
Introduction to Quantum Physics and Information Processing 
guides you in understanding the current state of research in the 
novel, interdisciplinary area of quantum information. The book goes 
deeply into issues of quantum theory without raising the technical 
level too much.

The text begins with the basics of quantum mechanics required to 
understand how two-level systems are used as qubits. It goes on to 
show how quantum properties are exploited in devising algorithms 
for problems that are more efficient than the classical counterpart. It 
then explores more sophisticated notions that form the backbone of 
quantum information theory.

Features
• Presents important fundamental ideas of quantum information 

science
• Emphasizes the true meaning of the quantum mechanical 

description of nature
• Introduces the methods, notation, and theoretical framework of 

quantum mechanics 
• Describes basic algorithms used in quantum computation, such 

as the Deutsch–Josza, Grover, and Fourier transform-based 
algorithms

• Addresses the notion of information content in qubits, 
cryptographic applications of quantum information processing, 
and quantum error correction

• Includes examples, exercises, problems, and references in 
each chapter that encourage hands-on practice and further 
exploration

Requiring no background in quantum physics, this text prepares 
you to follow more advanced books and research material in this 
rapidly growing field. Examples, detailed discussions, exercises, and 
problems facilitate a thorough, real-world understanding of quantum 
information.
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Preface

This book is aimed at undergraduates or beginning graduates in physics,
mathematics or engineering, as an introduction to the developing field of
quantum information. The book has grown out of lecture notes for a one-
semester course offered to undergraduate students of engineering and science
at the BITS Pilani Goa Campus. The level is consequently basic, and is in-
tended to train a student with no background in quantum physics to be able
to follow more advanced books on the subject, such as the classic by Neilsen
and Chuang, and also research material in this rapidly growing field. We start
from the basics of quantum mechanics required to understand two-level sys-
tems to be used as qubits, and then go on to show how quantum properties
are exploited in devising algorithms for problems that are more efficient than
the classical counterpart. We then go on to more sophisticated notions that
form the backbone of quantum information theory.

The idea behind a book at this level is that a student doesn’t need to go
through a masters course in physics to get started on quantum information, an
interdisciplinary subject that is currently in an exciting stage of development.
The treatment of the subject matter is elementary but with a bias toward ideas
of foundational importance in quantum information science. It consequently
goes deeper into issues of understanding quantum theory without raising the
technical level too much. Fully aware of being perhaps too wordy, some of the
introductory material is described at length to impress upon the student the
true meaning of the quantum mechanical description of nature.

The book is presented in four parts. The first preliminary part sets the
stage by introducing the methods and notation of quantum mechanics of fi-
nite state systems. We begin with a thorough but brief description of a typical
two-state system: electron spin, using the Stern–Gerlach system as an illustra-
tive medium. The second part sets the theoretical framework in place, starting
with the rules of quantum mechanics in the language of linear algebra. With
a view to completing the background required to understand current research
papers, we have also included a slightly advanced chapter on the density ma-
trix approach to the characterization of mixed states and open systems. We
also include a brief on concepts in computer science such as the circuit model
for computation, computational complexity, and reversible computation, after
the manner of Neilsen and Chuang.

The third part deals with quantum computation, starting with universal
quantum gates and circuits. We treat the basic quantum algorithms such as

ix



x Preface

the Deutsch–Josza, Grover and Fourier transform-based algorithms, which are
discussed in some detail. The fourth part on quantum information addresses
the notion of information content in qubits, cryptographic applications of
quantum information processing, and quantum error correction. We have also
included a chapter on slightly advanced material dealing with the characteriza-
tion of quantum information, to bridge the gap in the material undergraduate
students are normally exposed to, and current research literature in quantum
information theory.

Richly illustrated by examples and supplemented by exercises and prob-
lems, the book is intended to take the beginner seamlessly to the state of cur-
rent research in the area, so that the advanced literature in this fast-developing
field can be easily followed. The reader is led through example and detailed
discussions to understanding some of the deeper concepts of quantum theory
that can be put to use in this area of the subject. Each chapter is accompanied
by pointers to references that take the reader beyond what is presented in the
book.
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Chapter 1

Introduction

Information as accessed by the human mind, and the myriad ways of process-
ing it, is what has set humankind apart in the animal world. The ability to use
the physical systems around us to encode and then to process information has
been evolving in leaps and bounds ever since the dawn of our race! The earliest
form of computation was probably in the form of account-keeping by counting
pebbles or on the fingers. This developed into the abacus, writing symbols,
the computing machine, and now, a laptop or a supercomputer: everywhere
we represent information by means of a physical system, and perform ma-
nipulations on that system to process the information in many desired ways,
including communication. The stress here is on the realization that the basis
of information is a physical system. The more advanced that system is and
the set of rules it functions on, the more capable our means of information
processing and communication. When the underlying physical system used for
encoding and processing information is a quantum system, we have quantum
information processing.

While technological advances have made it possible to reach astounding
speeds and processing power, the basic paradigm of current day information
processing is binary logic with currents or voltages in the semiconductor cir-
cuitry at the heart of the modern computer processors. However, it is impor-
tant to realize that the behavior of these high and low states of the circuit
is based on laws of classical physics. We know now that at the most funda-
mental level, physical systems obey the laws of quantum mechanics. These
laws are fundamentally different in many ways from classical laws of physics.
Therefore, the basic paradigm of information processing is different when we
come to quantum information processing. Not only are the algorithms and
the processing mechanism different, but there are distinct advantages of the
quantum over the classical.

According to recent data, the fastest current day supercomputer is capable
of performing at a speed of hundreds of Gflop/s.1 The quantum paradigm
affords a speedup to many algorithms that are very slow to perform even on
this computer! Much of modern-day information security, for instance secure
online cash transactions, is based on classical cryptography. This has been
proved to be vulnerable if a quantum computer is used to crack the code!

I’ve been trying to motivate the need to study quantum information. But

1Gigaflop per second, Giga = 1012, FLOP = floating point operation.
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the inquisitive scientific mind will no doubt want to grasp the basics of the
physical laws that make complex information processing possible: the laws of
quantum mechanics. Professor Richard Feynman of Caltech was supposed to
have famously said that no one understands quantum mechanics! How then are
we basing modern technology on it? With this book I’d like to show you that
despite its “weirdness”, by which I mean its distance from our common sense
understanding which appears wired to classical physics, the laws of quantum
mechanics can be apprehended by an undergraduate student, to be used as a
set of rules by which the game is played. The more philosophically inclined will
be drawn to ponder meaning and interpretation of these rules. And this latter
exercise is also rewarding, in bringing out fascinating new facets of quantum
theory, to be exploited in our ever-expanding game of information processing.

Several considerations make the transition to the quantum inevitable while
exploring efficient information processing. One is from the perspective of hard-
ware engineering, where miniaturization and the need to pack more structure
in less space must eventually lead to the limit set by the structure of matter:
the atomic or even electronic level. At this level, classical laws of physics are
no longer valid and we have to consider the essentially quantum nature of the
physical system used to store and manipulate information.

However, from the angle of the basic physical laws of quantum mechanics,
more complex ways of processing information should be possible. The manner
in which a quantum system evolves, transforms information and conveys it
in an experiment via a measurement, is fundamentally different from classi-
cal information. This was realized first by Feynman [33] in the 1980s when
he pointed out that a quantum process cannot be efficiently simulated on a
classical computer. He showed, however, that such a system may be efficiently
simulated on a quantum computer.

In the process of studying how this is possible, we are led into a deeper
probing of the foundations of quantum physics. In implementing a quantum
computer, physicists need to access and control individual quantum states,
prepare them, manipulate them and finally, measure them. The question also
arises of how to deal with practical systems that are not ideal and isolated from
their environments, but are subject to noise or errors due to inadvertent en-
vironmental effects. These considerations lead us into an experimental regime
of testing our ideas of quantum reality, and into discovering new quantum
phenomena.

The third perspective is from the theory of computation. The foundations
of modern computer science may be said to have been laid by the work of Alan
Turing in the 1930s [69], on abstract models of computing embodied in what
is now known as the Turing Machine. The Universal Turing Machine (UTM)
is an idealization of a model of computation that can execute any computable
algorithm, in short, any task that can be run on a modern programmable
computer. Notions of computability of problems and efficiency of algorithms
were developed. In rough terms, an algorithm is said to be efficient if it takes
polynomial time for execution. This means that the time required to run it
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grows as a polynomial in the number n of input bits, i.e., at most as a power
of n. A computationally hard problem is one for which the best algorithm is
exponential in the number of input bits, i.e., grows as an where a is some
constant.

As Feynman pointed out, the evolution of a quantum system is one prime
example of a problem that cannot be simulated efficiently on a Turing machine,
while a quantum computer could quite naturally do so! This was a challenge
to the Church–Turing thesis that any computation can be efficiently simulated
on a Turing Machine. This thesis had been modified to include probabilistic
machines (based on fuzzy logic) but now has been extended to a quantum
version.

Problems in computational complexity have now been extended to include
the quantum Turing machine and the possibilities are exciting. While the
basic notion of computability of a given problem does not change when quan-
tum machines are included, problems that were hard classically may become
easy. Quantum computation may also resolve other questions in the area of
computational complexity.

FIGURE 1.1: Three approaches to the quantum.

These three approaches (Figure (1.1) have historically motivated the study
of this field, which at present however, is rapidly blooming in several different
directions unforeseen in the last century.
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1.1 Bits and Qubits

So what is the fundamental difference between classical and quantum com-
puting?

Computation and information processing as we know it today is built upon
Boolean logic and algebra. Boolean algebra is binary, requiring two logical
units called bits. You can think of them as the possible answers to a decision
question: yes or no. The idea is that almost any problem can be reformulated
as a series of decision questions, and therefore can be encoded in bits. A
bit, or binary digit, is a physical system that can take on two logical states
represented by 0 and 1. In a typical digital computer these states are the low
and high voltage states in the microcircuitry.

To extend the capabilities of the computational system, probabilistic al-
gorithms are based on the notion of fuzzy bits, that can take the value 0 with
a probability p or 1 with probability 1 − p. This is the basis of probabilistic
computation, or so-called fuzzy logic.

When the logic is extended to binary states of a quantum system, we ar-
rive at the qubit, a quantum bit. A qubit can take values 0 or 1 but with
probabilities given by the mod-squared of complex numbers! A physical qubit
is a quantum system that will represent our Boolean units. The system can
therefore take on two quantum states that we will now represent in the nota-
tion |0〉 and |1〉, to distinguish them from the states 0 and 1 of the classical
bit. This angular bracket notation is due to physicist Paul Dirac [29]. This
notation is very versatile and by itself a useful calculational tool.

A qubit is generically represented as a linear superposition of the basis
states:

|ψ〉 = α|0〉+ β|1〉. (1.1)

The coefficients α and β are called probability amplitudes, and satisfy such
that |α|2 + |β|2 = 1.

The way to understand this statement is that upon measurement, the
generic qubit takes on one of the definite states |0〉 or |1〉 with a probability |α|2
or |β|2. In this sense, a qubit is similar to a classical bit in that measurement
only gives one of two values. It is sometimes useful to think of these values,
or the basis states of the qubit, as classical bits.

Though the qubit is probabilistic, it differs from the fuzzy bit because
of the possibility of interference. This is characteristic that is captured by
the complex amplitudes. A complex number has a magnitude and well as a
phase. While composing two or more such numbers, the phases could result
in reinforcement or reduction in the strength of the resultant. The physical
implications of this is familiar to us through the phenomenon of interference
in optics. When two beams of light, described by electric fields having defi-
nite phase relationships to each other, are combined, then there are regions
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FIGURE 1.2: Two-slit interference with light.

where the light cancels out (destructive interference) and regions where it gets
reinforced (constructive interference). The paradigmatic example is the dark
and bright fringes formed when two slits are illuminated by monochromatic
(coherent) light (Figure 1.2)2.

