points from A to B, and

a basis (�xD, �yD, �zg) attached to the disk (D).
The system S is in the gravity field r −g�yg and is subjected to the following joints:

– the midpoint of (T ) coincides with the point O, the pivot joint at O is assumed to be perfect.

– the disk (D) is welded at a point on its circumference to the end B of the rod (T ), such that

�xD is perpendicular to AB and (�xT , �xD) = π/2.

Figure 11.11. Disk welded to a rod

This problem will be solved with different parameterizations that yield different information

regarding the motions and the constraint inter-efforts at the welded point B.

11.8.1. First parameterization

We choose the following parameterization if we wish to study only the equation of motion:

PARAMETERIZATION.

• Primitive parameter: ϕ ≡ (�xg,
−−→
AB).

• No primitive constraint equation.

• Retained parameter: ϕ.

• No complementary constraint equation.

The kinetic energy of the system is

2Ec
gS = 15ma2ϕ̇2

The potential of the weight is

2VgS = 4mga(2 sinϕ+ cosϕ)

As the pivot joint at O is perfect, we can apply Lagrange’s equation [8.3]:

Lϕ : 15ma2ϕ̈+ 2mga(2 cosϕ − sinϕ) = 0 [11.8]
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11.8.2. First integral

All the requirements are fulfilled for the energy integral [9.11], Ec + V = const:

15ma2ϕ̇2 + 4mga(2 sinϕ+ cosϕ) = const

We can also obtain this first integral by multiplying [11.8] by 2ϕ̇ and then integrating the

result with respect to time.

11.8.3. Second parameterization

If there were a perfect pivot joint at the point B instead of a clamp, the radius BC would not

be forced to be perpendicular to AB and the disk (D) would rotate relative to the rod (T ). The

position of the system S would then be defined by two primitive parameters ϕ, θ where θ ≡
(�xg,

−−→
BC) (Figure 11.12).

Figure 11.12. Disk welded to a rod

The weld at B creates a torque Γ�zg exerted by (T ) on (D) (and the opposite torque exerted

by (D) on (T )), which ensures the orthogonality between BC and AB, that is, θ = ϕ + π
2 . If

we wish to know the constraint torque Γ, we must adopt the following parameterization, where

relationship θ = ϕ+ π
2 is classified as complementary (we “release” the weld joint):

PARAMETERIZATION.

• Primitive parameters: ϕ, θ.

• No primitive constraint equation.

• Retained parameters: ϕ, θ.

• Complementary constraint equation: θ − ϕ = π
2 .

The kinetic energies of the rod and the disk are

2Ec
gT =

1

3
3m(2a)2ψ̇2

and

2Ec
gD = 2m�V 2

gD(C) + �ΩgD.ID(C)�ΩgD with

{
�VgD(C) = 2aϕ̇�yT + aθ̇�yD
�ΩgD.ID(C)�ΩgD = 1

22ma2θ̇2
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Hence, the kinetic energy of the system:

2Ec
gS = ma2

[
12ϕ̇2 + 3θ̇2 + 8ϕ̇θ̇ cos (θ − ϕ)

]
The potential of the weight is

2VgS = 4mgyC = 4mga (2 sinϕ+ sin θ)

As the joints in S are perfect, we can apply Lagrange’s equations [8.6] by using λ to denote

the Lagrange multiplier:

Lθ : ma2
[
3θ̈ + 4ϕ̈ cos(θ − ϕ) + 4ϕ̇2 sin(θ − ϕ)

]
+ 2mgacosθ = λ

Lϕ : ma2
[
12ϕ̈+ 4θ̈ cos(θ − ϕ) − 4θ̇2 sin(θ − ϕ)

]
+ 4mgacosϕ = −λ

Now taking into account the complementary constraint equation, we have

ma2(3ϕ̈+ 4ϕ̇2) − 2mga sinϕ = λ
ma2(12ϕ̈ − 4ϕ̇2) + 4mga sinϕ = −λ

[11.9]

By then adding these two equations, we obtain

15ma2ϕ̈+ 2mga (2 cosϕ − sinϕ) = 0

We thus once again arrive at equation of motion [11.8] obtained using the first

parameterization. Once this equation is solved, ϕ is known as a function of time, and λ can be

calculated using either of the two equations [11.9].

To find the physical significance of the multiplier λ, let us calculate the virtual power of the

inter-efforts between the rod (T ) and the disk (D), which exist at the weld point B:

P∗(FT↔D) =
[5.14]

�RT→D.�V ∗
TD(B) + �MT→D(B).�Ω∗

TD,

where �RT→D is the constraint force at B and �MT→D(B) the torque Γ�zg. Further, �V ∗
TD(B) =

�V ∗
gD(B) − �V ∗

gT (B) = �0 according to definition [4.11] of the virtual velocity itself, and, since

�ΩTD = �ΩgD − �ΩgT = (θ̇ − ϕ̇)�zg, following the procedure described in [4.22] we derive that
�Ω∗
TD = (θ̇∗ − ϕ̇∗)�zg . Hence,

P∗(FT↔D) = Γ(θ̇∗ − ϕ̇∗) [11.10]

On the other hand, by applying relationship [8.10] to the complementary constraint equation

θ − ϕ = π
2 , we know that the virtual power of the inter-efforts at the weld point B is

P∗(FT↔D) = λ(θ̇∗ − ϕ̇∗) [11.11]

By comparing [11.10] and [11.11], we find Γ = λ: the torque we wished to find is equal to

the multiplier.

REMARK. The meaning of the multiplier λ may also be found using Newtonian mechanics,

however the calculations involved are longer. Let us write, here, the moment equation according

to Newton’s laws, which stipulates that the dynamic moment of the disk with respect to the axis

B�zg is equal to the moment of the external efforts on the disk, with respect to the same axis:

δgD(B�zg) = Mext →D(B�zg) [11.12]
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The moment of the external efforts on the disk with respect to the axis B�zg results from the

torque Γ�zg and the moment of the weight:

Mext →D(B�zg) = Γ +
[−−→
BC × (−2mg�yg)

]
.�zg = Γ + 2mga sinϕ [11.13]

The dynamic moment of the disk with respect to the axis B�zg is calculated via the center C:

δgD(B�zg) = δgD(C�zg) +
[−−→
BC × 2m�ΓgD(C)

]
.�zg

where

– δgD(C�zg) = ma2θ̈ = ma2ϕ̈

– �VgD(C) = 2aϕ̇�yT − aϕ̇�xT ⇒ �ΓgD(C) = aϕ̈(2�yT − �xT ) − aϕ̇2(2�xT + �yT ).

Hence

δgD(B�zg) = ma2(3ϕ̈+ 4ϕ̇2) [11.14]

With [11.13] and [11.14], relationship [11.12] becomes

ma2(3ϕ̈+ 4ϕ̇2) = Γ + 2mga sinϕ

By comparing this relationship with [11.9]1, we obtain Γ = λ. �

11.8.4. Third parameterization

The above second parameterization provides the torque at the weld point B. If we now wish to

know the complete constraint effort field at B, that is, both the force �RT→D and the torque
�MT→D(B) = Γ�zg , we must introduce two new parameters, for instance the Cartesian

coordinates (x, y) of the point C relative to the coordinate system (O; �xg�yg) and adopt the new

parameterization given below:

PARAMETERIZATION.

• Primitive parameters: x, y, ϕ, θ.

• No primitive constraint equation.

• Retained parameters: x, y, ϕ, θ.

• Complementary constraint equations: x = 2a cosϕ + a sin θ, y = 2a sinϕ + a sin θ and

θ − ϕ = π
2 .

We then obtain four Lagrange’s equations and three complementary constraint equations, or

a total of seven equations for seven unknowns: four kinematic unknowns x, y, ϕ, θ and three

unknown constraint efforts �RT→D,Γ.

11.9. Motion of two rods

Consider a system S moving in a Galilean reference frame Rg = R0 endowed with an

orthonormal coordinate system (O; �x0, �y0, �z0), with downward vertical �x0. The system is made

up of two homogeneous rods S1 = OA and S2 = AB, each of which has a mass m and length

2a. The rod OA is connected at O to the support, and at A to the rod AB, through perfect

spherical joints. The rod AB is connected at B to the axis O�x0 through a ball-and-cylinder joint.

The system S is moving in the gravity filed g�x0.

We seek to establish the equations of motion and to study any possible parametric equilibrium

positions. For the purposes of this analysis, we introduce the following notations:
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Figure 11.13. Movement of two rods

– O�x�y the plane of S (with �x = �x0), �z ≡ �x× �y,

– R the rotating reference frame defined by the coordinate system (O; �x, �y, �z),

– �x1, �x2: unit vectors orienting
−→
OA,

−−→
AB,

– the orthonormal bases b1 ≡ (�x1, �y1 = �z1 × �x1, �z1 = �z), b2 ≡ (�x2, �y2 = �z2 × �x2, �z2 = �z).

We choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: The angles ψ, θ, oriented along �x0 and �z, respectively, as shown in

Figure 11.13.

• No primitive constraint equation.

• Retained parameters: ψ, θ.

• No complementary constraint equation.

11.9.1. Equations of motion

– As O is fixed, the kinetic energy of the rod S1 is

Ec
01 =

1

2
�Ω01.IS1(O)�Ω01 where �Ω01 = θ̇�z + ψ̇�x = ψ̇ cos θ�x1 − ψ̇ sin θ�y1 + θ̇�z1

=
1

2 b1
〈ψ̇ cos θ,−ψ̇ sin θ, θ̇〉

b1

⎡⎢⎣ 0 0 0

0 m(2a)2

3 0

0 0 m(2a)2

3

⎤⎥⎦ ·
b1

⎧⎨⎩
ψ̇ cos θ

−ψ̇ sin θ

θ̇

=
2ma2

3

(
ψ̇2 sin2 θ + θ̇2

)
– The kinetic energy of the rod S2 is written as

Ec
02 =

1

2
�Ω02 · IS2(G2)�Ω02 +

1

2
m�V 2

02(G2)
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with, consecutively

�Ω02 = −θ̇�z + ψ̇�x = ψ̇ cos θ�x2 + ψ̇ sin θ�ey2 − θ̇�z2

1

2
�Ω02 · IS2(G2)�Ω02 =

1

2 b2
〈ψ̇ cos θ, ψ̇ sin θ,−θ̇〉

b2

⎡⎢⎣ 0 0 0

0 m(2a)2

12 0

0 0 m(2a)2

12

⎤⎥⎦ ·
b2

⎧⎨⎩
ψ̇ cos θ

ψ̇ sin θ

−θ̇

=
ma2

6

(
ψ̇2 sin2 θ + θ̇2

)
−−→
OG2 = 3a cos θ�x+ a sin θ�y

�V02(G2) =
dR0

−−→
OG2

dt
=

[1.48]

dR
−−→
OG2

dt
+ �ΩR0R × −−→

OG2

= −3aθ̇ sin θ�x+ aθ̇ cos θ�y + ψ̇�x× (3a cos θ�x+ a sin θ�y)