The same phenomenon is observed when two slits are “illuminated” by
a stream of quantum particles (Figure 1.3). The particles hit the screen at
different positions, and intensity of the pattern on the screen is interpreted as
the probability of a particle striking the screen at that position. Classically, we
would have expected peaks of intensity directly behind the two slits. The only
way of explaining the alternating fringes of maximum and minimum intensity
is to consider the states of the particles exiting the two slits as described
by complex amplitudes. The interference between these amplitudes perfectly
predict the fringe pattern. The general superposition state (Equation 1.1) is
therefore aptly called a coherent superposition.

One can visualize the computational space afforded by a single classical bit
as two discrete points, that is a zero-dimensional space. For a fuzzy bit, it is
all points on a line segment [0, 1], one dimensional. For a quantum bit, which
is like a unit vector that can point in any direction, the representation is any
point on a unit sphere, and the space is two-dimensional. We will see how this
is so in the coming chapters. The little caricature of Figure 1.4 captures the
essential difference in the computational capability of these bits.

2The apparatus in these figures has been drawn in a semi-realistic fashion after Bohr [14],
in his famous arguments with Einstein about the complementarity between wave-like and
particle-like behavior of quantum objects
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(a) Experimental setup: 1 slit closed

(b) Classically expected result (c) Actual result: interference

FIGURE 1.3: Two-slit experiment with quantum particles.

FIGURE 1.4: Visualizing a classical bit, a fuzzy bit and a quantum bit.
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1.2 Properties of Qubits

Quantum systems have certain properties that are counter-intuitive and
completely outside our range of experience in the classical world. These
“weird” properties are best understood as inevitable consequences of axioms
on which quantum laws are based. These axioms have been arrived at af-
ter considerable effort and study of experimental phenomena, and are now
accepted among physicists as the complete theory which describes the real
world at the fundamental level.

The basic mathematical properties of a qubit can be analyzed and studied
independent of the physical system that realizes it. By treating the qubit as
an abstract mathematical entity, we can develop a general theory of quan-
tum information processing. Some of the strange new properties that become
relevant are now discussed.

Superposition and quantum parallelism: The main implication of
states like that of Equation 1.1 is that a single state contains the potential
for the system to be in either basis state. In some sense the system, say an
electron characterized by its spin value, simultaneously exists in both states
until measured. Physically this does not seem to make sense to our classical
minds unless we say that the electron has not decided which of the two possible
states it should be in, until forced into one of them by a measurement.

This feature is exploited in quantum computation to implement what is
called quantum parallelism: an operation that acts on a bit can now simul-
taneously act on both possible values of the bit if the input is a qubit in a
quantum superposition.

Size of computational space: If we want to do an n-bit computation,
Classically the “space” available for computation is of size n. In terms of a
quantum system of n qubits, the number of possible basis states is 2n, and
this is the size of the space available for computation. The size of the space of
states available for computation grows exponentially with the number of bits
(Figure 1.5). This is the power we wish to exploit in quantum computation.

Entanglement and quantum correlations: Multiple qubit systems can
exist in superposition states that are known as entangled states. These states
possess intrinsic correlations between the component systems that are dif-
ferent from classical correlations. These correlations can survive even if the
component systems are taken physically far apart from each other. For exam-
ple, 2-qubit states are in general linear superpositions of |00〉, |01〉, |10〉, and
|11〉. Look at the state 1

2 (|00〉 + |11〉). In such a state, the first and second
systems are correlated quantum mechanically: the value of the second qubit
is always equal to that of the first qubit, irrespective of what measurement
we make on which bit and when. Such a state is called “entangled” because
of this correlation.

Quantum correlations can be exploited to generate new methods of pro-
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FIGURE 1.5: Computational power: quantum vs classical.

cessing, increasing the efficiency by allowing controlled operations to be per-
formed. These correlations are an invaluable resource in quantum information
theory and we will see their basic applications in quantum state teleportation
and secure information transfer over a distance.

Measurement and state collapse: Though a qubit could exist in a su-
perposition of basis states, a measurement of the qubit would give one of the
two basis states alone. Measurement of a quantum system causes it to collapse
into one of the basis states, which destroys the superposition, including any
information that may be encoded in the probability amplitudes. Some au-
thors express this property as a qubit existing in a superposition not having
a definite state. Measurement results can be predicted with 100% certainty in
“definite” states, and the system exists in a basis state. When a system is not
in a definite state, measurement disturbs the system and one can never know
the original state exactly. It is a quantitative and in-depth study of quantum
measurements that has uncovered new laws of quantum information.

Unitary evolution and reversibility: Quantum dynamical laws gov-
erning the evolution of an isolated quantum system are what are known as
unitary evolutions. Thus the functioning of a quantum computer is necessarily
via unitary transformations of the initial quantum state. Unitary operations
are fully reversible and, from a large body of study on the energetics of com-
putation, are said to lead to greater energy efficiency.

No cloning: This is another peculiar property of generic quantum states:
quantum states that are not basis states cannot be perfectly cloned or copied.
The fact that classical states can be copied and kept aside for further process-
ing is often taken for granted. When implementing a function in a classical
circuit, we often send copies of a particular input to different parts of the
circuit. Such an operation is no longer possible in quantum computing. This
changes the way we look at a quantum computation. And on the upside,
this also makes it possible to exchange information in a secure manner since
tapping a quantum line disturbs the system irrevocably!
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These properties lead us naturally to a model of computation often called
the “circuit model,” based on classical logic-gate circuits, of quantum compu-
tation, which is what we will primarily study in this book. However, several
other models of quantum information processing have also evolved, such as
measurement-based computation, continuous-variable computation and adia-
batic evolution. The interested reader may refer to the literature for these.

1.3 Practical Considerations

Theoretically, the examination of the paradigm of quantum computation
has been very promising and exciting. However these considerations need to be
grounded in reality. Pure quantum systems are found at the microscopic scale
and are difficult to access except by special technological means. To initialize
any information process, we must have the means to assign any desired state
to the qubit. Manipulation of the states of an individual qubit requires a high
level of technological ingenuity. We need not just one qubit but large qubit
registers. These may be built out of a collection of non-interacting qubits but
whether such a register can be built for the system at hand brings in questions
of scalability.

In implementing a quantum gate, we would be required to assemble some
means to applying forces on the system in a precise and accurate manner.
These operations would have to be impervious to error. The major prob-
lem in practice with quantum superposition states is that they are extremely
fragile. The slightest interactions would cause a disturbance by which the co-
herence is lost and the prepared system ends up in one of the basis states!
This phenomenon, known in literature as decoherence, is also crucial in un-
derstanding how the classical world emerges from the quantum substrate.
However, the discovery of quantum error correction and the subsequent con-
struction of fault-tolerant computing has infused confidence in the success of
the paradigm despite this issue.

The final big challenge is in interpreting the results of a measurement on
the system. The whole computational process must be set up such that the
end result is one of the basis states so that measurements give definite and
not probabilistic outcomes.

It may indeed be justifiable to ask if quantum computation is just in theory,
a matter of fanciful speculation, or possible in concrete implementation. While
there are technical challenges in the building of a feasible quantum computer,
the actual implementation is not only possible but also a reality. Various
ingenious techniques in quantum physics have been implemented, and newer
ones are being rapidly developed.

In developing a viable physical implementation, a bunch of criteria, first
to be underlined by DiVincenzo [30], are to be satisfied:
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1. A robust, error-tolerant system for qubits

2. A method of initializing (preparing initial states)

3. Scalability: quantum systems that must be replicated to larger numbers
to make bigger registers

4. Ability to manipulate individual quantum states: this is the most chal-
lenging engineering task that is required to make the computer work

5. Readout of output: the end result of the computation must be readable,
that is, measurement with unambiguous results.

Several systems have been analyzed with these criteria in mind. In a given
system too, there could be different possible realizations of a qubit. In Ta-
ble 1.1, we list a few such systems to give you an idea of the variety in the
physics that is involved.

TABLE 1.1: Summary of common physical implementations of quantum com-
puting systems.

System Information carrier Method of control

Quantum Optics photon polarization polarizers, half wave
plates, quarter wave
plates

presence of a single photon
in one of two modes

beamsplitters, mirrors,
and non-linear optical
media

Cavity QED two-level atom interacting
with a single photon

phase-shifters, beam split-
ters, and other linear opti-
cal elements

Trapped Ions hyperfine energy levels
and the vibrational modes
of the atom

pulsed laser light to ma-
nipulate the atomic state

Nuclear Magnetic
Resonance (NMR)

nuclear spin states pulsed RF fields in the
presence of a strong exter-
nal magnetic field

Superconducting
Circuits

Cooper-pair box electrostatic gates and
Josephson junctions

flux-coupled SQUID magnetic fields, spin inter-
actions

current-biased junction pulsed microwave fields

Quantum Dots electron spin magnetic fields and volt-
age pulses

charge state electrostatic gates and
waveguides
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It is into this amazingly rich and novel quantum world that we are going
plunge now, starting at the surface, to get a broad overview and an under-
standing of the fundamentals.

1.4 References for Further Reading

Much of the material in this book is based on some of the classics on the
subject: Nielsen and Chuang [50], the encyclopedic tome which was the first
textbook on quantum computation when the field was mainly one for ad-
vanced research; Mermin [48] which is an excellent introduction to quantum
computing for the non-specialist; John Preskill’s online lecture notes from his
Caltech classes [57]; and for more subtle ideas in quantum physics, Peres [54]
and other references that are cited at the relevant context. Other wonder-
ful books introducing this subject, at a slightly more advanced level, are by
Yanofsky and Mannucci [77]; Rieffel and Polak [58] and Stolze and Suter [67].
One of the first books written for students on this subject, by Williams and
Clearwater [74] has various new insights and computer simulation exercises
that will be useful to a newcomer. Further references to original work and
review articles will be given in the specific chapters at the relevant places.





Chapter 2

A Simple Quantum System

To obtain a basic understanding of how and why quantum computing works,
one needs to understand quantum theory. In this book we treat quantum
mechanics as an axiomatic theory, with some interpretations where possible.
The implications of quantum mechanics are often counter intuitive, or rather,
beyond intuition, since we have no direct experience of the quantum world as
we do the classical. We assume no prior knowledge of quantum mechanics, and
will develop all the basic tools and ideas necessary for a sound grasp of the
fundamentals of the theory, especially what is relevant for two-state systems
that we’ll use as qubits. For a more detailed picture, the reader is referred to
standard texts on quantum mechanics, such as the books by J. J. Sakurai [60],
R. Shankar [62], C. Cohen-Tannoudji [20], E. Merzbacher [49] etc. or the
Feynman Lectures on Physics Vol III [34].

The language of the science of describing the physical world is mathe-
matics: universal, unambiguous, and precise. Without this language it is not
possible to express correctly the properties of the physical world, nor is it
possible to predict new physical phenomena that can then be examined by
experiments. Thus it is imperative that we learn to speak and write this
language. The mathematical language of quantum mechanics is that of vector
spaces and linear algebra. States of an isolated quantum system are accurately
designated as vectors in a complex vector space known as Hilbert Space. The
evolution of the system with time, or under the influence of forces is expressed
as linear operators acting on these vectors.

Our aim is to understand how a quantum system can be used to carry
information. We wish to identify a system that can exist in a discrete number
of distinct states, in fact two states, to form a qubit. We will try to put the
mathematics in context by first examining the structure of a simple 2-state
quantum system via experiments that bring out the basic nature of qubits,
and the need for this new language to communicate their properties.

2.1 The Stern–Gerlach Experiment

Way back in 1922, when physicists were still studying the new and aston-
ishing properties of the basic constituents of matter, an experiment designed

15
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to measure the magnetic moment of atoms gave unexpected results. This was
the classic Stern–Gerlach experiment [36], designed to measure the magnetic
moments of atoms. The results brought out a new quantum property of an
electron, called intrinsic spin, which could take on quantized values, i.e., one
of two values only.

We can get a feel for the physics by looking at the classical definition of the
magnetic moment. The revolution of electrons around the nucleus of an atom
is like a circulating current, and a circulating current is a magnetic dipole.
The dipole moment ~µ equals the current times the area of the current loop,
with direction given by the axis about which the current circulates. When a

magnetic dipole is subjected to a non-uniform magnetic field
−→
B (~r), it feels a

force along the direction of change of the field:
−→
F =

−→
∇(~µ ·

−→
B ), and will be

deflected. Measuring the deflection in a known magnetic field, the value of the
magnetic moment can be calculated.

A schematic setup of the Stern–Gerlach type is shown in Figure 2.1.

NN

SS

FIGURE 2.1: (a) The Stern–Gerlach Setup. (b) The inhomogeneous magnetic
field between asymmetric pole pieces.

The arrangement is such that in the region the electron beam passes
through, magnetic field is nearly constant in direction (taken to be ẑ)1 but

has a strong z-dependent change in magnitude, i.e.,
−→
B ≈ B(z)ẑ. The force

on the dipole when placed in this field is

−→
F =

−→∇(~µ ·
−→
B ) =

−→∇(µzB(z)) = µz
∂B(z)

∂z
ẑ. (2.1)

Thus the atom is deflected along the z-axis by an amount proportional to the
z-component of its magnetic moment. Remember: since a magnetic field can
deflect magnetic moments depending on their magnitudes and directions, it

1By convention, in physics experiments, the coordinate system is aligned to the direction
of the magnetic field, which is always taken to be the z-axis.
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can be used to select particular magnetic moments. The net magnetic moment
of a collection of atoms is just the vector sum of all the individual atomic
magnetic moments. A beam of atoms having a specific constant magnetic
moment along a particular direction is said to be polarized. It is possible to
produce a beam of polarized atoms by specific procedures.

The beam of silver atoms used in the original Stern–Gerlach experiment
was produced by heating silver in an oven. Each atom emerges with a random
direction of magnetic moment and the net magnetic moment is zero. If such
an unpolarized beam is sent into the non-uniform magnetic field, then since
each atomic magnetic moment is arbitrarily oriented, the z-component of the
magnetic moment could vary between ±µ. So we expect the beam to spread
between two extreme limits, which define the value µ of the magnetic moment
(see Figure 2.2(a)).

NN

SS

NN

SS

FIGURE 2.2: The Stern Gerlach experiment: (a) The classically expected
result. (b) What was actually observed.

Suppose, for simplicity, that this experiment is performed with a beam of
hydrogen atoms. The hydrogen atom consists of a single electron and a proton.
Classically one can think of the electron as orbiting the proton. The atom has
associated with it energy that has various contributions. At the first level, the
contribution depends on the electrostatic energy, determined by the distance
between the positive nucleus and the negative electron, i.e., the orbit radius.
Let’s assume that this is the minimum possible, or the “ground state” radius.
Second, the energy depends on the orbital velocity of the electron, contributing
to the orbital angular momentum of the atom. Finally, if the atom is subjected
to a magnetic field, its interaction with the field contributes to the energy. The
classical analogy however, is severely limited, because radius, velocity, and
component of magnetic moment along the magnetic field direction, all can
take continuous possible values whereas an atom’s energy is quantized: takes
on only certain discrete values. Correspondingly, the atom is said to exist in
possible quantized energy states.

The lowest energy state (s-state) has a symmetrical distribution of veloci-
ties such that there is no net circulating velocity. Therefore, in this state, the
atom is expected to have zero magnetic moment since the average “current”
is zero. This means that the beam, when it passes through the Stern–Gerlach
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setup, will just proceed without deflecting or spreading. The silver atoms used
in the original experiment also have zero average magnetic moment. The ex-
periment with hydrogen was also subsequently performed, in 1927 [56].

When the experiment was actually performed, there were two surprises.
The beam of atoms did not pass through undeflected. Nor did it spread, but
instead split into two beams symmetrically about the central axis, one up and
one down. Measuring the positions of the beams indicated a value of ± 1

2 ,
in appropriate units,2 for the magnetic moment! The appearance of Planck’s
constant h (numerically 6.63×10−34Js), in the magnitude, is a signature of the
quantum nature of this property. Whose magnetic moment? The atom in s-
state has no net magnetic moment, but has a lone electron. So this had to be an
intrinsic moment associated with the electron in the atom. Thus, the magnetic
moment of the electron is allowed only to take one of two discrete values!
Classically, the magnetic moment is proportional to the angular momentum of
the system. Here, the electron magnetic moment is proportional to a property
called intrinsic spin, which mathematically behaves like angular momentum.
Thus was discovered the spin of the electron, a quantum property that is
allowed only two possible values, plus or minus a half.

A word of caution is in place here. In the previous paragraphs we gave a
description of the atom in a classical way, to help you form a picture of the
physics involved. However, this description is severely limited. In truth, the
orbiting of the electrons about the nucleus is not like point particles revolving
in space. Nor is the electron really spinning about its axis, it is a point particle
with no extension in space! We want to emphasize that the electron spin is a
purely quantum mechanical concept, and is physically probed by virtue of its
interaction with a non-uniform magnetic field.

You can well imagine that the choice of a particular direction for the
magnetic field inhomogeneity cannot affect the value of the magnetic moment
of the electron: so even if the apparatus was tilted along any direction, the
results would remain the same.

Thus an atom with a single electron, described on the basis of its spin
alone, is a 2-state quantum system, well suited as a candidate qubit. We will
now illustrate the properties of a qubit using this experiment.

2.2 Quantum State: Basis States

The Stern–Gerlach setup of Figure 2.1 with the direction of inhomogeneity
of the magnetic field defined as the z-axis is going to be the basis for defining

2The standard unit for atomic magnetic moment is the Bohr Magneton, given by
e~

2mec
,

numerically equal to about 5.8×10−5eV/T, where me is the mass of the electron, c is the
speed of light, and ~ = h/2π is the (reduced) Planck constant.
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and measuring electron spin. Let’s put it in a box and abbreviate as SGz. The
incident beam consists of unpolarized electrons. The machine SGz produces
as output two beams, one above the z = 0 axis with electrons of “up” spin
and the other below z = 0 with electrons of “down” spin. The SGz machine
thus manufactures definite quantum states out of an arbitrary beam. If we
isolate or “‘ilter out” either of these two states by blocking the other beam,
the surviving beam is said to be polarized, and each electron in that beam is in
a specific quantum state, called a basis state. A quantum state is represented
as an angular bracket with a descriptive label inside: a very versatile and
useful notation due to Dirac [29]. The two basis states are represented as |↑〉
and |↓〉. (Note that these states are defined with respect to a direction of
inhomogeneity of an applied magnetic field.) We can thus use the SGz filter
to prepare electrons in a predefined quantum state.

|↑〉 |↓〉

FIGURE 2.3: The SGz filters (the paths of the beams are bent back to z = 0
using suitable magnets).

The two SGz filters, producing the two basis states, are illustrated in Figure
2.3. (The paths of the beams can be bent back to the z = 0 axis by using
appropriate magnets.)

We thus not only use the SGz as a measuring tool for determining the
state of an electron, but also as a factory for preparing a known state. This
state will be labelled by the spin component along the z-direction.

Suppose a beam of electrons in an unknown state is analyzed using an SG
machine. The intensity of a particular output beam can be thought of as the
number of electrons in the input beam that are in the corresponding output
state. However there are subtleties here. A particular electron in the input
beam randomly chooses the up or down output port of the machine. From
the fraction of the total number of electrons that exit from a particular port,
we can deduce the probability of the incident electron being in that particular
state. This is how quantum mechanics works. We collect a set of statistics of
probabilities from measurements and then infer the properties of the system
and its state. This is the reason quantum mechanics is often described as a
probabilistic theory.

A system could be in a purely quantum mechanical state, with quantum
probabilities, and is said to be a pure quantum state. However, classical un-
certainties could also be present in a given system, in which case the system
is said to be in a mixed quantum state. For example, the unpolarized beam
of silver atoms from the oven in the Stern–Gerlach experiment is actually in
a mixed state. We will see more of this distinction in later chapters. For our
present introduction, however, we will assume that our systems are always in
pure quantum states only.
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Let’s denote the (unknown but pure) input state of the electrons in the
beam by |i〉 and the output state by |o〉. The probability of obtaining this
particular output is given by

P(|i〉 → |o〉) =
no. of electrons in state |o〉

Total number of electrons in input beam
. (2.2)

We are going to use this information to build a mathematical picture of the
spin states of the electron. Let’s introduce a notation for this probability (in
anticipation of the next chapter). In quantum mechanics, a process such as
just described, is associated with a probability amplitude, which is in general
complex, denoted by 〈o|i〉. Following the lead of optics, where the intensity of
a beam of light is the square of the amplitude of the resultant electric field,
the probability of getting output |o〉 from input |i〉 is represented by

P(|i〉 → |o〉) = |〈o|i〉|2. (2.3)

The reason for amplitudes taking possibly complex values will be seen when we
look at the phenomenon of interference between amplitudes in a later section.

The importance of basis states is that when an experiment is performed
to measure the state of an electron, the result is invariably one of the basis
states. For quantum computation, these basis states represent the bits 0 and
1. They are quantum states and we write them as

|0〉 ≡ |↑〉; |1〉 ≡ |↓〉. (2.4)

This representation is called the computational basis. We can think of these
basis states as analogous to the classical bits 0 and 1.

2.2.1 Superpositions

A generic (unknown) state |ψ〉, before measurement in a particular basis,
has the potential to be in either basis state. Suppose the probability am-
plitudes for measuring the state to be |↑〉 is a complex number α and that
for |↓〉 is β. We express this fact mathematically by writing |ψ〉 as a linear
superposition

|ψ〉 = α|↑〉+ β|↓〉. (2.5)

Out of a beam of N electrons, a fraction |α|2 would end up in the upper
beam and the fraction |β|2 would be in the lower beam. Since all the electrons
emerge from the process, the total probability must be one:

|α|2 + |β|2 = 1.

This unknown state |ψ〉, with the potential to be in either of the basis states,
is said to be in a superposition of the basis states.

The peculiarity of a superposition state is that until the system is mea-
sured, the state is not definite. It is difficult to visualize, with our classical
minds, an object that is in both basis states at once!
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2.2.2 Choice of different bases

The magnetic moment, and therefore spin, has three spatial components,
and we think of spin as a vector in space with x, y, and z components. To
completely determine the spin of an electron, we would need to measure all
three components. We could do this by setting up SG machines with magnetic
inhomogeneities along the x and y directions as well.

Let’s try this on our beam of electrons, whose initial spin state is unknown.
We first pass the beam through SGz. Those electrons in the spin state |↑z〉
are filtered and sent into an SGx machine (Figure 2.4). Now classically we
would expect that the x spin component should be zero. However, we get two
equally intense spin up and spin down beams!

FIGURE 2.4: Measuring Sx after Sz.

This experiment says that an electron in the basis state |↑z〉 has definite
probabilities of being in both basis states in the x-basis

P(|↑z〉 → |↑x〉) =
1

2
,

P(|↑z〉 → |↓x〉) =
1

2
. (2.6)

Prior to the measurement, the state of the input to the SGx is actually a
superposition of the spin-x basis states:

|↑z〉 =
1√
2
|↑x〉+

1√
2
|↓x〉. (2.7)

The coefficients in this superposition are the probability amplitudes, and they
are squared to get probabilities.

Now let’s block the lower beam in the above experiment. This step con-
stitutes a measurement of the incoming beam and filtering out the spin down
components with respect to x. In the third step we pass the |↑x〉 beam through
an SGz (Figure 2.5). What is the output?

FIGURE 2.5: Successive measurements of Sz, Sx and Sz.

If you expect that only the |↑z〉 beam is seen, you are wrong! We once
again obtain equally intense spin up and spin down beams.