= −3aθ̇ sin θ�x+ aθ̇ cos θ�y + aψ̇ sin θ�z

1

2
m�V 2

02(G2) =
1

2
ma2

(
θ̇2(9 sin2 θ + cos2 θ) + ψ̇2 sin2 θ

)
Hence

Ec
02 =

2ma2

3

[
ψ̇2 sin2 θ + θ̇2

(
1 + 6 sin2 θ

)]
– Finally, the kinetic energy of the system S is given as

Ec
0S = Ec

0S1
+ Ec

0S2
=

4

3
ma2

[
θ̇2(1 + 3 sin2 θ) + ψ̇2 sin2 θ

]
– As the joints are perfect, what remains to be calculated is the potential of the weight. We

have, within an additional constant

V0S = −m�g · −−→OG1 − m�g · −−→OG2

= −
{
mg
0

·
{
a cos θ
a sin θ

−
{
mg
0

·
{

3a cos θ
a sin θ

= −4mga cos θ

Lagrange’s equations give the equations of motion:

Lθ :
2

3
ma2

[
θ̈(1 + 3 sin2 θ) + (3θ̇2 − ψ̇2) sin θ cos θ

]
+mga sin θ = 0

Lψ :
8

3
ma2

(
ψ̈ sin2 θ + 2ψ̇θ̇ sin θ cos θ

)
= 0

When compared to Newtonian mechanics, the second equation corresponds to the

conversation of the angular momentum about axis O�x0.
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11.9.2. Relative equilibrium

It can be seen that the pair (ψ, θ) = (ψ̇0t + ψ0, θ0), where ψ0, ψ̇0, θ0 are arbitrary initial

conditions, may be a solution to the problem. Indeed, by inserting these expressions in the

previous equations of motion, we find that equation Lψ is identically satisfied, while equation

Lθ implies that ψ̇0 and θ0 must satisfy the following condition:

ψ̇2
0 sin 2θ0 =

3g

a
sin θ0

This condition is identically satisfied if θ0 = 0, which signifies that θ = 0 is a parametric

equilibrium regardless of the initial velocity ψ̇0 chosen. If θ0 �= 0, then the condition becomes

ψ̇2
0 =

3g

2a cos θ0

This expression gives the initial velocity ψ̇0 to be imposed on the system in order for θ = θ0
to be a parametric equilibrium.

11.10. System with a perfect wire joint

A system S is moving in a Galilean reference frame Rg = R0 equipped with an orthonormal

coordinate system (O, �xg, �yg, �zg) with upward vertical �zg . This includes

– a rigid body (S) composed of a homogeneous disk with center C, radius a and mass 4m,

to which is welded a homogeneous rod AB of length 2a
√
3, mass 3m, midpoint C and

perpendicular to the disk,

– a particle p, whose position in R0 is P and whose mass is 7
4m.

Figure 11.14. System with a perfect wire joint
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The system S = (S) ∪ p is subjected to the following joints:

– the end A of the rod is attached to O through a perfect spherical joint,

– the end B of the rod is connected to the particle p with a perfect wire (inextensible,

massless, perfectly flexible) assumed to be always taut, passing through a ring of negligible

dimension, located at the point D such that
−−→
OD = 2a

√
3�zg , and then wrapped over a pulley

attached to Rg , having a horizontal axis and negligible mass.

– further, it is assumed that p can only move vertically.

We define the position of (S) by means of the usual Euler angles ψ, θ, ϕ and we use �n to

denote the unit vector parallel to the line of nodes (refer again to the notations in [2.3]).

The system S is subjected to the gravity field −g�zg. In addition, the rigid body (S) is

subjected to a set of efforts whose resultant force is �R = αmg�n and whose resultant moment at

B is �Γ = βmga�n, where α, β are constants.

The primitive parameters of the system are the Euler angles ψ, θ, ϕ for (S) and the elevation

zP for p. The wire joint between (S) and p is expressed by the relationship

BD +DE + (OD − zP ) = the length of the wire, which is constant

which enables us to express zP as a function of θ:

zP = BD + const = 4
√
3a sin

θ

2
+ const

where const denotes a known constant that we do not need to make explicit.

We choose to work with the following parameterization where the previous relationship is

classified as a primitive equation:

PARAMETERIZATION.

• Primitive parameters: ψ, θ, ϕ, zP .

• Primitive constraint equation: zP = 4
√
3a sin

θ

2
+ const.

• Retained parameters: ψ, θ, ϕ.

• No complementary constraint equation.

11.10.1. Lagrange’s equations

Since �VgS(O) = �0, we have Ec
gS =

1

2
�ΩgS .IS(O)�ΩgS . Let us carry out the calculations in the

second intermediate basis v ≡ (�n,�v, �zS) (refer again to the notations in [2.3]), where �zS is the

unit vector of
−−→
AB:

�ΩgS = θ̇�n+ ψ̇�zg + ϕ̇�zS =

⎧⎨⎩
θ̇

ψ̇ sin θ

ϕ̇+ ψ̇ cos θ

⎫⎬⎭
v
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and the inertia matrix of (S), at O and in the basis v, is written as follows, with [C, 4m] denoting

the fictitious particle of position C and mass 4m:

IS(O; v) = Istem(O; v) + I[C,4m](O, v) + Idisk(C; v)

= 12ma2

⎛⎝1
1
0

⎞⎠ + 4ma2

⎛⎝3
3
0

⎞⎠ + ma2

⎛⎝1
1
2

⎞⎠
= ma2

⎛⎝25
25

2

⎞⎠
Hence the kinetic energy of (S) is given as:

Ec
gS =

1

2
ma2

[
25θ̇2 + 25ψ̇2 sin 2θ + 2(ϕ̇+ ψ̇ cos θ)2

]
The kinetic energy of the particle is given as

Ec
gp =

1

2

7

4
mż2P =

21

2
ma2 cos2

θ

2
θ̇2

It finally gives us

Ec
gS =

1

2
ma2

[
θ̇2
(
25 + 21 cos 2

θ

2

)
+ 25ψ̇2 sin 2θ + 2(ϕ̇+ ψ̇ cos θ)2

]
The potential of the weight is given as

V = 7m gzC +
7

4
m gzP + const = 7

√
3mga

(
cos θ + sin

θ

2

)
+ const

Let us now calculate the power of efforts other than the weight. These efforts are

– the efforts internal to the system S , namely

1. the efforts within the rigid body (S),

2. the constraint efforts due to the wire,

– the external efforts that are not derivable from a potential, which are

3. the constraint efforts at O,

4. the given efforts applied to (S), whose resultant force is �R = αmg�n and whose

resultant moment at B is �Γ = βmga�n.

Let us examine, in order, the VPs of these efforts:

1. The VP of the efforts within the rigid body (S) is zero according to [5.2].

2. As the wire is perfect and as the pulley has no mass, the wire joint is perfect. As there is

no complementary constraint equation, the VP of the constraint efforts due the wire joint is

zero.

REMARK. Let us verify through a direct calculation that the VP of the constraint efforts

due to the wire is zero. Let T denote the tension in the wire and �i denote the unit vector

orienting
−−→
BD; this VP is written as

P∗
Rg

(Fwire →S ) = T�i.�V ∗
gS(B) + T�zg.�V

∗
g (p)
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where, on the one hand

�V ∗
gS(B) = �V ∗

gS(A)︸ ︷︷ ︸
�0

+�Ω∗
gS × −−→

AB = 2
√
3a(ψ̇∗ sin θ�n− θ̇∗�v)

BD = 4
√
3a sin

θ

2
⇒ �i =

−−→
BD

BD
=

−−→
OD − −−→

OB

BD
=

1

2 sin θ
2

(�zg − �zS)

Hence�i.�V ∗
gS(B) = −2

√
3a cos θ

2 θ̇
∗. On the other hand

�V ∗
g (p) =

∂
−−→
OP

∂θ
θ̇∗ ⇒ �zg.�V

∗
g (p) = �zg.

∂
−−→
OP

∂θ
θ̇∗ =

∂zP
∂θ

θ̇∗ = 2
√
3a cos

θ

2
θ̇∗

We, thus, do indeed obtain P∗
Rg

(Fwire →S ) = 0. �

3. As the joint at O is perfect and there is no complementary constraint equation present, the

VP of the constraint efforts at O is zero.

4. The VP of the given efforts applied on (S) is P∗ = �R.�V ∗
gS(B) + �Γ.�Ω∗

gS , where �Ω∗
gS =

θ̇∗�n+ ψ̇∗�zg + ϕ̇∗�zS and �V ∗
gS(B) has been obtained earlier. Hence

P∗ = mga(2
√
3α sin θψ̇∗ + βθ̇∗)

Using the previous results, we obtain the Lagrange equations:

Lϕ :
d

dt
(ϕ̇+ ψ̇ cos θ) = 0 → ϕ̇+ ψ̇ cos θ = r0 where r0 = ϕ̇0 + ψ̇0 cos θ0 = const

Lψ :
d

dt
(25ψ̇ sin 2θ + 2r0 cos θ) = 2

√
3αω2

0 sin θ with ω2
0 ≡ g

a

Lθ :
d

dt

[
θ̇

(
25 + 21 cos 2

θ

2

)]
+

21

2
θ̇2 sin

θ

2
cos

θ

2
+ ψ̇ sin θ(2r0 − 25ψ̇ cos θ)

+ 7
√
3ω2

0

(
− sin θ +

1

2
cos

θ

2

)
= βω2

0

11.10.2. First integral

Equation Lϕ is a first integral. It may also be obtained using Newtonian mechanics as follows:

– it can be easily verified that the moment of the external efforts on S about axis O�zS is zero:

Mext→S(O�zS) = 0,

– furthermore, the point O is fixed in both Rg and (S), the vector �zS is fixed in (the vector

space defined by) (S), and finally the inertia operator IS(O) of (S) about point O is

axisymmetric with respect to the axis O�zS and the moment of inertia IS(O�zS) of (S)
about the same axis is non-zero.

As a result, Euler’s first integral exists for the rigid body (S), which is written exactly like the

previous equation Lϕ.
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11.11. Rotating disk–rod system

Consider a system S moving in a Galilean reference frame Rg = R0 endowed with an

orthonormal coordinate system (O; �xg, �yg, �zg). This system is composed of two rigid bodies:

– a homogeneous rod (T ) = (AC) with length 2a, mass 3m and center of mass G,

– a homogeneous disk (D) with radius a, mass 4m and center of mass C.

The rod (T ) is horizontal, connected to the axis O�zg through a perfect cylindrical joint. We

define the orthonormal basis (�n, �u, �zg) attached to (T ) such that �n points from A to C and let ψ
denotes the angle (�xg, �n).