This brings out a peculiar property of quantum measurements: that the
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measurement of Sx in the second stage has destroyed all the information
about the z component of the spin that the incoming beam had. The third
stage sees only the |↑x〉 state that is incoming at that stage, which is an equal
superposition of |↑z〉 and |↓z〉. If the experiment is performed to determine Sy
instead of Sx on |↑z〉 we get the same result: equal components of |↑y〉 and
|↓y〉.

Another feature of quantum mechanics brought out by this experiment is
that the three components of the spin vector do not have definite values on the
same particle! If we measure one component to know it exactly then the other
two become equally indefinite! This is enshrined in a principle known as the
“uncertainty principle,” more accurately called the indeterminacy principle.
This principle states that there exist observables that are incompatible with
each other with respect to measurement, for example the three components
Sx, Sy, and Sz of the spin vector, and accurately determining one of them
makes the others indeterminate. We will state this principle in mathematical
terms in the next chapter.

Exercise 2.1. What is the output from the series of Stern–Gerlach machines
shown below?

2.2.3 Characteristics of basis states

Suppose we have a spin-up beam (the output from SGz ↑). Feeding it into
another SGz ↑, we would get an output |↑z〉 beam of the same intensity (see
Figure 2.6).

FIGURE 2.6: Repeated spin measurements.

This is represented by the probability amplitude 〈↑z|↑z〉 = 1.
If we pass the spin-up beam through an SGz ↓ filter, then we get no

output beam: 〈↑|↓〉 = 0. A similar experiment with SGz ↓ filter will show us
that 〈↓|↑〉 = 0 and 〈↓|↓〉 = 1.

At this stage, let us agree to treat the spin states |i〉 and |o〉 as vectors,
and think of

〈o|i〉

as the vector inner product of the states. Also switch to the notation of qubits:

|↑z〉 ≡ |0〉, |↓z〉 ≡ |1〉.
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The above properties summarize as

• 〈0|1〉 = 0 =⇒ they are orthogonal states

• 〈0|0〉 = 1 = 〈1|1〉 =⇒ they are unit vectors

Thus the set of basis states {|0〉, |1〉} form an orthonormal basis for the
state space of the qubit.

2.3 An Experiment to Illustrate Superpositions

An experiment such as that in Figure 2.6 represents a measurement out-
come: the average value of the z-component of spin of the input beam is
+1/2, obtained by the weighted probabilities of spin 1/2 at the up port and
spin −1/2 at the down port, which in quantum notation is:

〈Sz〉|i〉 =
1

2
|〈↑z|↑z〉|2 + (−1

2
)|〈↓z|↑z〉|2 =

1

2
.

Similarly, the experiment in Figure 2.4 gives us the average value of the x-
component of spin the input beam |↑z〉, which is zero:

〈Sz〉|i〉 = +
1

2
|〈↑x|↑z〉|2 + (−1

2
)|〈↓x|↑z〉|2 = 0.

Consider a beam of spin-up electrons from the filter SGz ↑. We now set up
a second Stern–Gerlach machine, but rotated by an angle θ to z. Let us label
this machine “SGθ”. Into this machine we pass the beam of |↑z〉 electrons.
What would be the measured output? The schematic setup is in Figure (2.7)
and the outputs are |↑θ〉 state at the up port and |↓θ〉 state at the down port.
We wish to predict the probabilities of each state.

FIGURE 2.7: An experiment with the SG along an arbitrary direction θ.

Now the “classical” projection cos θ×1/2 of the spin of the incoming beam
along the θ direction, gives us an average value for the measured spin, weighing
in both the output ports. The intensity of the up beam gives an average
spin of +1/2 with probability P(↑θ) = |〈↑θ|↑z〉|2 and −1/2 with probability
P(↓θ) = |〈↓θ|↑z〉|2. The total probability of this happening is cos θ. So we have

1

2
cos θ =

1

2
P(↑θ)−

1

2
P(↓θ). (2.8)
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We also have an equation for conservation of probability:

1 = P(↑θ) + P(↓θ). (2.9)

From these two, we get the probabilities of the up and down spin states in the
output:

P(↑θ) = cos2 θ

2
, P(↓θ) = sin2 θ

2
. (2.10)

Let’s check this result by comparing with the special cases:

• θ = 0: SGθ = SGz,
P(↑) = 1, P(↓) = 0.

• θ = π: SGθ = SG−z or an SGz turned upside down,

P(↑) = 0, P(↓) = 1.

• θ = π/2: SGx (or SGy)

P(↑) =
1

2
= P(↓)

Mathematically we can write the state of the input electron as a superpo-
sition of the output states of SGθ:

|↑z〉 = α|↑θ〉+ β|↓θ〉,

where

|α|2 = P(↑θ) = cos2 θ

2
, |β|2 = P(↓θ) = sin2 θ

2
.

The experiment only tells us the magnitudes of the complex amplitudes α and
β.

2.4 Interference and Complex Amplitudes

Consider a sequence of Stern–Gerlach tests where an unpolarized beam
passes through an SGz and subsequently through an SGx. Clearly there are
four possible outcomes: a screen placed at the end will show up 4 spots as in
Figure 2.8.

If we place another SGz at the end, we expect eight possible outcomes as
in Figure 2.9.

If we now slowly turn off the middle SGx, we expect the x−separation of
the beams to slowly reduce until they coalesce and we expect four outcomes
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FIGURE 2.8: Successive Stern–Gerlachs in z and x.

FIGURE 2.9: Successive Stern–Gerlachs z, x and z again.

all vertically separated. However, this is finally equivalent to two SGz’s one
after the other, and the result should be just two beams vertically separated!

What’s wrong here?
Clearly it is the second scenario that should be experimentally observed,

and indeed is. The conflict between two pictures can be resolved by considering
interference between the beams. The final spot intensity at a point on the
screen is obtained by the square of the superposition of probability amplitudes
of the beams overlapping at that point. The amplitudes for the middle two
beams have to be of opposite signature (or phase, to use an optics analogy) so
that when the x-field is gradually reduced, and the beams merge, they cancel
each other when they overlap. The picture for the beams as this happens is
schematically indicated in Table 2.1

TABLE 2.1: Interference in the Stern–Gerlach setup.

Beam Amplitudes Spot intensity on screen

Left Right as SGx is slowly turned off

L R L R Final (SGx off)

+ +

+ − no spot

− + no spot

− −

In the language of optics, we can say that the middle two beams, having
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opposite phases, destructively interfere so that the corresponding intensity is
zero.

This was an example of interference between just two states. In more com-
plex situations where multiple states exist, each state must be associated with
a phase that is in general complex. It is this phenomenon of interference in
quantum mechanics that calls for description of states with complex ampli-
tudes. In mathematical language, each state is associated with a complex
vector, one that has a magnitude as well as a phase.

The Stern–Gerlach setup we have described in this chapter serves multiple
purposes for us. First, it demonstrates the quantum property of spin of an
electron as a prototypical two-state system that can be used as a qubit. Second,
we can use the setup to prepare a quantum system in a predefined state:
initializing it to |0〉 or |1〉 by filtering out one of the outputs. Third, the setup
can be used as a detector to measure the state of the input beam.

Exercise 2.2. Suppose that one of the four beams output from the middle SGx
were blocked (in Figure 2.9). What would be the intensities of the various
output beams?

Box 2.1: Polarization States of Light
The quantum spin described in this chapter is novel and has no classical

analog. However, the same picture of a 2-dimensional Hilbert space emerges
from considering the polarization states of light. This example is worth con-
sidering, as it will be particularly useful later when we use light for quantum
information processing. The analogy with spin is also complete, with a classi-
cal picture to peg our understanding on.

Classically, light is electromagnetic radiation, with oscillating electric and
magnetic fields. The form of the fields comes from solutions to Maxwell’s
equations. It is easier to detect the electric field, so we will describe light by
its electric field vector. The important parameters that describe a monochro-
matic light wave are its wavelength λ and angular frequency (color) ω and the

wave vector ~k = 2π
λ k̂ giving the direction of propagation. The direction k̂ is

conventionally taken to be ẑ, just as SGz is the standard for the spin system.
An important property of the electromagnetic wave in free space is transver-
sality: the electric field vector always lies in a plane perpendicular to k̂. The
direction of the electric field vector is known as its polarization. This direction
could be constant, as in linearly polarized light, or rotate in the polarization
plane, as in circularly polarized light.
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FIGURE 2.10: Linearly polarized light wave.

Let’s first look at linearly polarized light with the
−→
E field oscillating along

a direction we’ll call ε̂ (Figure 2.10). It is possible to produce such light by
passing unpolarized light from a monochromatic source through a polaroid
filter. Such a filter has a “pass axis” that allows polarizations parallel to this
axis alone to be transmitted through. The field is described by

−→
E = E0ε̂ cos(kz − ωt). (2.11)

The intensity of light is given by the magnitude square of the electric field.
If a second polarizer, with its pass-axis at an angle δ to the first, is placed in

the light path, then only the component of the
−→
E field along this angle is

passed through. So the electric field of the transmitted light is E cos δ in a
direction parallel to the new pass axis. The intensity of the light falls by a
factor cos2 δ (Figure 2.11).

FIGURE 2.11: Effect of a linear polarizer on unpolarized light; subsequent
polarizer allows only a component ∝ cos2 δ through.
More generally, the electric field could have components oscillating along the
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x̂ and the ŷ directions with different amplitudes and even different phases:

−→
E = E1x̂e

i(kz−ωt) + E2ŷe
i(kz−ωt+φ). (2.12)

FIGURE 2.12: Light with elliptic polarization: the electric field vector traces
out an ellipse in the x-y plane
One can define the polarization vector

ε̂ =
E1

|
−→
E |
x̂+

E2

|
−→
E |

eiφŷ.

This is in general elliptical polarization (Figure 2.12). The special case φ = π/2
corresponds to circular polarization while φ = 0 is linear polarization.
It is easy to see that if x̂-polarized light is incident on a ŷ-polarizer (a polaroid
filter with its pass axis along the ŷ direction), no light passes through. We
can thus define two orthogonal polarization states of light corresponding to
the vertical (ŷ) and horizontal (x̂) directions. This experiment is analogous
to the Stern–Gerlach-z machine, with up and down ports being analogous to
the vertical and horizontal polarizations. We can thus draw analogy between
the vector space of light polarizations and the spin Hilbert space:

|0〉 ↔ l
|1〉 ↔ ↔ .
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To create the optical analogue of the states produced by SGx filters, we will
need to use polarizers that are rotated by 45◦ with respect to the earlier ones.
Light produced by these polarizers can be in polarization states l and l
defined by the 45◦ orthogonal directions:

l =
1√
2

(x̂+ ŷ)

l=
1√
2

(x̂− ŷ).

It is easy to see that if l light is incident on an x̂ or ŷ polarizer then 50% of
the incident beam passes through. Similarly for l .
The analogy of the SGy basis is with right and left circular polarization. From
Equation 2.12, we see that light with electric field rotating in the plane of
polarization arises due to a phase difference of π/2 between the x- and y-
components. The complex notation is most suitable for expressing this phase
relationship (using i = eiπ/2):

|↑y〉 ↔ 	=
1√
2

(x̂+ iŷ) (2.13)

|↓y〉 ↔ �=
1√
2

(x̂− iŷ) (2.14)

The necessity of complex probability amplitudes becomes clear now, due to
considerations of phase being unavoidable.
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Chapter 3

The Essentials of Quantum
Mechanics

How do we describe the state of a quantum mechanical physical system in a
mathematically precise way? How do we ascribe physical properties to this
system? How does the system evolve in time? How do its properties change
when it interacts with another system or a force? How do we measure and
determine its properties? These are the questions whose answers are encoded
in the laws of quantum mechanics to be set down in this chapter. They have
been inscribed in this form after nearly half a century of experimental obser-
vations, theoretical modeling, and intellectual gymnastics to tie up the two in
a satisfactory and robust structure.

3.1 The State Space

When you describe the state of a physical system, you collect all the pa-
rameters required to fully specify it: for instance, the state of a ball may be
specified by its position in space, its velocity, and maybe its rate of spin; the
state of a volume of gas by its temperature and its pressure. If you are trying
to describe a quantum system like a hydrogen atom, you may think specifying
the position and velocity of the atom and its constituents, the nucleus and the
electron would give the quantum state. Whether this is true, or even possible
in principle, depends on how you are trying to see the atom: which properties
you are trying to measure and what experiments you are using to measure its
properties,

So we first identify a system, an isolated set of physical properties that we
have experimental access to and are trying to describe. The quantum state of
the system, denoted by the notation |state〉,1 is represented by measured values

1The notation due to Dirac that we use in quantum mechanics may need some more
clarification. A state is labelled abstractly as |ψ〉, or as |0〉, or as |xi〉. The labels are just
mnemonics to tag the state. They may be numbers but are not the components of the
vector in any basis. For instance, |0〉 does not mean the zero vector, for which we will
use the notation ~0. The 0 used as a label is an indication of a first basis vector in the
computational basis.

33
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of the physical properties used to describe it. It is important to know which
properties are independent of each other, measuring which do not interfere
with the other properties. The outcome of the measurement could be one of
many possibilities. Each possibility labels a different state. The set of all these
forms the state space of the system.

In the last chapter, the particular property of spin of an electron was
targeted for study, by designing the Stern–Gerlach experiment. This led to a
state space of two states.

The properties of a quantum state turn out to conform to those of a vector
in the mathematical sense: a member of a complex vector space (see Box 3.1),
with a notion of norm or inner product defined on it. Such a vector space
is called a Hilbert space (see Box 3.2). The vector describing a state must
also have unit norm, since we will be attaching a notion of probabilities to
the state. The complex vector may also have imaginary components, but an
overall phase factor is unimportant since we have no means of measuring it.
Thus a state is unit vector in complex space, modulo an overall phase factor.

Postulate 1. The state of an isolated quantum mechanical system is a unit
vector in Hilbert space.

Box 3.1: Linear Vector Space
A vector space V is a set of objects v, called vectors, that abstractly

satisfy the properties of closure under an operation of addition, and under
multiplication by a scalar which belongs to a field F , that for example could
be real or complex numbers. In what follows, a vector is designated by a
boldface, such as v, while a scalar is not.

The axioms defining a vector space are

1. Addition: one can define an operation “+” such that for any vectors
vi ∈ Vn,

(A1) Vn is closed under +: v1 + v2 ∈ Vn,

(A2) + is commutative: v1 + v2 = v2 + v1,

(A3) + is associative: (v1 + v2) + v3 = v1 + (v2 + v3) .

(A4) ∃ a zero vector or additive identity 0 ∈ Vn such that v + 0 = v.

(A5) For each v ∈ V, ∃ an additive inverse−v ∈ Vn such that v+(−v) =
0.

2. Scalar Multiplication: for any scalar α ∈ F and vector vi ∈ Vn,

(M1) V is closed under scalar multiplication: αv ∈ Vn,

(M2) For the multiplicative identity 1, we have 1v = v,

(M3) Multiplication by the scalar 0 gives the zero vector: 0v = 0,
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(M4) Associativity: α(βv) = (αβ)v,

(M5) Distributivity over vector addition: α(v1 + v2) = αv1 + αv2 ,

(M6) Distributivity over scalar addition: (α+ β)v = αv + βv

The element −v = (−1)v is the additive inverse of v.

Vectors can be represented by components if we choose a set of “coor-
dinates” or basis vectors for the representation. A basis for a vector space
consists of a set of vectors {ei} whose defining properties are:

1. they are linearly independent: no basis vector can be expressed as a
linear combination of the other basis vectors; no set of numbers {ai}
can be found such that ∑

i

aiei = 0.

2. they span the vector space V: any vector v ∈ V can be expressed as a
linear combination of the basis vectors:

v = c1e1 + c2e2 + · · ·+ cnen.

The index i counts the basis vectors: i = 1...n. The total number n of basis
vectors is the dimension of the vector space. This dimension can be finite or
infinite. The index i can be discrete or continuous. We will only be dealing
here with finite-dimensional complex vector spaces.

A vector space in general has more than one basis. A vector represented
by its components is also represented as a column matrix:

v =


c1

c2
...

cn

 .
To save space, we will also represent this as the transpose of a row vector

v =
[
c1 c2 . . . cn

]T
.

This representation is extremely useful when we consider transformations of
a vector space into another by linear maps, which can be represented by
matrices.

Vector spaces are familiar to us from 3-dimensional spacial vectors, but
the above definitions generalize such properties to a larger class of objects.
We find that even continuous functions of complex numbers that are infinitely
differentiable and vanish fast at infinity form a vector space.
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3.1.1 Basis states

We saw in the previous chapter how to describe the spin state of an elec-
tron.2 The “system” in this case is just that property of an electron that
responds to a gradient in an applied magnetic field. The state of this system
is a member of a 2-dimensional vector space. This is because this spin can take
one of only two possible values, ±~/2. An electron in either of these states is
described by the basis vectors

|0〉 = |+~
2 〉, |1〉 = |−~

2 〉.

A general state |ψ〉 is a linear combination of these basis vectors with complex
coefficients:

|ψ〉 = α0|0〉+ α1|1〉.

As we will show, these basis states are mutually orthogonal and are nor-
malized, so that they form an orthonormal basis. This is similar to repre-
senting a physical 2-dimensional vector in terms of its components along two
orthogonal directions. This vector is represented as the column matrix of its
components: [ α0 α1 ]T .

We can easily generalize this to higher dimensions. Such a picture is rel-
evant when the set of basis states for the system is larger. For example, the
system may be the magnetic moment of a spin-3

2 atomic nucleus. This object
would have four possible states distinguished in a non-uniform magnetic field:

{|j〉} = {| 32 〉, |
1
2 〉, |−

1
2 〉, |−

3
2 〉}.

Another example is the electronic energy of the hydrogen atom. This system
actually has a countable infinity of possible energy states labelled by the so-
called “principal quantum number” n:

{|n〉}, n = 0, 1, 2 . . . .

This Hilbert space is actually infinite dimensional, though we might say the
dimensionality is “countable.” If we were concentrating on the position states
of a particle confined to a line then the possible states are a continuous infinity
labelled by the values of the position x:

{|x〉}, −∞ ≤ x ≤ +∞.

This Hilbert space is also infinite dimensional, and the dimensionality is con-
tinuous and uncountable.

2The spin space is a subspace of the total state space of an electron, which contains
descriptors of all possible compatible measurable properties of the electron. This Hilbert
space can be expressed as a direct product of the independent subspaces.
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Box 3.2: Hilbert Space
The linear vector space of Box 3.1 turns into something rich enough to

represent states of a physical system if a little more structure is added to it.
We now have a Hilbert space Hn which is defined as a complex vector space
with an inner product (., .) ∈ C which satisfies

(I1) (v,v) ≥ 0, (v,v) = 0 iff v = 0.

(I2) (u,v) = (v,u)∗

(I3) (u, αv) = α(u,v)

(I4) (v1 + v2,v3) = (v1,v3) + (v2,v3).

With this structure in place, a vector space becomes a pre-Hilbert space,
and is a Hilbert space if the dimension is finite. For infinite-dimensional Hilbert
spaces, one needs the additional criterion of the space being complete under
the inner product, which we will not discuss here.

3.1.2 Inner product

In order to be able to define orthogonality and the “size” of a vector, we
need the notion of an inner product. This is just like the dot product of two
vectors. This is basically a rule for assigning a (complex) number to a pair of
vectors.

For this we define a dual vector space V† of same dimensions. Vectors in
this space are represented by row matrices [α0 α1 ... αn]. The dual of the
vector |v〉 = [v1 v2 . . . vn]T is represented by 〈v| = [v∗1 v∗2 ... v∗n] where the
∗ denotes complex conjugation. Thus the matrix representation of the dual
vector 〈v| is the complex conjugate transpose of |v〉, denoted by |v〉†.

The inner product of vectors |φ〉 and |ψ〉 is defined as the complex number
〈φ|ψ〉. (This bracket 〈·|·〉 for inner product is the origin of the Dirac bra-ket
notation: the ket vector |·〉 has a dual bra vector 〈·| and their product gives
the “bra(c)ket”.)

If |ψ〉 = [α1 α2 . . . αn]T and |φ〉 = [β1 β2 . . . βn]T then their inner
product is

〈φ|ψ〉 = β∗1α1 + β∗2α2 + ...+ β∗nαn. (3.1)

Some of the consequences of this definition are:

• Norm of a vector is defined as ‖v‖ =
√
〈v|v〉. A vector is said to be

normalized if it has unit norm. An arbitrary vector can be normalized
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by dividing it by its norm:

|v〉norm =
|v〉
‖v‖

.

• Orthogonality: vectors |ψ〉 and |φ〉 are orthogonal to each other iff
〈ψ|φ〉 = 0.

A Hilbert space spanned by n linearly independent vectors |i〉, i = 1...n is
said to be n-dimensional. The set then defines a basis for the space. A generic
vector in the space can be expressed as a linear combination of these basis
states with complex coefficients ci:

|ψ〉 =
n∑
i=1

ci|i〉. (3.2)

In matrix representation, the natural basis vectors are the n-column vectors

|0〉 =


1

0
...

0

 ; |1〉 =


0

1
...

0

 ; ... |n〉 =


0

0
...

1

 .
It is useful to note that the label i is also the integer representation of the
binary number represented by the string of components of the ith basis vector!
An example for n = 2 gives us the basis for qubits:[

c0

c1

]
= c0

[
1

0

]
+ c1

[
0

1

]
.

Experimentally, the orthonormal basis states for a quantum system would
be states such as a |↑〉 and |↓〉, that are mutually exclusive results of direct
measurements of a physical property. An arbitrary state would be a linear
combination of these basis states. The complex coefficients ci of the com-
bination are interpreted as probability amplitudes for the state to be in
the corresponding basis state |i〉. These probability amplitudes can also be
expressed as

ci = 〈i|ψ〉.
So we can write the general quantum state as

|ψ〉 =
n∑
i=1

〈i|ψ〉 |i〉.

Since probabilities must add to 1, we get what is called the normalization
condition

n∑
i=1

|ci|2 = 1.
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This is the same as the condition 〈ψ|ψ〉 = 1, i.e., the state |ψ〉 must be
normalized, or be a unit vector in Hilbert space. A state vector that does not
have unit norm can be normalized by dividing it by its norm.

The first axiom of quantum mechanics is a statement that embodies all
this.

Exercise 3.1. Normalize the vectors

[
1

1

]
and

[
1

−1

]
. Show that they are

orthogonal.

Exercise 3.2. Normalize the state |0〉 − 2i|1〉.

3.1.2.1 Meaning of inner product

Inner product of vectors gives the component of one vector in the direction
of the other. Similarly for quantum states, the inner product 〈ψ|φ〉 is the
probability amplitude that one state is along the other. For example,

|ψ〉 =
1√
3
|0〉+

√
2

3
|1〉.

Then the inner product

〈0|ψ〉 =
1√
3

is the probability amplitude that the state |ψ〉 has spin up.
As another example, the Hilbert space of position states of a particle along

the x-axis would have an infinite set of basis states |x〉. A general state |ψ〉
has a probability amplitude 〈x|ψ〉 = ψ(x) of being found at the location x.
This probability amplitude as a function of position is better known as the
wave function of the particle.

The inner product also comes in when describing the outcome of a process
that transforms a system from initial state |ψi〉 to final state |ψf 〉. The mod-
square of the probability amplitude for this process is then the probability
that such an event can occur:

P(|ψi〉 → |ψf 〉) = |〈ψf |ψi〉|2. (3.3)

This statement, one of the underpinnings of quantum mechanics, is known as
the Born rule after Max Born,3 who first postulated it.