The perfect joint at the point C between the rod (T ) and the disk (D) allows

– on the one hand, (D) to swivel about �zg , by the angle θ measured around the axis C�n,

– on the other hand, (D) to spin around its axis of revolution C�zS by the angle ϕ.

The angles ψ, θ, ϕ that are thus defined are the Euler angles that allows us to define the

position (D) relative to Rg . The second intermediate Euler basis is denoted by v ≡ (�n,�v, �zS)
(refer again to the notations [2.3]).

The disk (D) is also in frictionless contact at the point I with the horizontal plane O�xg�yg.

The whole system S = (T ) ∪ (D) is subjected to gravity −g�zg .

Figure 11.15. Rotating disk–rod system

We will solve this problem using two different parameterizations.

11.11.1. Independent parameterization

We first choose to work with the following parameterization:

PARAMETERIZATION.

• Primitive parameters: z ≡ −→
OA.�zg , ψ, θ, ϕ.

• Primitive constraint equation: z = a sin θ, which expresses the contact at I .

• Retained parameters: ψ, θ, ϕ.

• No complementary constraint equation.
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The kinetic energy of the rod (T ) is Ec
gT =

1

2
3m�V 2

gT (G) +
1

2
�ΩgT .IT (G)�ΩgT , where

�VgT (G) = ż�z0 − aψ̇�n = aθ̇ cos θ�z0 − aψ̇�n

Hence

Ec
gT =

1

2
ma2(4ψ̇2 + 3θ̇ cos 2θ)

The kinetic energy of the disk (D) is Ec
gD =

1

2
4m�V 2

gD(C) +
1

2
�ΩgD.ID(C)�ΩgD, hence

�VgD(C) = ż�z0 − 2aψ̇�n = aθ̇ cos θ�z0 − 2aψ̇�n and ID(C; v) = ma2

⎛⎝1
1
2

⎞⎠
Hence

Ec
gD =

1

2
ma2

[
θ̇2(1 + 4 cos cos 2θ) + ψ̇2(16 + sin 2θ) + 2r2

]
where r ≡ ϕ̇+ ψ̇ cos θ

Hence, the kinetic energy of the system is given as

Ec
gS =

1

2
ma2

[
θ̇2(1 + 7 cos 2θ) + ψ̇2(20 + sin 2θ) + 2r2

]
[11.15]

The potential of the weight is written as

V = 7mgz + const = 7mga sin θ + const [11.16]

Hence Lagrange’s equations, by denoting ω2
0 ≡ g

a
:

Lψ : ψ̇(20 + sin 2θ) + 2r cos θ = const [11.17]

Lθ : θ̈(1 + 7 cos 2θ) − 7θ̇2 sin θ cos θ − ψ̇2 sin θ cos θ + 2rψ̇ sin θ + 7ω2
0 cos θ = 0

[11.18]

Lϕ : r = r0 [11.19]

By comparison with Newtonian mechanics, equation Lϕ is the Euler first integral of the disk,

equation Lψ is the first integral of the conservation of the angular momentum of the system about

the axis A�zg and equation Lθ is equivalent to the energy first integral.

11.11.2. Total parameterization

The above parameterization does not enable us to access the contact force at I applied to (D),

which has the form �Rsupport�D = N�zg. To know this force, we must adopt the following

parameterization where the contact relationship at I , z = a sin θ, is classified as a

complementary equation:

PARAMETERIZATION.

• Primitive parameters: z, ψ, θ, ϕ.

• No primitive constraint equation.

• Retained parameters: z, ψ, θ, ϕ.

• Complementary constraint equation: z = a sin θ.
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The same calculations as above give

Ec
gT =

1

2
4ma2ψ̇2 +

1

2
3mż2

Ec
gD =

1

2
ma2

[
θ̇2 + ψ̇2(16 + sin 2θ) + 2r2

]
+

1

2
4mż2

Hence the kinetic energy of the system is given as

Ec
0S =

1

2
ma2

[
θ̇2 + ψ̇2(20 + sin 2θ) + 2r2

]
+

1

2
7mż2

The potential of the weight is written as

V = 7mgz + const

As all joints in S are perfect, we can apply Lagrange’s equations [8.6] with the Lagrange

multiplier denoted by λ:

Lz : 7mz̈ + 7mg = λ

Lψ : ψ̇(20 + sin 2θ) + 2r cos θ = const identical to [11.17]

Lθ : ma2
(
θ̈ + ψ̇2 sin θ cos θ + 2rψ̇ sin θ

)
= −aλ cos θ

Lϕ : r = r0 identical to [11.19]

Now taking into account the complementary constraint equation z = a sin θ and after some

rearrangement, we arrive at the same system [11.17–11.19], plus an additional relationship for λ:

λ = 7mg ++7ma(θ̈ cos θ − θ̇2 sin θ)

ψ̇(20 + sin 2θ) + 2r0 cos θ = const

θ̈(1 + 7 cos 2θ) − 7θ̇2 sin θ cos θ − ψ̇2 sin θ cos θ + 2rψ̇ sin θ + 7ω2
0 cos θ = 0

r = r0

Knowing the initial conditions, solving these four equations yields the kinematic unknowns

ψ, θ, ϕ as well as the multiplier λ as a function of time.

Let us show that the Lagrange multiplier λ is equal to the normal contact force N that we

wish to find. Indeed, by applying relationship [8.10] to the complementary constraint equation

z = a sin θ, we know that the virtual power of the constraint efforts Fsupport�D is

P∗(Fsupport�D) = λ(ż∗ − a cos θθ̇∗) [11.20]

On the other hand, from the very definition of the virtual power of the contact force at I , we

have

P∗(Fsupport�D) = �Rsupport�D · �V ∗
gD(I)

where

�V ∗
gD(I) = �V ∗

gD(C) + �Ω∗
gD × −→

CI = ż∗�zg − 2aψ̇∗�n− aθ̇∗�zD + a(ψ̇∗ cos θ + ϕ̇∗)�n

Hence

P∗(Fsupport�D) = N(ż∗ − a cos θθ̇∗) [11.21]

By comparing [11.20] and [11.21], we do indeed have λ = N .
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11.11.3. Engine torque

It is now assumed that an engine torque �Γ = Γ�z0 is applied by the support on (T ) to enforce a

constant angular velocity ω onto (T ): ψ̇ = ω = const. To determine this torque, we choose the

following parameterization, where the constraint equation ψ̇ = ω is counted as a complementary

equation:

PARAMETERIZATION.

• Primitive parameters: ψ, θ, ϕ.

• No primitive constraint equation.

• Retained parameters: ψ, θ, ϕ.

• Complementary constraint equation: ψ̇ = ω.

The kinetic energy of the system and the potential of the weight have the same expressions as

[11.15] and [11.16]. Lagrange’s equations [8.6] give, with λ denoting the Lagrange multiplier:

Lψ : ma2
d

dt

[
ψ̇
(
20 + sin 2θ

)
+ 2r cos θ

]
= λ

Lθ,Lϕ : identical to [11.18] and [11.19]

Now taking into account ψ̇ = ω, we obtain

λ = −2ma2θ̇ϕ̇ sin θ = −2ma2θ̇ sin θ (r0 − ω cos θ)

As the virtual power of the engine torque is, by definition, P∗ (Fengine�T ) = Γψ̇∗, we can

immediately verify that the multiplier λ is merely equal to the desired engine torque Γ.

11.12. Dumbbell

A system S moving in a Galilean reference frame Rg = R0 endowed with an orthonormal

coordinate system (O; �xg, �yg, �zg), with �zg being upward vertical. It is made up of two rigid bodies

S1 and S2:

– S1 is a homogeneous rod AB with length 3a/
√
7 and mass m.

– S2 takes the form of a dumbbell made up of a massless rod CD with length 2a and of two

identical, homogeneous disks, with radius a, mass m, and respective centers C and D. The

two disks are welded at the ends of the rod CD, perpendicularly to CD.

The solids are subjected to the following joints:

– S1 is connected to the support through a perfect pivot joint whose axis is O�zg . The end A
coincides with O and the angle of rotation of S1 about O�zg is ψ = (�xg, �n), where �n is the

unit vector orienting
−−→
AB.

– The midpoint of CD coincides with B. S2 is connected to S1 through a system of two

perfect pivots:

• one of axis O�n that allows the rotation θ = (�zg, �zS2) of S2 about O�n, where �zS2 is

the unit vector orienting
−−→
CD.
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Figure 11.16. Dumbbell

• the other of axis B�zS2 , that allows the spin ϕ of S2 around B�zS2 .

– A torsion spring with negligible mass, stiffness C, axis B�n, whose one end is attached to

S1 while the other end is attached to CD, is opposed to the θ rotation. This spring is

unstretched when θ = 0.

The whole system is subjected to gravity −g�zg.

The chosen parameterization is as follows:

PARAMETERIZATION.

• Primitive parameters: the angles ψ, θ, ϕ, which are the usual Euler angles, ψ defining the

position of S1 and, in addition, θ, ϕ defining the position of S2.

• No primitive constraint equation.

• Retained parameters: ψ, θ, ϕ.

• No complementary constraint equation.

11.12.1. Equations set

The kinetic energy of S1 is simple:

Ec
g1 =

1

2

1

3
m

(
3a√
7

)2

ψ̇2
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The kinetic energy of S2 is obtained by

Ec
g2 =

1

2
2m �V 2

g2(B)︸ ︷︷ ︸
9/7 ψ̇2

+
1

2
�Ωg2.IS2(B)�Ωg2

Let us calculate the inertia matrix of S2 about B, written in the basis v ≡ (�n,�v, �zS2):

IS2(B; v) = Idisk with center D(B; v) + Idisk with center C(B; v)

where, by denoting by [D,m] the fictitious particle located at D and of mass m:

Idisk with center D(B; v) = I[D,m](B; v) + Idisk with center D(D; v)

=

⎛⎝ma2

ma2

0

⎞⎠ +

⎛⎝m
4 (2a)

2

m
4 (2a)

2

m
2 (2a)

2

⎞⎠
= ma2

⎛⎝1
1

1

⎞⎠
As the inertia matrix Idisk with center C(B; v) of the disk with center C has the same expression,

the inertia matrix of S2 is

IS2(B; v) = 4ma2

⎛⎝1
1

1

⎞⎠
Finally, the kinetic energy of the system is

Ec
gS =

1

2
ma2

[
4θ̇2 + (3 + 4 sin2 θ)ψ̇2 + 4(ϕ̇+ ψ̇ cos θ)2

]
[11.22]

As the elevations zG1 , zG2 of the centers of S1, S2 are zero, the potential of the efforts is

reduced to that of the torsion spring

V =
1

2
Cθ2 + const

Lagrange’s equations are

Lϕ : ϕ̇+ ψ̇ cos θ = r0 where r0 = ϕ̇0 + ψ̇0 cos θ0 = const [11.23]

Lθ : θ̈ + ϕ̇ψ̇ sin θ +
ω2
0

4
θ = 0 with ω2

0 ≡ C

ma2
[11.24]

Lψ :
(
3 + 4 sin2 θ

)
ψ̇ + 4r0 cos θ = K where K = const [11.25]

11.12.2. First integrals

The equations [11.23] and [11.25] are first integrals. They may be obtained again using Newtonian

mechanics: it can be verified that the first integral is the Euler first integral and that the second

comes from the conservation of the angular momentum of the system S with respect to axis O�zg.

Furthermore, all the hypotheses of the energy integral [9.11], Ec + V = const, are satisfied

here. We thus have

4θ̇2 + (3 + 4 sin2 θ)ψ̇2 + 4(ϕ̇+ ψ̇ cos θ)2 + ω2
0θ

2 = const [11.26]



274 Lagrangian Mechanics

Let us use [11.23] and [11.25] to eliminate ψ̇, ϕ̇ from [11.26]:

ϕ̇+ ψ̇ cos θ = r0 ψ̇ =
K − 4r0 cos θ

3 + 4 sin2 θ
=

K − 4r0 cos θ

7− 4 cos2 θ

Inserting these expressions in [11.26] leads to the so-called equation for the principal

parameter θ:

4θ̇2 = h− ω2
0θ

2 − (K − 4r0 cos θ)
2

7 − 4 cos2 θ
(h = const) [11.27]

Below is another way to obtain the above-found first integral. Let us again use [11.23] and

[11.25] to eliminate ψ̇, ϕ̇ from [11.24]:

ψ̇ =
K − 4r0 cos θ

3 + 4 sin2 θ
=

K − 4r0 cos θ

7 − 4 cos2 θ
ϕ̇ =

7r0 − K cos θ

7− 4 cos2 θ
[11.28]

By inserting these expressions in [11.24], we obtain a differential equation in θ:

θ̈ +
(7r0 − K cos θ) (K − 4r0 cos θ)

(7 − 4 cos2 θ)
2 sin θ +

ω2
0

4
θ = 0 [11.29]

By multiplying this relationship by θ̇ and then by integrating the result with respect to time,

we find [11.27].

REMARK. Let us obtain the previous first integrals by means of Newtonian mechanics.

1. Equation [11.23] is the Euler first integral for the rigid body (S2). Indeed:

(a) the moment of the external efforts on S2 about axis B�zS2 is zero: Mext→S2(B�zS2)
= 0,

(b) further, the point B is the center of mass of (S2), the vector �zS2 is attached to (S2),
and finally the inertia operator IS2(B) of (S2) about B is axisymmetric with respect

to the axis B�zS2 and the moment of inertia IS2(O�zS2) of (S2) with respect to the

same axis is non-zero.

2. Further, as the moment Mext→S (O�zg) of the external efforts on S , with respect to the fixed

axis O�zg , is zero we have the first integral of the angular momentum: σgS (O�zg) = 0. Let

us determine the explicit expression for the angular momentum in question:

σgS (O�zg) = σgS1(O�zg) + σgS2(O�zg)

where

σgS1(O�zg) =
1

2
m

(
3a√
7

)2

ψ̇ =
3

7
ma2ψ̇

and, after lengthy calculations:

σgS2(O�zg) = σgS2(B�zg) + �zg.
(−−→
OB × 2m�Vg2(B)

)
= 4ma2(ψ̇ + ϕ̇ cos θ) +

18

7
ma2ψ̇

The equality σgS (O�zg) = 0 thus gives

7ψ̇ + 4ϕ̇ cos θ = const

Taking into account ϕ̇+ ψ̇ cos θ = r0, we find [11.25].

3. Finally, the external and internal efforts on the system S do no work or are derivable from a

potential. We thus have the energy integral Ec
gS + V = const, whose expression is exactly

[11.26] and which also leads to [11.27]. �
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11.12.3. Analysis with specific initial conditions

We study the system by taking the following initial conditions:

θ0 =
π

2
θ̇0 = 0 ϕ̇0 = − ψ̇0

4
[11.30]

These values provide the constants r0,K and h :

r0 = ϕ̇0 = − ψ̇0

4
K = 7ψ̇0 h = ω2

0

π2

4
+ 7ψ̇2

0

Equations [11.27] and [11.29] then become

4θ̇2 =
(πω0

2

)2
+ 7ψ̇2

0 − ω2
0θ

2 − (7 + cos θ)2

7− 4 cos2 θ
ψ̇2
0 [11.31]

θ̈ − 7ψ̇0

(
1
4 + cos θ

) (
7ψ̇0 + ψ̇0 cos θ

)
(7 − 4 cos2 θ)

2 sin θ +
ω2
0

4
θ = 0 [11.32]

11.12.4. Relative equilibrium

Let us assume that there exists a parametric equilibrium θ = θ0. According to [11.28], as θ is

constant, the velocities ψ̇ and ϕ̇ are also constant:

ψ̇ = ψ̇0 = const ϕ̇ = ϕ̇0 = const

Using the same initial conditions [11.30], let us find the initial value ψ̇0 for θ = π
2 to be a

parametric equilibrium. By making θ = π
2 in [11.32], we obtain the initial velocity ψ̇0 which

must be imposed upon the system:

ψ̇2
0 = ω2

0

π

2
⇔ ψ̇0 = ±ω0

√
π

2

Note that the first integral [11.31] is identically satisfied with θ = π
2 and gives no information

on ψ̇0.

11.13. Dumbbell under engine torque

Consider the same system as in the previous example. The only difference here is that we remove

the torsion spring at B and apply a torque �Γ = Γ�zg on S1 by means of an engine whose stator is

fixed in Rg . This torque imposes a constant angular velocity ω > 0 about the axis O�zg:

ψ̇ = ω ↔ ψ = ωt+ ψ0

We will solve this problem using two different parameterizations: the first gives only the

equations of the motion, and the second provides, additionally, access to the engine torque that

ensures the constraint ψ̇ = ω.
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Figure 11.17. Dumbbell under engine torque

11.13.1. Independent parameterization

PARAMETERIZATION.

• Primitive parameters: ψ, θ, ϕ.

• Primitive constraint equation: ψ = ωt+ ψ0.

• Retained parameters: θ, ϕ.

• No complementary constraint equations.

The kinetic energy of the system is given by [11.22] by making ψ̇ = ω:

Ec
gS =

1

2
ma2

[
4θ̇2 + (3 + 4 sin2 θ)ω2 + 4(ϕ̇+ ω cos θ)2

]
[11.33]

As the elevations zG1 , zG2 of the centers of S1, S2 are zero, the potential due to the weight is

zero. The virtual power of the engine torque �Γ = Γ�zg is

P∗(�Fengine�S1
) = �Γ · �Ω∗

g1

Further, since �Ωg1 = ω�zg , we have �Ω∗
g1 = �0 (refer again to the procedure described in [4.22]).

Hence, P∗(�Fengine�S1) = 0!
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Lagrange’s equations are given as

Lϕ :
∂Ec

∂ϕ̇
= const → ϕ̇+ ω cos θ = r0

Lθ : ma2
[
4θ̈ − 4 sin θ cos θω2 + 4 (ϕ̇+ ω cos θ)ω cos θ

]
= 0

→ θ̈ − sin θ cos θω2 + r0ω cos θ = 0

Equation Lϕ thus gives a first integral. By multiplying the second equation by 2θ and then

integrating the result with respect to time, we arrive at another first integral, which involves the

unknown θ only (equation for the principal parameter):

θ̇2 − ω2 sin2 θ − 2r0ω cos θ = const [11.34]

11.13.2. Painlevé’s first integral

The energy integral [9.11] is not valid here, as the position P of a current particle in the system

depends explicitly on the time (
∂Rg

−−→
OP

∂t
�= �0). Further, using Newtonian mechanics, we know

that the energy integral also does not exist as the engine provides energy to the system.

On the contrary, we can verify that the hypotheses for Painlevé’s first integral [9.6] are

satisfied, especially because the joints are perfect and the Lagrangian Ec(q, q̇, t)−V(q, t) is time
independent (here, V = 0 and Ec is given by [11.33]). Painlevé’s first integral Ec(2)−Ec(0)+V =
const thus gives

1

2
ma2

[
4θ̇2 + 4ϕ̇2 − (3 + 4 sin2 θ)ω2 − 4ω2 cos2 θ

]
= const

or, after simplification:

θ̇2 + ϕ̇2 = const

Further, the equation Lϕ gives ϕ̇2 = (r0 − ω cos θ)2. Hence

θ̇2 + (r0 − ω cos θ)2 = const

This is [11.34], which was found earlier.

11.13.3. Total parameterization

To determine the engine torque, we choose the following parameterization, where the constraint

equation ψ̇ = ω is classified as complementary:

PARAMETERIZATION.

• Primitive parameters: ψ, θ, ϕ.

• No primitive constraint.

• Retained parameters: ψ, θ, ϕ.

• Complementary constraint equation: ψ̇ = ω.

The kinetic energy of the system is already calculated in [11.22]. The potential of the weight

is zero.
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As all joints on S are perfect, we apply Lagrange’s equations [8.6] with the Lagrange

multiplier denoted here by λ :

Lϕ :
∂Ec

∂ϕ̇
= const → ϕ̇+ ω cos θ = r0

Lθ : 4θ̈ − 4ψ̇2 sin θ cos θ2 + 4
(
ϕ̇+ ψ̇ cos θ

)
ψ̇ sin θ = 0

→ θ̈ − sin θ cos θω2 + r0ω sin θ = 0

Lψ : ma2
d

dt

[(
3 + 4 sin2 θ

)
ψ̇ + 4

(
ϕ̇+ ψ̇ cos θ

)
cos θ

]
= λ

→ λ = ma2
d

dt

[(
3 + 4 sin2 θ

)
ω + 4r0 cos θ

]
Let us show that the Lagrange multiplier λ is equal to the desired engine torque. By applying

relationship [8.10] to the complementary constraint equation ψ̇ = ω, we know that the virtual

power of the constraint efforts Fengine→S1 is

P∗(Fengine→S1) = λψ̇ [11.35]

On the other hand, the virtual power of the engine torque �Γ = Γ�zg is

P∗(Fengine→S1) = �Γ · �Ω∗
g1 where �Ωg1 = ψ̇�zg ⇒

[4.22]

�Ω∗
g1 = ψ̇∗�zg

= Γ · ψ̇∗ [11.36]

By comparing [11.35] and [11.36], we find λ = Γ.