3.1.3 Phases

The coefficients in the expansion of a state in terms of the basis states are
complex numbers in general. We saw one reason for this in the last chapter:

3In a 1926 paper in a German journal, Born mentioned the probability interpretation in
a footnote.
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we need to account for interference when probability amplitudes are added.
Now a complex number has a modulus and a phase: z = x+ iy has magnitude
r =

√
x2 + y2 and a phase φ = tan−1 y/x. r and φ are real numbers and we

express the same complex number in modular form as z = reiφ. Suppose we
write

|ψ〉 = r1e
iθ1 |0〉+ r2e

iθ2 |1〉. (3.4)

Different values of r1θ1 and r2θ2 give different vectors. For a given vector |ψ〉,
we can factor out one of the phases to write

|ψ〉 = eiθ1
(
r1|0〉+ r2e

i(θ2−θ1)|1〉
)

(3.5)

The factored phase θ1 is called a global phase. This cannot be measured by
any experiment since experiments only measure probabilities. In other words
the above state is experimentally indistinguishable from the state

|ψ′〉 = r1|0〉+ r2e
i(θ2−θ1)|1〉,

since |〈ψ|ψ′〉|2 = 1. What is measurable, however, is the relative phase
(θ2 − θ1), which will show up in an interference experiment. The set of all
states differing by a global phase is called a ray in Hilbert space.

Thus the space of quantum states of a system is the space of rays in Hilbert
space, also called the projective Hilbert space. We will not emphasize this
difference in what follows, but it is a point to be kept in mind.

The fact that relative phases between components in a superposition state
are very important will become more relevant when we consider operations
on quantum systems that impart selective phases to one basis state, say |1〉.
For instance, consider an operation

|0〉 → |0〉; |1〉 → eiφ|1〉.

Though such an operation produces indistinguishable states out of basis states,
the effect will be non-trivial on superposition states, since it would introduce
a relative phase between the |0〉 and |1〉 components:

|ψ〉 = c1|0〉+ c2|1〉 → c1|0〉+ eiφc2|1〉.

3.2 Observables

The state space may be said to be defined by its basis states. How do we
identify the basis? We have said that when we measure a physical quantity,
the state corresponding to the value measured is a basis state for the sys-
tem. This brings us directly to the question: which physical quantity shall we
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choose to measure? Well, the choice is entirely ours. But a certain amount of
scientific acumen is necessary to identify the relevant one! In any case, all the
physically measurable properties of the system are important: these are called
observables.

Measurement of a particular observable O yields a set of possible values, in
suitable units, that the observable could take. This set of real numbers charac-
terizes the observable. In mathematical language, these numbers are regarded
as the characteristic values or eigenvalues of an operator representing the
observable. The set of characteristic values is called the spectrum of the ob-
servable. This is indeed a full specification of the observable. But in quantum
mechanics, we try to attach the notion of an operator to the observable. What
is an operator?

3.2.1 Operators

An operator Ô, formally, is a method for transforming a vector |v〉 into
another, |v′〉. Expressed mathematically, the operator acts from the left of the
vector:

Ô|v〉 = |v′〉.
In the language of linear algebra, operators are represented as matrices. For
example: [

0 1

1 0

][
1

0

]
=

[
0

1

]
.

Box 3.3: Diagonalizable Operators and the Spectral Theorem
An operator Â is said to satisfy an eigenvalue equation if there exist

some vectors |εi〉 that are transformed into multiples of themselves:

Â|εi〉 = ai|εi〉.

The number ai is called an eigenvalue corresponding to the vector |εi〉, which
is called an eigenvector. The eigenvalues may be distinct (simple) or some
of them may be equal (multiple). In the latter case they are said to be de-
generate. Not all matrices satisfy eigenvalue equations. Those that do are
called diagonalizable. This name is due to the spectral theorem which
says that such operators can be expressed as diagonal matrices in the basis of
their eigenvectors with the eigenvalues as the diagonal elements:

N̂ =
∑
i

ni|εi〉〈εi|.

This statement essentially means that for a diagonalizable matrix, we can
change basis to one in which the matrix is diagonal. In other words, there
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exists a non-singular matrix Ŝ bringing Â to diagonal form N̂ by a similarity
transformation:

ŜÂŜ−1 = N̂ .

A special class of diagonalizable operators is important in quantum mechanics,
those that commute with their adjoint:

N̂ †N̂ = N̂ N̂ †.

Such an operator is called a normal operator. Some kinds of normal operators
especially relevant to us are:

1. Unitary operators: Û† = Û−1

2. Hermitian operators: Ĥ† = Ĥ
(Also anti-Hermitian operators: Â† = −Â

3. Positive operators: P̂ = M̂M̂†. These operators are also Hermitian.

The following important properties of eigenvalues are to be noted

1. A Hermitian operator has real eigenvalues.

2. A positive operator has positive eigenvalues.

3. A unitary operator has eigenvalues of unit modulus, i.e., of the form eiθ

for real θ.

Suppose we find the dual of the transformed vector |v′〉. What is the op-
erator in dual space that would take 〈v| to 〈v′|? The answer is the adjoint
operator Ô† (‘O-dagger’), defined by the equation

〈v|Ô† = 〈v′|.

We can also compare the transformed and original vectors by their inner
product with another vector |w〉, and thus define the adjoint by

(|w〉, Ô|v〉) = (Ô†|w〉, |v〉). (3.6)

We can see that each side of Equation 3.6 is equivalent to 〈w|Ô|v〉 = 〈w|v′〉 =
〈w′|v〉, where 〈w′| = 〈w|Ô†. Notice that the action of the adjoint is from the
right.

The matrix representation of Ô† is the complex conjugate transpose of the
matrix for Ô. Thus the dual vector 〈v| is sometimes also called the adjoint of
the ket vector |v〉.
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3.2.2 Self-adjoint operators

An operator is said to be self-adjoint if it satisfies

〈v|Â|w〉 = 〈v|Â†|w〉. (3.7)

The corresponding matrix is said to be Hermitian. An important conse-
quence of self-adjointness is that the eigenvalues will turn out to be real. A
self-adjoint operator is thus a good candidate for a physical observable whose
values are always real.

Postulate 2. Observables An observable A in quantum mechanics is usually
represented by a self-adjoint operator4 Â. Measurement of A in an experiment
gives a real number value α, which is one of the eigenvalues of the operator
Â.

By “measurement of an observable” we mean the setting up of a suitable
experiment and determining the value associated with that physical property.
We will discuss measurements in quantum mechanics in more detail soon.

For example, the machine SGz of the previous chapter measures the z-
component of the spin, Sz, and yields two possible values ±~/2. The operator
corresponding to this spin observable, denoted by Ŝz, has eigenvalues ±~/2
and corresponding eigenstates |0〉 and |1〉. This means it satisfies the eigenvalue
equations

Ŝz|0〉 =
~
2
|0〉, Ŝz|1〉 = −~

2
|1〉.

Applying the spectral theorem (3.2.1 ), the matrix representation of Ŝz in the
computational basis is:

|0〉 =

[
1

0

]
, |1〉 =

[
0

1

]
, Ŝz =

~
2

[
1 0

0 −1

]
(3.8)

Exercise 3.1. Show that Ŝz is Hermitian.

Exercise 3.2. Solve the eigenvalue equation for Ŝz and show that its eigenvalues
are ±~/2.

3.2.3 Basis transformation

We have been saying that the choice of basis depends on the observable
we choose to measure. The Hilbert space must be spanned by the bases corre-
sponding to the eigenstates of other observables too. This implies a relation-
ship between different bases for a given system.

4We need operators with real eigenvalues. In recent times, non-Hermitian operators also
seem to be relevant under certain special conditions, but these need not concern us here.
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FIGURE 3.1: Experiment for determining the eigenstates of Ŝx in the com-
putational basis

Consider the spin observable, related to the magnetic moment, which is a

vector in 3-dimensional space. The vector spin observable
−→
S has the nature

of angular momentum, and has three spatial components: Sx, Sy, and Sz. The
machines for measuring these observables would be, respectively, SGx, SGy,
and SGz, each with its B field inhomogeneity at right angles to that of the
other. But measurement of each of these would give one of two values, ±~/2.
This means that in each basis of representation, the eigenstates and the matrix
for the operator is given by Equation 3.8.

We would like to represent each of these observables and their eigenstates
in the common computational basis {|0〉, |1〉}. This, by convention, is the basis
of eigenstates of the operator Ŝz which we had written as |↑z〉 and |↓z〉. What,
for instance, is the form of the eigenstates |↑x〉 and |↓x〉 of Ŝx in this basis?
Look at the Stern–Gerlach experiments shown in Figure 3.1.

This says that |↑x〉 and |↓x〉 are 50-50 superpositions of |0〉 and |1〉.

|↑x〉 = α|0〉+ β|1〉, where |α|2 = |β|2 =
1

2
.

A similar equation can be written for |↓x〉. In fact a similar equation would
hold for the eigenstates |↑y〉 and |↓y〉 of Ŝy. Each would need to have different
complex coefficients α and β to distinguish them. We can fix these coefficients
up to a relative phase: each has magnitude 1√

2
and some phase which is not

fixed experimentally. (See Section 2.3.) By convention, we choose the relative
phase angle φ to be zero for |↑x〉 and π for |↑y〉 and fix the rest by demanding
orthogonality.

Example 3.2.1. Basis transformation from Ŝz to Ŝx basis: to emphasize that
|↑x〉 and |↓x〉 are also a different set of basis vectors, let us denote them by
|0x〉 and |1x〉. Experiment is consistent with

|0x〉 =
1√
2

(|0〉+ |1〉) .



The Essentials of Quantum Mechanics 45

We also require 〈0x|1x〉 = 0, which is consistent with

|1x〉 =
1√
2

(|0〉 − |1〉) .

It is also easy to see that the basis vector transformation can be written in
matrix form as (

|0x〉
|1x〉

)
=

1√
2

(
1 1

1 −1

)(
|0〉
|1〉

)

Henceforth, we will switch to a less cumbersome notation for the spin op-
erators. We consider the following dimensionless operators, each having eigen-
values ±1 and the same eigenstates as those of corresponding spin operators.

X̂ =
2

~
Ŝx; eigentates |0x〉, |1x〉, (3.9a)

Ŷ =
2

~
Ŝy; eigentates |0y〉, |1y〉, (3.9b)

Ẑ =
2

~
Ŝz; eigentates |0z〉 ≡ |0〉, |1z〉 ≡ |1〉. (3.9c)

Box 3.4: Basis Transformations among the X̂, Ŷ and Ẑ Bases

|0x〉 =
1√
2

(|0〉+ |1〉) (3.10a)

|1x〉 =
1√
2

(|0〉 − |1〉) (3.10b)

|0y〉 =
1√
2

(|0〉+ i|1〉) (3.10c)

|1y〉 =
1√
2

(|0〉 − i|1〉] (3.10d)

Exercise 3.3. Verify from these definitions that {|0x〉, |1x〉} are an orthonormal
set. Similarly for {|0y〉, |1y〉}.

Exercise 3.4. Express {|0y〉, |1y〉} in terms of {|0x〉, |1x〉}.
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It is important to realize that a change of basis is effected by a linear trans-
formation: When a basis {|i〉} → {|j〉} then for each |j〉 we can find a set of
n complex coefficients Uij such that

|j〉 =
∑
i

Uij |i〉. (3.11)

These components Uij can be shown to form the components of a unitary
matrix U . The change of basis can be visualized as a sort of rotation of the
axes that span the Hilbert space.

Example 3.2.2. Unitarity of the transformation matrix for basis change:
from Equation 3.11, let us use the orthogonality of the basis {|j〉} to write

〈j′|j〉 =
∑
i′

U∗j′i′〈i′|
∑
i

Uij |i〉 = δj′j

=⇒
∑
i′

∑
i

U∗j′i′Uij〈i′|i〉 = δj′j

=⇒
∑
i

U∗j′iUij = δj′j

But this last equation is exactly the condition U†U = 1 for unitarity of U .