REMARK. The meaning of λ may also be found by means of Newtonian mechanics. The

theorem of the dynamic moment about axis O�zg gives (δ and σ denote the dynamic moment and

the angular momentum, respectively):

Γ = �δgS (O) · �zg =
d

dt
σgS (O) = the left-hand side ofLψ = λ �

We finally obtain the expression for the engine torque that ensures the constraint ψ̇ = ω:

Γ = λ = ma2
d

dt

[(
3 + 4 sin2 θ

)
ω + 4r0 cos θ

]
= 4ma2θ̇ sin θ (2ω cos θ − r0)

11.14. Rigid body with a non-perfect joint

A rigid body (S) is made up of a homogeneous disk (of center C, radius a and mass m) and a rod

AC (with length a
√
3 and negligible mass), which is welded perpendicularly to the disk.

The rigid body (S) is moving in the Galilean reference frame Rg = R0 equipped with a

right-handed orthonormal coordinate system (O; �xg, �yg, �zg) in the following manner:

– The end A of the rod coincides with the origin O. The joint at this point is a perfect ball

joint between (S) and the support fixed with respect to Rg.

– (S) is in contact at a point I with a horizontal disk (D), the contact takes place with the

coefficient of friction f . The disk (D) is connected to the support by a perfect pivot, whose

axis is O�zg , and is rotated by an engine at a constant angular velocity ω�zg , ω > 0.

The gravitational acceleration is −g�zg.
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Figure 11.18. Rigid body with a non-perfect joint

11.14.1. Equations set

We wish to calculate the contact force exerted by (D) on (S), without calculating the constraint

force due to the ball joint at O. In order to do this, we choose the following parameterization:

PARAMETERIZATION.

• Primitive parameters: The three Cartesian coordinates xA, yA, zA of the point A, and the three

usual Euler angles ψ, θ, ϕ.

• Primitive constraint equations: xA = yA = zA = 0.

• Retained parameters: ψ, θ, ϕ.

• Complementary constraint equation: θ = 60◦.

Equation [8.6] with Lagrange multipliers is not applicable here as the joint at I is not perfect

during the slipping stage. We must use the general Lagrange equations [6.5], where

1. the only given effort is the weight, which is derivable from a potential V,

2. the constraint efforts giving rise to the generalized force Li are the efforts Fball joint�S due

to the ball joint exerted on (S) and the efforts FD�S exerted by the disk (D) on (S).

The potential of the weight is

V = mga
√
3 cos θ + const

The virtual power of the efforts due to the ball joint at O is

P∗(Fball joint�S) = �Rball joint�S · �V ∗
gS(A) = 0 since �V ∗

gS(A) = �0

This result is predictable as the ball joint is perfect and the VVF associated with the chosen

parameterization is compatible with this joint (refer once again to definition [7.2]).
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The virtual power of the contact efforts at I is

P∗(FD�S) = �RD�S · �V ∗
gS(I)

We resolve the contact force �RD�S exerted by (D) on (S) as �RD�S = N�zg + T�n, with N
and T thus denoting the normal force and the tangential force, respectively. Strictly speaking, the

problem is hyperstatic in general and we must also count another tangential force parallel to �u.

However, this force is actually not involved in the calculations and may be ignored.

The VV �V ∗
gS(I) is calculated in the second Euler intermediary basis v ≡ (�n,�v, �zS) (refer

again to notations [2.3], here �zS is the unit vector orienting AC):

�V ∗
gS(I) =

�V ∗
gS(A) + �Ω∗

gS × −→
AI

= �0 +

v

∣∣∣∣∣∣
θ̇∗

ψ̇∗ sin θ
ϕ̇∗ + ψ̇∗ cos θ

×
v

∣∣∣∣∣∣
0
−a

a
√
3

= a

v

∣∣∣∣∣∣
√
3ψ̇∗ sin θ + ϕ̇∗ + ψ̇∗ cos θ

−√
3θ̇∗

−θ̇∗

Hence

P∗(FD�S) = −2aNθ̇∗ + aT (2ψ̇∗ + ϕ̇∗)

Knowing that the inertia matrix about A of (S) in the basis v is

IS(A; v) = ma2

⎛⎝13/4 0 0
0 13/4 0
0 0 1/2

⎞⎠
we obtain the kinetic energy of (S):

Ec
gS =

1

2
�ΩgS .IS(A)�ΩgS =

1

2
ma2

[
13

4
(θ̇2 + ψ̇2 sin 2θ) +

1

2
(ϕ̇+ ψ̇ cos θ)2

]
Finally, Lagrange’s equations [6.5] give

Lψ : ma(41ψ̈ + 4ϕ̈) = 32T [11.37]

Lθ : −13
√
3

4
maψ̇2 +

√
3

2
ma(2ϕ̇+ ψ̇)ψ̇ = 6mg − 8N [11.38]

Lϕ :
1

4
ma(ψ̈ + 2ϕ̈) = T [11.39]

This system provides three equations for four unknowns (ψ,ϕ, T,N). We will write the

lacking fourth equation using the Coulomb friction law at the point I . Let us assume that at the

initial instant t = 0, the rigid body (S) is at rest relative to Rg . Thus, there is slipping between

(S) and (D) at the initial instant and, by continuity, slip prevails at I , at least in an early stage of

the motion.

The slip velocity at I is calculated in the real configuration and we can thus make θ = 60◦:

�VDS(I) = �VDS(A)+�ΩDS×−→
AI = �0+(ψ̇�zg+ϕ̇�zS−aω�zg)×(−a�v+a

√
3�zS) = a(2ψ̇+ϕ̇−2ω)�n

The slip velocity vector is parallel to �n. Its algebraic measure along �n is denoted by U :

U ≡ �VDS(I) · �n = v − 2aω where v ≡ a(2ψ̇ + ϕ̇)
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In the first stage of the motion, where there is slip at I , the Coulomb laws of contact give both

|T | = fN and T�n.�VDS(I) = TU < 0. Further, still in the first stage of the motion, U has the

same sign as U0 = −2aω, that is U < 0 and, thus T > 0. The Coulomb laws thus give

T = fN [11.40]

Systems [11.37–11.40] form four equations for four unknowns (ψ,ϕ, T,N).

11.14.2. Solving the equations set

By eliminating T from [11.37] and [11.39], we can express ψ̇ and ϕ̇ as a function of the auxiliary

variable v:

ϕ̇ =
11

19

v

a
ψ̇ =

4

19

v

a
[11.41]

Equations [11.37] (or [11.39]) and [11.40] thus give

T =
13

38
mv̇ N =

13

38

mv̇

f
[11.42]

Inserting [11.41] and [11.42] in [11.38] yields

v̇ =
57

26
gf = const > 0 ⇒ v =

57

26
gft

From this, we finally obtain

ψ =
3

13

gf

a
t2 + ψ0 ϕ =

33

52

gf

a
t2 + ϕ0 T =

3

4
mgf > 0 N =

3

4
mg > 0

The slip ends when U vanishes, that is, at the instant t1 = 52
57

aω
gf . We will not study the second

stage of the motion, which takes place after t1 and we admit that there is no slip for t ≥ t1.

11.14.3. Power of the engine and work dissipated through friction

We will calculate the work done by the engine that causes the disk (D) to rotate and we will

examine how this work is split into the energy dissipated through friction at the point I and the

increase in the kinetic energy of (S).
The kinetic energy theorem applied to the disk (D) alone gives, during the slipping stage:

P(Fint�D) + P(Fext�D) =
d

dt
Ec

gD [11.43]

where the power P(Fint�D) of the efforts internal to (D) is zero, as (D) is a rigid body and the

power of the external efforts can be divided into three components: the power of the weight of

(D), the power of the efforts of S on D and the power of the engine:

P(Fext�D) = P(Fweight�D) + P(FS�D) + P(Fengine�D)

We have

P(Fweight�D) = 0 since the center of mass of (D) is fixed in Rg

P(FS�D) = −(N�zg + T�n) · �VgD(I) = −2aTω = −13

38
maωv̇

From [11.43], we derive the power provided by the engine

P(Fengine�D) =
13

38
maωv̇
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The work done by the engine during the slipping stage, denoted by W , is obtained by

integrating the power between the instants 0 and t1:

W ≡ W (Fengine�D, [0, t1]) =
26

19
ma2ω2

Let us now apply the theorem of kinetic energy to the whole system (S) ∪ (D):

P(Fengine�D) + P(FD↔S) =
d

dt

(
Ec

gS + Ec
gD

)
,

where FD↔S denotes the inter-efforts between (D) and (S), i.e. the inter-forces of contact at I .

Upon integration over time between 0 and t1, this gives:

W +

∫ t1

0

P(FD↔S)dt = Ec
gS(t1) − Ec

gS(0)︸ ︷︷ ︸
=0

+Ec
gD(t1) − Ec

gD(0)︸ ︷︷ ︸
=0

[11.44]

Further, the work of the inter-efforts of contact at I over the time interval [0, t1] is given as∫ t1

0

P(FD↔S)dt =

∫ t1

0

�RD→S · �VDS(I)dt =

∫ t1

0

(N�zg + T�n) · (v − 2aω)�ndt

= −13

19
ma2ω2 = −W

2

We thus finally obtain Ec
gS(t1) =

W

2
.

By rewriting equality [11.44] in the form

W +

∫ t1

0

P(FD↔S)dt︸ ︷︷ ︸
−W/2

= Ec
gS(t1)︸ ︷︷ ︸
W/2

it can be seen that during the slipping stage:

– half the work done by the engine is dissipated through friction,

– while the other half is used to give (S) enough kinetic energy for the slip at I to stop.
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Tensors

Tensor theory is used in several fields of physics, especially in mechanics where it is absolutely

essential for the study of deformable media (deformable solids or fluids). A comprehensive

presentation on tensors would be very long and, in fact, unnecessary within the scope of this

book. Indeed, the mechanics of rigid bodies only requires what is called “second-order tensors”

in the general tensor theory. Since these can be identified with linear mappings, the corresponding

results are rather well known.

This appendix brings together the basic results related to second-order tensors, which will

simply be referred to as “tensors”. These results, which are derived from the general tensor

theory, are sufficient for the purpose of this book.

Consider a three-dimensional Euclidian space. The scalar product of two vectors �x, �y ∈ E is

denoted by �x.�y.

Definition. In this book, a tensor is a linear mapping from E to E. The two terms “tensor” and

“linear mapping” are, thus, synonymous. [A1.1]

A tensor is usually denoted by a letter with two bars above it, similar to a vector which is a

letter with an arrow over it.

Consider a tensor ¯̄T , its image ¯̄T (�x) of a vector �x of E is a vector of E. As is common for

linear mappings, the image of a vector x under a linear mapping f is denoted by f.x instead of

f(x), using the same “dot” symbol as used for the scalar product. We will thus write ¯̄T.�x instead

of ¯̄T (�x):
¯̄T : E → E

�x �→ ¯̄T.�x
[A1.2]

The following tensors are encountered in the mechanics of rigid bodies:

1. In section 1.3.5, the tensor of the type ¯̄Q21, which is the rotation tensor of a reference frame
R1 with respect to another reference frame R2, or the reference frame change tensor.