3.2.4 Outer product representation for operators

From the components of two vectors, we can construct a matrix by the
outer product. For vectors |v1〉 = [a1a2...an]T and |v2〉 = [b1b2...bn]T , this
is denoted by |v1〉〈v2| and represented by a matrix given by

|v1〉〈v2| =


a1

a2

...

an


[
b∗1 b∗2 ... b∗n

]
=


a1b
∗
1 a1b

∗
2 ... a1b

∗
n

a2b
∗
1 a2b

∗
2 ... a2b

∗
n

...
... ...

...

anb
∗
1 anb

∗
2 ... anb

∗
n

 (3.12)

Operators on a Hilbert space can be represented in terms of outer products
of the basis vectors of the space: a matrix A with matrix elements Aij is the
expansion

A ≡
∑
i,j

Aij |i〉〈j|.

Conversely, in the above basis, a matrix A has elements

Aij = 〈i|A|j〉,
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where i is the row index and j is the column index. The space of matrices
is thus a linear vector space with basis “vectors” given by the matrices |i〉〈j|
composed of the outer products of the basis vectors of the Hilbert space. For
example, in 2 dimensions, the basis matrices will be

|0〉〈0| =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]
,

|0〉〈1| =

[
1

0

] [
0 1

]
=

[
0 1

0 0

]
,

|1〉〈0| =

[
0

1

] [
1 0

]
=

[
0 0

1 0

]
,

|1〉〈1| =

[
0

1

] [
0 1

]
=

[
0 0

0 1

]
.

(3.13)

A 2×2 matrix is represented as

A = A00|0〉〈0|+A01|0〉〈1|+A10|1〉〈0|+A11|1〉〈1|

= A00

[
1 0

0 0

]
+A01

[
0 1

0 0

]
+A10

[
0 0

1 0

]
+A11

[
0 0

0 1

]

=

[
A00 A01

A10 A11

]
.

The spectral theorem can then be expressed in the form

Â =
∑
i

ai|ai〉〈ai| (3.14)

where the ai are the eigenvalues of Â corresponding to its eigenvectors |ai〉.
Note how we use the eigenvalue itself as the label for the corresponding eigen-
state! The set of eigenvalues is called the spectrum of the operator and this
equation is called the spectral resolution of the operator.

Example 3.2.3. Matrix representation for the spin operators in the compu-
tational basis:{|0〉, |1〉} = {|↑〉z, |↓〉z}:

Ŝz =
~
2
|0〉〈0| − ~

2
|1〉〈1| = ~

2

[
1 0

0 −1

]
.

To construct the representation for Ŝx in this basis we first note that it is
diagonal in the basis of its own eigenvectors:

Ŝx =
~
2
|↑〉x〈↑|x −

~
2
|↓〉x〈↓|x
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We can now use the basis transformation equations 3.10 and write

Ŝx =
~
2

{
(|0〉+ |1〉)√

2

(〈0|+ 〈1|)√
2

+
(|0〉 − |1〉)√

2

(〈0| − 〈1|)√
2

}
=

~
2
{|0〉〈1|+ |1〉〈0|}

=
~
2

[
0 1

1 0

]
.

To specify an operator, one has to give its action on the computational
basis states. This will give the matrix representation of the operator in the
natural basis.

Exercise 3.5. Show that in the computational basis,

Ŝy =
~
2

[
0 −i
i 0

]
.

Exercise 3.6. Show by diagonalizing these representations of Ŝx and Ŝy, you get
the eigenvectors of Equations 3.10.

Exercise 3.7. Calculate the effect of Ŝx and Ŝy on the states |0〉and |1〉.

3.2.5 Functions of operators

Very often in dealing with the mathematics of quantum mechanics we en-
counter the need to evaluate functions of operators, the very simplest being
powers. That is easily dealt with since operators can be composed by multipli-
cation. Functions that can be expressed in power series can then be computed
in terms of the powers of the operators. For example,

cos Â = 1− 1

2!
Â2 +

1

4!
Â4 + · · ·

sin Â = Â− 1

3!
Â3 +

1

5!
Â5 + · · ·

exp Â = 1+ Â+
1

2!
Â2 +

1

3!
Â3 + · · ·

More complicated functions can also be dealt with, if we use the spectral
decomposition, Equation 3.14, of the operator. If Â has eigenvalues ai and
corresponding eigenvectors |ai〉, we have

Â =
∑
i

ai|ai〉〈ai|
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f(Â) =
∑
i

f(ai)|ai〉〈ai|. (3.15)

Thus, to find the function f(Â) when Â is not already in diagonal form, you
must first find the similarity transformation S that diagonalizes Â:

S−1ÂS =
∑
i

ai|ai〉〈ai|.

S can be constructed out of the eigenvectors of Â: they are the columns of S.

The Dirac Notation

We pause to remark on the extreme versatility of the |.〉 notation of Dirac:
various combinations that are meaningful and unambiguous are summarized
below for your reference.

TABLE 3.1: The Dirac notation and its properties.

Notation Class Name, property, and meaning

|a〉 ∈ H Vector or ket .

〈a| ∈ H† Dual vector |a〉† or bra

〈b|a〉 ∈ C Inner product 〈b| · |a〉, a complex
number

|a〉〈b| an operator
on H

Outer product

|a〉|b〉 ≡ |a〉 ⊗ |b〉 ∈ H1 ⊗ H2

for |a〉 ∈ H1

and |b〉 ∈ H2

Direct product

Thus a sequence of objects in the Dirac notation occurring in any expres-
sion will give one unambiguous interpretation, with the operations of inner,
outer, or direct products implicit. For example, if a ket vector follows a bra
vector as in 〈a||b〉 the only way to interpret the result is as an inner product
〈a|b〉. As another example, sequence 〈a|b〉〈c|d〉 may be interpreted as two in-
ner products 〈a|b〉 times 〈c|d〉 or as the matrix element 〈a|B̂|d〉 of the matrix
B̂ = |b〉〈d| but the result is the same (complex) number. You will see more
illustrations of this versatility in worked examples throughout the book. You
must train yourself to recognize and utilize this feature to the fullest.
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Box 3.5: The Pauli Spin Matrices
The spin observables are multiples by ~/2 of the following matrices:

σ1 =

[
0 1

1 0

]
;σ2 =

[
0 −i
i 0

]
;σ3 =

[
1 0

0 −1

]

The identity matrix 1 ≡ σ0 =

[
1 0

0 1

]
can also be included in the set {σi}.

These are of prime importance to us. They have interesting properties:

1. Ŝi = ~
2σi where i = 1, 2, 3 stand for x, y and z.

2. σ2
i = 1 =⇒ σ†i = σi = σ−1

i

So they are Hermitian as well as unitary and therefore have eigenvalues
±1.

3. Any unitary 2 × 2 matrix (operator) can be expressed as a linear com-
bination of the σis.

In the context of quantum computation, the matrices σ1, σ2, and σ3 are de-
noted as X,Y , and Z (Equations 3.9). Their eigenvectors corresponding to
the eigenvalues ±1 are sometimes also denoted as |X±〉, |Y±〉 and |Z±〉, re-
spectively.

3.3 Measurement

We mentioned measurement in the context of observables, but measure-
ment has a very important role in quantum mechanics. It is important to
identify what we mean by measurement. Measurement is basically an experi-
mental procedure meant to determine the value of a physical observable. The
procedure must be carefully designed so as not to alter the value of the ob-
servable being measured. A cartoon of the process of measurement is given
in Figure 3.2. Regardless of specific procedures used for any particular ob-
servable, the process of ideal measurement and the result of measurement are
axiomatized as follows:

Postulate 3. Measurement

1. Measurement of an observable Â of a system in the state ψ yields an
eigenvalue a of the observable, corresponding to an eigenstate |a〉, with
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the probability

P(a) = |〈a|ψ〉|2. (3.16)

2. Measurement causes the state of the system to collapse to the eigenstate
|a〉 :

|ψ〉 Measure Â, obtain a−−−−−−−−−−−−−→ |a〉. (3.17)

FIGURE 3.2: The measurement process for measuring an observable A with
values a. Note that this is distinct from an operator A acting on |ψ〉 to trans-
form it to A|ψ〉.

To describe this process by an operator acting on the state, we introduce
the projection operator: its action is to project the state along another
state |a〉:

P̂a = |a〉〈a|. (3.18)

When this acts on a general state, it projects the component of that state
along the vector |a〉 (Figure 3.3). If we express |ψ〉 in the basis {|i〉}, we have

|ψ〉 =
∑
i

ci|i〉,

P̂j |ψ〉 = |j〉〈j|ψ〉 = cj |j〉.

Box 3.6: Properties of Projection Operators

1. A projection operator is idempotent: P̂2
i = P̂i.

2. A projection operator divides the Hilbert space H into orthogonal sub-
spaces U and V:

∀|x〉 ∈ H, P̂|x〉 = |u〉 ∈ U , (1− P̂)|x〉 = |v〉 ∈ V, 〈v|u〉 = 0.

This is because an n-dimensional Hilbert space has n orthogonal direc-
tions and associated projectors. This also translates into
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FIGURE 3.3: Projection operator |a〉〈a| acting on a state.

(a) the projectors are mutually orthogonal:

P̂iP̂j = δijP̂j . (3.19)

(b) The projectors are complete:∑
i

P̂i =
∑
i

|i〉〈i| = 1. (3.20)

This completeness relation is also called the resolution of iden-
tity and is usefully employed in many proofs.

3. Projection operators are Hermitian: P̂†i = P̂i. Orthogonality of projec-
tion operators is also sometimes expressed as

P̂†i P̂i = P̂i. (3.21)

Measuring the observable Â and obtaining a value a is a probabilistic
event. The probability amplitude of obtaining this value is the coefficient of
expansion of ψ in the basis {a}, which is (see Equation 3.2) 〈a|ψ〉. This can
also be written as

P(a) = |〈a|ψ〉|2 = 〈ψ|P̂a|ψ〉.

This is the meaning of the first measurement postulate.
Measuring an operator Â in the state |ψ〉 forces that state into one of the

eigenstates |a〉 of the operator. This is actually one kind of ideal measurement,
called a projective measurement, equivalent to the operation

|ψ〉 Measure A, obtain a−−−−−−−−−−−−−→ P̂a|ψ〉 = |a〉〈a|ψ〉.

Note that this process is not unitary . The final state is not normalized. If we
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can capture this process by some measurement operator M̂A acting on
the state, then we must have

M̂A|ψ〉 =
|a〉〈a|ψ〉
|〈a|ψ〉|2

.

But such an operator cannot be defined independent of |ψ〉. Measurements
must thus have a separate status in quantum mechanics, and the process is
not represented by a unitary operator. This is the meaning of the second
measurement postulate.

What is the value of an observable in a quantum state?

Someone gives you an electron and asks you: what is the spin? How will
you answer? If you measure Sx, Sy, or Sz you will get one of two answers, at
random. Any observable you measure gives one of its eigenvalues at random.
The state has probabilistic information about each eigenvalue. The meaning
of this is statistical: (i) take a very large number of identical copies of the
state |ψ〉: a statistical ensemble, (ii) perform the measurement of Â on each
copy, then if you expand ψ in the basis of eigenvectors a of Â,

|ψ〉 =
∑
a

ca|a〉

then a fraction |ca|2 times you will obtain a as the result of the measure-
ment. The value of the physical observable A is the statistical average value
obtained by all these measurements. This is called the expectation value of
the operator Â in the state |ψ〉 denoted by

〈Â〉ψ =
∑
a

P(a)a =
∑
a

|ca|2a

=
∑
a

〈ψ|a〉〈a|ψ〉a =
∑
a

|ψ〉Â|a〉〈a|ψ〉

= 〈ψ|Â|ψ〉,

where in the last step we have used the resolution of the identity.
We can thus define statistically the mean value of an observable. The

statistics of measurement is incomplete without the notion of the variance
about the mean. We define the variance ∆2A as

∆2A = 〈A2〉 − 〈A〉2

The square root of the variance, the standard deviation, is called the error or
uncertainty in the value of A.
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Example 3.3.1. Expectation value of Ŝz and Ŝx in the state |0〉:

〈Ŝz〉0 = 〈0|Ŝz|0〉 = 〈0|~
2
|0〉

=
~
2

〈Ŝx〉0 = 〈0|Ŝx|0〉 = 〈0|~
2
|1〉

= 0.