2. In section 1.6, the tensor of the type ¯̄Ω12, which is called the angular velocity tensor of R2

with respect to R1.

Representative matrix of a tensor

As with any linear mapping, one speaks of the representative matrix of a tensor in a given basis.

Let e = (�e1, �e2, �e3) be a basis of E, the representative matrix of a tensor ¯̄T in e is the following

3 × 3 matrix:

Mat( ¯̄T ; e) =

⎡⎣ T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎦ where ∀i, j ∈ {1, 2, 3}, Tij = �ei.(
¯̄T.�ej) [A1.3]
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A tensor is completely determined when its representative matrix in the basis e is determined

and vice versa.

Transpose of a tensor

Definition. The transpose of a tensor ¯̄T , denoted ¯̄TT , is the tensor that satisfies

∀�x, �y ∈ E, �x.( ¯̄T.�y) = �y.( ¯̄TT .�x) [A1.4]

The representative matrix of the transpose tensor ¯̄TT in basis e is the transpose of the matrix of ¯̄T
in the same basis, which justifies the terminology.

Symmetric tensor: skew-symmetric tensor

Definition.

1. A tensor ¯̄T is symmetric if it is equal to its transpose: ¯̄T = ¯̄TT .

2. A tensor ¯̄T is skew-symmetric if it is equal to the opposite of its transpose: ¯̄TT = − ¯̄T .

The representative matrix of a symmetric (respectively, skew-symmetric) tensor is symmetric

(respectively, skew-symmetric).

According to the previous definition and relationship [A1.4], we have the following results:

¯̄T is symmetric ⇔ ∀�x, �y ∈ E, �x.( ¯̄T.�y) = �y.( ¯̄T.�x)
¯̄T is skew-symmetric ⇔ ∀�x, �y ∈ E, �x.( ¯̄T.�y) = −�y.( ¯̄T.�x)

[A1.5]

Identity tensor

Definition. The identity tensor, denoted by ¯̄I , is the tensor whose image of any vector �x is the

vector �x itself:

∀�x ∈ E, ¯̄I.�x = �x [A1.6]

The representative matrix of the identity tensor in the basis e is the unit matrix of the third order.

Product of two tensors

Definition. The product of a tensor ¯̄S and another tensor ¯̄T , denoted by ¯̄S. ¯̄T , is, by definition,

the composite of the linear mappings ¯̄S and ¯̄T . The usual symbol ◦ for the composition of

functions is, here, replaced by the dot.

The representative matrix of the product ¯̄S. ¯̄T in the basis e is the product of the representative

matrices of ¯̄S and ¯̄T in the same basis, which justifies the term “product” and the “dot” used for

the product of tensors.

In fact, the use of the “dot” symbol has a deeper origin in tensor algebra. It represents the

so-called singly contracted product of two tensors. The scalar product �x.�y of two vectors and the

image ¯̄T.�u of a vector under a tensor are particular cases of the singly contracted product of two

vectors. This explains why the same “dot” symbol is used in all these operations.
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Inverse tensor

We can easily verify the following theorem:

Theorem and Definition. Let ¯̄T be a tensor. If there exists a tensor ¯̄S satisfying ¯̄S. ¯̄T = ¯̄T. ¯̄S = ¯̄I ,

then such a tensor ¯̄S is unique. It is called the inverse of tensor ¯̄T and is denoted by ¯̄T−1 .

The inverse of the tensor ¯̄T is, thus, the inverse linear mapping of ¯̄T .

The representative matrix of the inverse tensor ¯̄T−1 in the basis e is the inverse of the matrix

of ¯̄T in the same basis.

Orthogonal tensor

Definition. A tensor ¯̄T is orthogonal if its inverse is equal to its transpose: ¯̄T−1 = ¯̄TT .

An orthogonal tensor is a vector isometry and represents a rotation in mechanics.

Tensor product

Definition. The tensor product of two vectors �a and�b, denoted by �a ⊗�b , is the tensor defined

as

∀�c ∈ E, (�a ⊗�b).�c = �a(�b.�c) [A1.7]

The representative matrix of the tensor product �a ⊗ �b is easy to obtain. Its (i, j) component is

given by

∀i, j ∈ {1, 2, 3}, (�a ⊗�b)ij = aibj [A1.8]

We can easily verify the following result:

Theorem.

∀�a,�b ∈ E,
(
�a ⊗�b

)T
= �b ⊗ �a [A1.9]
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Typical Perfect Joints

In this appendix, we consider two rigid bodies S1 and S2, connected by one of the following

joints, which are usually encountered in mechanics:

1. Point contact.

2. Ball-and-socket joint (or spherical joint).

3. Cylindrical joint.

4. Pivot or hinged joint

5. Prismatic or sliding joint.

6. Helical joint (or screw joint).

It is assumed that the joint under study is perfect in the sense of definition [7.79]: the joint is

perfect if, at any instant t, the VP of the constraint inter-efforts between S1 and S2 is zero in any
VVF V ∗ compatible with this joint:

∀t, ∀ VVF V ∗ compatible with this joint,P∗(F1↔2) = 0 [A2.1]

(recall that the VP of inter-efforts is written without the reference frame index as it is independent

of the reference frame).

We will show that for the joint to be perfect, it is necessary and sufficient for the constraint

efforts to satisfy a certain number of specific conditions.

We will adopt the following general notations:

– (O; b0) ≡ (O; �x0, �y0, �z0): orthonormal coordinate system fixed in the common reference

frame R0;

– O1: point attached to the rigid body S1; b1 ≡ (�x1, �y1, �z1): orthonormal basis related to S1;

(ψ1, θ1, ϕ1): the Euler angles defining the position of basis b1 with respect to basis b0;

R1: the reference frame defined by S1,

– O2: point attached to the rigid body S2; b2 ≡ (O2; �x2, �y2, �z2): orthonormal basis attached

to S2;

(ψ2, θ2, ϕ2): the Euler angles defining the position of basis b2 with respect to basis b0.

Other notations will be introduced depending on the joint being studied.
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A2.1. Point contact between two rigid bodies

Consider two rigid bodies S1, S2, which remain in contact, throughout their motion, at a point I
that may or may not be variable. The two contact surfaces are assumed to be regular, such that

there exists at I a tangent plane Π, common to both contact surfaces (Figure A2.1).

Figure A2.1. Point contact

The position of the system consisting of two rigid bodies is defined, a priori, by 12 primitive

parameters; for example, for each rigid body, we can take three Cartesian coordinates of a particle

of the rigid body and three Euler angles. There is actually no use in naming these parameters as

they do not come into play in the calculations that follow.

The contact condition between the two rigid bodies is obtained using geometric calculations.

Its expression is complicated in the general case when the surfaces have arbitrary forms.

Fortunately, in the analysis here, it is sufficient to use the simpler relationship given below,

which is a consequence of the contact relationships:

�V12(I).�n = 0

This relationship means that the two rigid bodies do not interpenetrate: the relative velocity

at the point I has no component along the normal direction �n at the same point and must, thus,

belong to the tangent plane Π. It is expressed in three dimensions by two scalar, non-holonomic

equations, which must thus be counted as complementary constraint equations.

The following result gives one characterization for a perfect point contact:

Theorem. The point contact is perfect if and only if

�R1→2 � �n and �M1→2(I) = �0 [A2.2]

where �R1→2 is the resultant force and �M1→2(I) is the resultant moment about point I of the

contact efforts exerted by S1 on S2.

In other words, the point contact is perfect if and only if the contact takes place without
friction and without rolling and pivoting resistance, or again, if the contact efforts at the point I
exerted by S1 on S2 reduce to a single normal force.

PROOF. The VP of the constraint inter-efforts in [A2.1] is given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(I) +

�M1→2(I).�Ω
∗
12 [A2.3]
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From theorem [7.78], it is known that the VVFs compatible with a mechanical joint are

independent of the choice of parameterization. We will apply definition [A2.1] by choosing the

following parameterization:

PARAMETERIZATION.

• Primitive parameters: Six primitive parameters for each rigid body S1, S2; there is no need to

explicitly list them here.

• No primitive constraint equation.

• Retained parameters: The same as the primitive parameters.

• Complementary constraint equation: �V12(I).�n = 0.

Thus, the virtual velocities compatible with the joint satisfy:

�V ∗
12(I).�n = 0 [A2.4]

Let us resolve the contact force �R1→2 into a normal component N1→2 directed along �n and a

tangential component �T1→2 lying in plane Π:

�R1→2 = N1→2�n+ �T1→2

Taking into account [A2.4], the VP [A2.3] then becomes:

P∗(F1↔2) = �T1→2.�V
∗
12(I) +

�M1→2(I).�Ω
∗
12

This power is zero for any VV �V ∗
12(I) (belonging to plane Π) and for any virtual angular

velocity �Ω∗
12, if and only if �T1→2 = �0 and �M1→2(I) = �0. �

• If we reinforce the contact condition by assuming that the relative slip velocity �V12(I) is

constantly zero, we have a simpler result:

Theorem. If the contact takes place without slipping; i.e. �V12(I) = �0, then the point contact is

perfect if and only if

�M1→2(I) = �0 [A2.5]

PROOF. This proof is similar to the previous one. We choose the same parameterization as

above, with the difference that this time the complementary constraint equation is �V12(I) = �0.

The virtual velocities compatible with the joint thus satisfy

�V ∗
12(I) = �0

The VP [A2.3] then becomes

P∗(F1↔2) = �M1→2(I).�Ω
∗
12

This power is zero for any virtual angular velocity �Ω∗
12 if and only if �M1→2(I) = �0. �

The reasoning used in this section, as in the rest of this appendix, involves the relative motion

between the two rigid bodies S1 and S2, but not the motion that S1 may have with respect

to a given reference frame (for example, the common reference frame R0). Consequently, the

results obtained remain valid if there exist additional constraint equations between the primitive

parameters of S1, for example, if S1 is fixed in R0.
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A2.2. Ball-and-socket joint (or spherical joint)

Consider two rigid bodies S1 and S2, the first containing a spherical cavity with center O1 and

the second containing a spherical ball with center O2 and whose radius is slightly smaller than

the radius of the spherical cavity (Figure A2.2(a)). The rigid bodies are connected by a ball-and-

socket joint when the spherical ball is lodged inside the spherical cavity (Figure A2.2(b)), such

that the centers O1, O2 coincide during the motion. The spherical ball is able to freely rotate in

the spherical cavity.

Figure A2.2. Ball-and-socket joint

Theorem. The spherical joint is perfect if and only if

�M1→2(O1) = �0 , [A2.6]

where �M1→2(O1) is the resultant moment about O1 of the contact efforts exerted by S1 on S2.

PROOF. We still use definition [A2.1] for a perfect joint and since the VVFs compatible

with a mechanical joint are independent of the choice of parameterization, we will carry out

the calculations by choosing the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters:

– Six parameters for S1: Three coordinates for the point O1 relative to the coordinate

system (O; b0) and the three Euler angles ψ1, θ1, ϕ1;

– Six parameters for S2: Three coordinates for the point O2 relative to the coordinate

system (O; b0) and the three Euler angles ψ2, θ2, ϕ2.

• Primitive constraint equation: O1 = O2, which amounts to saying that the coordinates of

points O1 and O2 are identical.

• Retained parameters: ψ1, θ1, ϕ1 and ψ2, θ2, ϕ2.

• No complementary constraint equation.
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The VP of the constraint inter-efforts is given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(O2) + �M1→2(O2).�Ω

∗
12 [A2.7]

Let o2 be the particle of S2 whose position at any instant is O2. Then, �V ∗
12(O2) is the VV with

respect to R1 of the particle o2 (see notation [4.33]). Let us calculate this VV using definition

[4.10]:

�V ∗
12(O2) = �V ∗

R1
(o2) ≡ ¯̄Q01.

6∑
i=1

∂

∂qi

(
¯̄Q10.

−−−→
O1O2

)
q̇∗i

= �0 as
−−−→
O1O2 = �0

[A2.8]

We may obtain the same result when using the composition formula for virtual velocities

[4.49], �V ∗
12(O2) = �V ∗

02(O2) − �V ∗
01(O2) = �V ∗

02(O2) − �V ∗
01(O1), however the calculations are a

little longer.

Let us also calculate the virtual angular velocity �Ω∗
12 using the composition formula [4.45],

�Ω∗
12 = �Ω∗

02 − �Ω∗
01. The virtual angular velocities are given by [4.23]:

�Ω∗
01 = ψ̇∗

1�z0 + θ̇∗1�n1 + ϕ̇∗
1�z1 �Ω∗

02 = ψ̇∗
2�z0 + θ̇∗2�n2 + ϕ̇∗

2�z2 [A2.9]

where �n1 (respectively, �n2) is the vector of the line of nodes of S1 (respectively, S2), the triplets

(ψ̇∗
1 , θ̇

∗
1 , ϕ̇

∗
1) and (ψ̇∗

2 , θ̇
∗
2 , ϕ̇

∗
2) are arbitrary.

The VVF obtained is automatically compatible with the joint being considered, since there

is no complementary constraint equation. Taking into account [A2.8] and [A2.9], the VP [A2.7]

becomes:

P∗(F1↔2) = �M1→2(O2).�Ω
∗
12

where �Ω∗
12 is an arbitrary vector. This power is zero for any virtual angular velocity �Ω∗

12, if and

only if �M1→2(O2) = �0. �

Relationship [A2.6], which characterizes the perfection of the spherical joint, provides global
information on the constraint efforts field. However, it does not give any information on the

distribution of these efforts over the contact surface between the two rigid bodies. This observation

also applies to the other types of joints studied in this appendix.

A2.3. Cylindrical joint

Consider two rigid bodies S1 and S2, the first containing a circular cylindrical cavity with axis

O1�z1 and the second consisting of a cylinder with axis O2�z2 and with a radius slightly smaller

than the radius of the cavity (Figure A2.3(a)). The two rigid bodies are connected by a cylindrical

joint when the cylinder slides into and rotates within the cavity, such that the two axes coincide

during the motion (Figure A2.3(b)).

Theorem. The cylindrical joint is perfect if and only if

�R1→2 ⊥ �z1 and �M1→2(O2) ⊥ �z1 [A2.10]

In other words, the cylindrical joint is perfect if and only if the resultant force and the

resultant moment (about one point on the axis) of the constraint efforts are perpendicular to

the cylinder axis.

FIRST PROOF. Let us first write out the constraint equations, independent of whether they are

classified as primitive or complementary equations.
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Figure A2.3. Cylindrical joint

The primitive parameters for S1 are the conventional parameters: the Cartesian coordinates

(x1, y1, z1) of point O1 relative to the coordinate system (O; b0) ≡ (O; �x0, �y0, �z0), and the Euler

angles ψ1, θ1, ϕ1.

For S2, we take the conventional Euler angles ψ2, θ2, ϕ2, but in order to simplify the

calculations, we choose the Cartesian coordinates (ξ2, η2, ζ2) of point O2 relative to the

coordinate system (O1; b1) ≡ (O1; �x1, �y1, �z1), instead of those relative to the coordinate system

(O; b0). The coordinates (ξ2, η2, ζ2) are the components of vector
−−−→
O1O2 in the basis b1 attached

to S1.

We avoid using the Euler angles (α2, β2, γ2) defining the position of basis b2 relative to basis

b1, as the constraint O2�z2 = O1�z1 entails a singularity: the nutation β2 = 0 and only the sum

α2 + γ2 of precession and spin is determined.

The cylindrical joint can be expressed by

axis O2�z2 = axis O1�z1 ⇔
{
O2 ∈ axis O1�z1 ⇔ ξ2 = η2 = 0
�z2 = �z1(⇒ �n1 = �n2) ⇔ ψ2 = ψ1, θ2 = θ1

[A2.11]

that is, by four scalar constraint equations.

We work with the following parameterization:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– six for S2 : (ξ2, η2, ζ2) and (ψ2, θ2, ϕ2).

• Primitive constraint equations: four equations [A2.11].

• Retained parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– two for S2: the coordinate ζ2 of point O2 along the axis O1�z1 and the spin angle ϕ2.

• No complementary constraint equation.

The VP of the constraint inter-efforts is given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(O2) + �M1→2(O2).�Ω

∗
12 [A2.12]
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Let us calculate the VV �V ∗
12(O2) using definition [4.10], with o2 denoting the particle of S2

located at O2 at any instant, as in the analysis of spherical joint:

�V ∗
12(O2) = �V ∗

R1
(o2) ≡ ¯̄Q01.

∑
i

∂

∂qi

(
¯̄Q10.

−−−→
O1O2

)
q̇∗i

where ¯̄Q10.
−−−→
O1O2 = ζ2�e3 (refer again to [1.30]: (�e1, �e2, �e3) is the canonical basis of R3 and

(�x0, �y0, �z0) = (�e1, �e2, �e3)). Hence

�V ∗
12(O2) =

¯̄Q01.
∂

∂ζ2
(ζ2�e3) ζ̇

∗
2 = ¯̄Q01.�e3 ζ̇

∗
2 = ζ̇∗2�z1 [A2.13]

If we calculated the VV �V ∗
12(O2) via the real velocity as indicated in section 4.12:

�V12(O2) =
dR1

−−−→
O1O2

dt
=

dR1

dt
(ζ2�z1) = ζ̇2�z1

we would have arrived at the same result.

On the other hand, let us calculate the virtual angular velocity �Ω∗
12 via the (real) relative

angular velocity �Ω12, since the latter is easy to obtain:

�Ω12 = �Ω02 − �Ω01 = (ϕ̇2 − ϕ̇1)�z1

From this, we can derive the virtual angular velocity �Ω∗
12 following the procedure described

in [4.22]:
�Ω∗
12 = (ϕ̇∗

2 − ϕ̇∗
1)�z1 [A2.14]

Taking into account [A2.13] and [A2.14], the VP [A2.12] becomes:

P∗(F1↔2) = ζ̇∗2 �R1→2.�z1 + (ϕ̇∗
2 − ϕ̇∗

1)
�M1→2(O2).�z1

where the scalars ζ̇∗2 , ϕ̇
∗
1, ϕ̇

∗
2 are arbitrary. �

SECOND PROOF. Below is given another an intrinsic proof, which does not use the coordinate

ζ2. Let us write the constraint equation O2 ∈ axis O1�z1 as
−−−→
O1O2 × �z1 = �0 and derive this

relationship with respect to time relative to the reference frame R1:

dR1

−−−→
O1O2

dt
× �z1 +

−−−→
O1O2 × dR1�z1

dt︸ ︷︷ ︸
�0

= �0 ⇔ �V12(O2) × �z1 = �0

According to the procedure described in section 4.12, it follows that the VVF �V ∗
12(O2) satisfies

a similar relationship:

�V ∗
12(O2) × �z1 = �0 i.e. �V ∗

12(O2) =
(
�V ∗
12(O2).�z1

)
�z1 [A2.15]

Taking into account [A2.15] and [A2.14], the VP [A2.12] can now be written as

P∗(F1↔2) =
(
�V ∗
12(O2).�z1

)(
�R1→2.�z1

)
+ (ϕ̇∗

2 − ϕ̇∗
1)

�M1→2(O2).�z1

where the scalars �V ∗
12(O2).�z1, ϕ̇

∗
1, ϕ̇

∗
2 are arbitrary. �

REMARK. Let us return to equations [A2.11] expressing the cylindrical joint. To obtain it,

we could have chosen, as the primitive parameters for S2, the coordinates (x2, y2, z2) of point
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O2 relative to the coordinate system (O; b0), instead of the coordinates (ξ2, η2, ζ2) of point O2

relative to the coordinate system (O1; b1). However, the constraint equations that result from this

will be longer. Indeed, since �z1 = − sin θ1�u1 + cos θ1�z0 = − sin θ1(cosψ1�y0 − sinψ1�x0) +
cos θ1�z0 , the constraint O2 ∈ axis O1�z1 is expressed by

−−−→
O1O2 × �z1 = �0 ⇔

∣∣∣∣∣∣
x2 − x1

y2 − y1
z2 − z1

×
∣∣∣∣∣∣
sin θ1 sinψ1

− sin θ1 cosψ1

cos θ1

= 0

⇔
⎧⎨⎩ (y2 − y1) cos θ1 + (z2 − z1) sin θ1 cosψ1 = 0

(z2 − z1) sin θ1 sinψ1 − (x2 − x1) cos θ1 = 0
(x2 − x1) cosψ1 − (y2 − y1) sinψ1 = 0

[A2.16]

Only two of the three equations [A2.16] are independent. We can retain, for example, [A2.16]1
and [A2.16]2 to eliminate x2, y2 in favor of z2 and (x1, y1, z1). The expressions obtained are more

complicated than ξ2 = η2 = 0 in [A2.11]1. �

A2.4. Pivot (or hinged joint)

The pivot (or hinged) joint between two rigid bodies S1 and S2 is a cylindrical joint where the

relative translation of the two rigid bodies along their common axis O1�z1 is prevented (Figure

A2.4), that is, O1 and O2 are forced to be identical.

Figure A2.4. Pivot joint

The pivot joint is, thus, expressed by relationships [A2.11] to which we add the additional

constraint ζ2 = 0: {
O2 = O1 ⇔ ξ2 = η2 = ζ2 = 0
�z2 = �z1(⇒ �n1 = �n2) ⇔ ψ2 = ψ1, θ2 = θ1

[A2.17]

that is, by five scalar constraint equations. The rigid body S1 may move freely while the single

motion possible for S2 relative to S1 is the rotation around the common axis O1�z1.

Theorem. The pivot joint is perfect if and only if

�M1→2(O2) ⊥ −→z1 [A2.18]

PROOF. We choose the same parameterization as in the analysis of the cylindrical joint, except

that this time we also take into account the constraint equation ζ2 = 0:
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INDEPENDENT PARAMETERIZATION.

• Primitive parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– six for S2 : (ξ2, η2, ζ2) and (ψ2, θ2, ϕ2).

• Primitive constraint equations: five equations [A2.17].

• Retained parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– one for S2: the spin ϕ2.

• No complementary constraint equation.

The VP of the constraint inter-efforts is always given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(O2) + �M1→2(O2).�Ω

∗
12

This time, the same calculation as in the analysis of the cylindrical joint gives �V ∗
12(O2) = �0.

On the other hand, the virtual angular velocity �Ω∗
12 is the same as in [A2.14]:

�Ω∗
12 = (ϕ̇∗

2 − ϕ̇∗
1)�z1

where ϕ̇∗
1, ϕ̇

∗
2 are arbitrary. Consequently, the VP of the constraint inter-efforts becomes

P∗(F1↔2) = (ϕ̇∗
2 − ϕ̇∗

1)
�M1→2(O2).�z1 �

A2.5. Prismatic or sliding joint

Consider two rigid bodies S1 and S2, the first containing a prismatic cavity with axis O1�z1 and the

second containing a prism with axis O2�z2, whose dimensions are slightly smaller than those of

the cavity. In Figure A2.5(a), the prismatic cavity and the prism have rectangular cross-sections.

The rigid bodies are said to be connected by a prismatic joint when the prism is inserted into the

cavity and slides along it, such that their axes coincide throughout the motion (Figure A2.5(b)).

The prismatic joint between two rigid bodies S1 and S2 is, therefore, a cylindrical joint with

the relative rotation of the two solids around their common axis O1�z1 being prevented.

The prismatic joint is, thus, expressed through the relationships [A2.11] to which we add the

additional restriction ϕ2 = 0:⎧⎨⎩ O2 ∈ axis O1�z1 ⇔ ξ2 = η2 = 0
�z2 = �z1(⇒ �n1 = �n2) ⇔ ψ2 = ψ1, θ2 = θ1
ϕ1 = ϕ2

[A2.19]

which gives five scalar constraint equations. The rigid body S1 is able to move freely while the

only motion possible for S2 relative to S1 is the translation along the common axis O1�z1.

Theorem. The prismatic joint is perfect if and only if

�R1→2 ⊥ −→z1 [A2.20]
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Figure A2.5. Prismatic joint

PROOF. We choose the same parameterization as in the analysis of the cylindrical joint, except

that this time we also take into account the constraint equation ϕ1 = ϕ2:

INDEPENDENT PARAMETERIZATION.

• Primitive parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– six for S2 : (ξ2, η2, ζ2) and (ψ2, θ2, ϕ2).

• Primitive constraint equations: five equations [A2.17].

• Retained parameters:

– six for S1: (x1, y1, z1) and (ψ1, θ1, ϕ1),

– one for S2: the coordinate ζ2.

• No complementary constraint equation.

The VP of the constraint inter-efforts is always given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(O2) + �M1→2(O2).�Ω

∗
12

The same calculation as used for the cylindrical joint gives �V ∗
12(O2) = ζ̇∗2�z1 (see [A2.13]).

On the other hand, as the virtual angular velocity �Ω∗
12 is

�Ω12 = �Ω02 − �Ω01 = (ϕ̇2 − ϕ̇1)�z1 = �0

it results that
�Ω∗
12 = �0

Consequently, the VP of the constraint inter-efforts becomes

P∗(F1↔2) = ζ̇∗2 �R1→2.�z1

where ζ̇∗2 is arbitrary. �
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A2.6. Helical joint (or screw joint)

The helical (or screw) joint between two rigid bodies S1 and S2 is a cylindrical joint with an

addition linear relationship between the relative translation of the two rigid bodies and the relative

rotation around their common axis O1�z1:

ζ2 = p (ϕ2 − ϕ1)

where p is a given constant.

The helical joint is, thus, expressed by relationships [A2.11] to which we add the

aforementioned additional constraint:⎧⎨⎩ O2 ∈ axis O1�z1 ⇔ ξ2 = η2 = 0
�z2 = �z1(⇒ �n1 = �n2) ⇔ ψ2 = ψ1, θ2 = θ1
ζ2 = p (ϕ2 − ϕ1)

[A2.21]

that is, five scalar constraint equations. The rigid body S1 is able to move freely, while the rigid

body S2 can translate and rotate relative to S1, the translation being proportional to the relative

rotation.

An example for the device with a helical joint is depicted in Figure A2.6, where S1 is the bolt

and S2 the screw.

Figure A2.6. Helical joint

Let p be a particle of S2 whose position in R0 is P , not located on the common axis O1�z1.

During the motion of the rigid bodies, the point P describes a circular helix whose axis is O1�z1
attached to S1 (more precisely, the position P (1) = Q10P of p in R1 describes a circular helix in

the affine 3D space E). The constant 2πp in [A2.21]3 is called the pitch of the helix or the screw.

Theorem. The helical joint is perfect if and only if

p�R1→2.�z1 + �M1→2(O2).�z1 = 0 [A2.22]

PROOF. We choose the same parameterization as in the analysis of the cylindrical joint, except

that this time we also take into account the constraint equation [A2.21]3, which is classified as a

complementary equation:
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PARAMETERIZATION.

• Primitive parameters:

– six for S1 : (x1, y1, z1) and (ψ1, θ1, ϕ1),

– six for S2 : (ξ2, η2, ζ2) and (ψ2, θ2, ϕ2).

• Primitive constraint equations: four equations [A2.21]1−2.

• Retained parameters:

– six for S1: (x1, y1, z1) and (ψ1, θ1, ϕ1),

– two for S2: the coordinate ζ2 of the point O2 on the axis O1�z1 and the spin ϕ2.

• Complementary constraint equation: relationship [A2.21]3 : ζ2 = p (ϕ2 − ϕ1).

The VP of the constraint inter-efforts is given by [5.14]:

P∗(F1↔2) = �R1→2.�V
∗
12(O2) + �M1→2(O2).�Ω

∗
12

The same calculation as in the analysis of the cylindrical joint gives [A2.13] and [A2.14]:

�V ∗
12(O2) = ζ̇∗2�z1 and �Ω∗

12 = (ϕ̇∗
2 − ϕ̇∗

1)�z1

In order for the VVF to be compatible, the parameters q̇∗i must satisfy ζ̇∗2 = p (ϕ̇∗
2 − ϕ̇∗

1).
Consequently:

�V ∗
12(O2) = p (ϕ̇∗

2 − ϕ̇∗
1)�z1

Finally, the VP of the constraint inter-efforts becomes

P∗(F1↔2) = (ϕ̇∗
2 − ϕ̇∗

1)
(
p�R1→2.�z1 + �M1→2(O2).�z1

)
where ϕ̇∗

1, ϕ̇
∗
2 are arbitrary. �
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partial, 77
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rheonomous, 34
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solved, 35

time-dependent, 34

time-independent, 34
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of E, 4

physical coordinate system, 4

convention on the physical coordinate

system, 5, 11
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system, 4

dynamic moment, 26

about an axis, 26

E

effort, 61
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dissipative, 204

efforts system applied to a mechanical

system, 61

external effort, 61

generating a moment field, 64

given effort, 62

inter-efforts, 62

internal effort, 62

set of efforts applied to a system, 61

energy criterion, 224
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absolute equilibrium, 213
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219–222

parametric equilibrium, 214

relative equilibrium, 215

stable equilibrium, 223

Euler angle, 29

F, G, J

first integral, 199

energy first integral, 203
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at-a-distance force, 57
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perfect, 159, 287

unilateral, 34

K, L, M

kinetic energy (parameterized), 54

Lagrange’s equation, 112, 174–176

Lagrange’s kinematic formula, 53

Lagrange-Dirichlet theorem, 223

material point, 3

mechanical joint, see joint

moment

moment field of efforts, 64

moment of efforts, 64

momentum, 25

motion

absolute motion, 24

background motion, 24

equation of motion, 118

relative motion, 24

O, P

observer, 1

parameter

position parameter, 27, 32

primitive, 37

retained, 37

parametrization, 37

independent, 38

reduced, 38

total, 38

particle, 3

point, 4

attached to a system, 23

attached to the rigid body, 20

fixed in a reference frame, 14

following a particle of a rigid body, 20

position

position change postulate, 8

position postulate, 5

theorem of bi-position change, 9

potential, 101

principle of virtual powers (PVP), 91

principle of zeroness of the VP of efforts

internal to a rigid body, 92

PVP, see principle of virtual powers (PVP)

Q, R, S

quantity of movement, 25

R0, 9

reference frame, 2

common, 9

defined by a rigid body, 19

notational convention in the common

reference frame, 10

reference frame change tensor, 8

rigid body

defined by a reference frame, 19

defining a reference frame, 19

extending to infinity a reference solid, 19

rotation tensor of reference frame with respect

to another one, 8

space, 4

physical space, 3

T

tensor, 283

orthogonal, 285

representative matrix of a tensor in a

basis, 283

time derivative of a vector with respect to a

reference frame, 15

time partial derivative of a vector with respect

to a reference frame, 16

torque

at-a-distance torque, 59

contact torque, 59

V

vector

attached to a rigid body, 20

constant in or fixed in or attached to a

reference frame, 14

velocity

absolute velocity, 24

background velocity, 24

composition of velocities, 24

parameterized velocity in a mechanical

system, 51

parameterized velocity in a rigid body, 50

parameterized velocity of a particle, 48

relative velocity, 24

virtual angular velocity

composition of the virtual angular

velocities, 86

of a reference frame with respect to

another one, 75

virtual angular velocity tensor of a

reference frame with respect to

another one, 75ğ
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virtual derivative

of a scalar, 68

with respect to a reference frame of a

vector, 68

virtual power (VP), 92

of efforts, 92, 94, 95

of inter-efforts, 97

of the quantities of acceleration, 108

virtual velocity (VV)

background virtual velocity, 85

composition of virtual velocities of a

particle, 85

of a particle, 70

virtual velocity field (VVF), 84

background virtual velocity field, 87

compatible with a joint, 132, 134, 135

composition of virtual velocities in

rigid bodies, 87

in a rigid body, 82

of a rigid body, 82

of a system, 84

restricted to each rigid body, 84

VP, see virtual power (VP)

VV, see virtual velocity

VVF, see virtual velocity
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