Box 3.7: The Uncertainty Principle
This principle is one of the foundation pillars of quantum mechanics, first

enunciated by Werner Heisenberg. More accurately called the indeterminacy
principle, this states that some physical observables are “incompatible” with
each other, in the sense that on measurement in a given state, it is not pos-
sible to get sharp values of both. In fact, the uncertainty in one observable
is inversely related to that in the other. Classic examples are position and
momentum, and also the three components of the spin vector.

Mathematically, compatibility is related to the commutation of the opera-
tors: whether the order of operation of two operators matters or not. For two
operators Â and B̂ the commutator is defined as the operator expressing this
difference in ordering:

Ĉ = [Â, B̂] ≡ ÂB̂ − B̂Â.

It can be shown that the product of uncertainties of two operators measured
in a state |ψ〉 is related to their commutator:(

∆Â∆B̂
)
ψ
≥ 1

2

〈
[Â, B̂]

〉
ψ
. (3.22)

Note that experimentally uncertainty refers to the standard deviation from
the mean of a statistically large set of measurements of the observable, made
on identically prepared states. Physically the meaning of the uncertainty prin-
ciple is that if we perform a set of measurements of observable A and B in
an ensemble prepared in a state |ψ〉, then the products of the uncertainties
of the two observables is limited by the expression on the right, related to
their commutator. Experimental uncertainties would add to this limit. Thus
in principle, the uncertainty in either of a pair of observables that do not
commute can never be zero.
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3.4 Evolution

An isolated system is said to evolve when its state changes with time. The
change in state would take place by the action of an operator on it. This action
cannot take it out of the Hilbert space, and must preserve its norm. Therefore
the evolution operator Û has to satisfy some conditions.

|ψ〉 Û−→ |ψ′〉 = Û |ψ〉
〈ψ′|ψ′〉 = 〈ψ|Û†Û |ψ〉

If 〈ψ′|ψ′〉 = 〈ψ|ψ〉
then Û† = Û−1

Such an operator is called unitary:

Û†Û = 1.

In quantum computation, any operation we wish to perform on a qubit must
be represented by such an operator. One of the important consequences of
this is that since any unitary operator is invertible, any quantum operation is
reversible.

For example, the Pauli spin operators are unitary and are valid evolution
operators. The operation |0〉→ |1〉and |1〉→ |0〉is achieved by the σ1 operator.
This operation flips the bits 0 and 1, and is therefore also called the NOT
operator X.

Thus evolution is another application of unitary operators in quantum
mechanics. The first one we encountered of course was while implementing
basis change.

3.4.1 Continuous time evolution

From the physical viewpoint, evolution in time occurs due to interaction
of the system with an external force. A characteristic of this “force” is the
energy the system has in its presence. This energy is represented by a func-
tion called the Hamiltonian function H. In a given situation it has to be
determined experimentally. The quantum version of the Hamiltonian is the
Hamiltonian operator Ĥ. This operator, being an observable, must be Hermi-
tian. Now it turns out that when the Hamiltonian acts on a state vector, it
creates an infinitesimal time evolution. This gives a differential version of the
time evolution postulate of which there are two (experimentally equivalent)
viewpoints or “pictures”:
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3.4.1.1 Schrödinger viewpoint

Postulate 4. The evolution in time of a quantum state vector |ψ(t)〉 is given
by the Schrödinger equation:

i~
d|ψ〉
dt

= Ĥ|ψ〉. (3.23)

We can try to understand what this implies by formally integrating this
equation to solve for |ψ(t)〉 from |ψ(t0)〉. Assuming that the Hamiltonian func-
tion is itself explicitly independent of time, we would get

|ψ(t)〉 = exp

[
− i
~
Ĥ(t− t0)

]
|ψ(t0)〉.

So the unitary operator for time evolution is just

Û(t0, t) ≡ exp

[
− i
~
Ĥ(t− t0)

]
. (3.24)

We can set t0 = 0 and write

Û(t) = e−iĤt/~.

Here, the exponential of the operator Ĥ is understood as the infinite sum of
powers of Ĥ:

e−iĤt/~ ≡ 1− it

~
Ĥ +

1

2

it

~

2

Ĥ2 + · · · ,

itself an operator that can be expressed as a matrix. You can verify that since
Ĥ is Hermitian, Û(t) is indeed unitary.

3.4.1.2 Heisenberg viewpoint

One can focus on the observables being measured instead of the state in
which they are measured, and think of evolution as affecting the observable
(operator) instead of the state vector. In this picture, the evolution of an
observable Â(t) is given by

Â(t) = Û(t)Â(0)Û†(t) (3.25)

=⇒ dÂ

dt
=

d

dt
ÛÂ(0)Û† + ÛÂ(0)

d

dt
Û†

=
i

~

(
−ĤÛÂ(0)Û† + ÛÂ(0)ĤÛ†

)
dÂ

dt
=

i

~
[Â(t), Ĥ], (3.26)

where the square brackets indicate the commutator AH −HA. Here we have
assumed that the observable A itself has no explicit time-dependence; that is,
t does not occur in its form. If it did then we would have to add the partial
derivative of Â(t) with respect to t. It is straightforward to see that both
pictures give the same value for the experimentally observed quantities: the
expectation values of observables.
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3.5 Composite Systems

We would in general consider not just a single quantum system, represent-
ing one qubit, but a multiple qubit system that will consist of distinct and
non-interacting component single-qubit systems. The quantum states of the
composite system are elements of a larger Hilbert space composed of the single
qubit Hilbert spaces. For this we take what is called a direct product of the
single-qubit basis states, to form basis states of the larger Hilbert space. This
direct product is also called a tensor product, represented by the symbol
⊗. The elements of the tensor product basis consist of ordered sequences of
elements from the bases of each of the component Hilbert spaces.

Postulate 5. The Hilbert space of a composite system S is the direct product
of Hilbert spaces of the components A,B,C...:

HS = HA ⊗HB ⊗HC ... (3.27)

If the subsystems have basis states {|eA〉}, {|eB〉}..., then each basis state of
the full system is a tensor product of the form

|ei〉 = |eA〉i ⊗ |eB〉i ⊗ ...

A general state of the composite system can be expressed as a linear combina-
tion of basis states of the composite Hilbert space.

For example, a 2-qubit system would consist of two non-interacting single
qubits (say the individual z-spins of two isolated electrons), each with a 2-d
Hilbert space H2. The Hilbert space of the 2-qubit system is then

H4 = H2 ⊗H2. (3.28)

If we label the bases of the H2s as {|0〉A, |1〉A} and {|0〉B, |1〉B}, we get the
basis for H4 as the ordered pairs{

|0〉A, |1〉A
}
⊗
{
|0〉B, |1〉B

}
=
{
|0〉A ⊗ |0〉B, |0〉A ⊗ |1〉B , |1〉A ⊗ |0〉B , |1〉A ⊗ |1〉B

}
. (3.29)

The notation |a〉 ⊗ |b〉 is shortened to |ab〉 and we write the basis for H4 as

{|00〉, |01〉, |10〉, |11〉}. (3.30)

We see binary representations of the numbers 0 to 3 emerging in this 2-qubit
system.

In matrix notation, these basis vectors are generated by direct products. To
write the direct product of two matrices, we should realize that every element
of one matrix is associated with every element of the other. This is done in
the following manner:
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Definition 3.1. The tensor product of two matrices A of dimensions m× n
and B of any dimensions is given by

A⊗B =


A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

Am1B Am2B . . . AmnB

 . (3.31)

Thus we have

|00〉 =

[
1

0

]
⊗

[
1

0

]
=


1

0

0

0

 ; |01〉 =

[
1

0

]
⊗

[
0

1

]
=


0

1

0

0

 ;

|10〉 =

[
0

1

]
⊗

[
1

0

]
=


0

0

1

0

 ; |11〉 =

[
0

1

]
⊗

[
0

1

]
=


0

0

0

1

 .
(3.32)

Thus we have the natural basis for the 4-dimensional vector space from those
of two 2-dimensional spaces.

Example 3.5.1. Direct products: to express σx on a 2-qubit state as a matrix,
we take the direct product of two σxs acting on each single qubit state:

σx ⊗ σx =

[
0 1

1 0

]
⊗

[
0 1

1 0

]
=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

We can generalize to n qubits: the natural basis of the n-qubit Hilbert
space H⊗n consists of 2n orthogonal vectors

{|0〉, |1〉, |2〉, ..., |2n − 1〉}. (3.33)

The interpretation as an n-bit register is straightforward when the labels are
written in binary. For example, the 8th basis vector for a 4-qubit Hilbert space
will be

|7〉 = |0111〉 = |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |1〉.
The algebra of multi-qubit states generalizes in a natural manner from

that of single qubits.
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Box 3.8: Algebra of Tensor Product States
Consider two distinct physical systems A and B with Hilbert spaces HA

of dimensions 2n and HB of dimensions 2m. Let the basis vectors of these two
spaces be denoted {|iA〉}, iA = 0, 1, ...2n−1, and {|µB〉}, µB = 0, 1, ...2m−1.
If I pick a state |φA〉 from A and a state |ψB〉 from B, I can form a state in
the tensor product Hilbert space HAB = HA ⊗HB as

|ΦAB〉 = |φA〉|ψB〉.

• Probability amplitude 〈iA, µB |Φ〉 = 〈iA|φA〉〈µB|ψB〉

• Inner product 〈Φ1|Φ2〉 = 〈φA1 |φA2 〉〈ψB1 |ψB2 〉

• Basis states for HAB is the set of product basis vectors {|υiµ〉 =
|iA〉|µB〉}

• The most general state in HAB is a linear combination of these basis
states:

|Ψ〉AB =
∑
iµ

Ciµ|υiµ〉.

• If two operators Â and B̂ act on each space independently then the
action on the product space is given by the operator Ĉ = Â⊗ B̂.

Summary: The Math and the Physics
The arena of quantum mechanics is the Hilbert space H, the state vectors

live here, and transformations of the state vector are operators inH. To be able
to work efficiently with the maths, we summarize the correspondence between
the mathematical concept and the physical quantities in Table 3.2. Note that
this is for “pure” states of isolated quantum systems. (We will discuss mixed
states of systems that are influenced by some environment in a later chapter.)

Problems

3.1. Prove that a Hermitian matrix has real eigenvalues and its eigenvectors
corresponding to distinct eigenvalues are orthogonal to each other.

3.2. Prove that a unitary matrix has complex eigenvalues of unit magnitude, and
that its eigenvectors corresponding to distinct eigenvalues are orthogonal.
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TABLE 3.2: Correspondence between the math and the physics of quantum
mechanics.

Math Physics

Normalized vector |ψ〉 ∈ H pure state

Hermitian operator Â on H physical observable

Eigenvalues {ai} of Â set of all possible values obtainable on measur-
ing the observable A

Eigenvector |ai〉 of Â state in which measuring A gives a value ai

Computational basis {|i〉},
i = 0, 1, 2...

eigenstates of a suitable fiducial observable

Inner product 〈i|ψ〉 probability amplitude for the state |ψ〉 to be in
the basis state |i〉

Amplitude squared |〈ai|ψ〉|2 probability of obtaining the value ai on mea-
suring A in the state ψ

Matrix element Aij = 〈i|A|j〉 amplitude for producing a transition from |j〉
to |i〉 by the action of A (No assumption is
made here about the nature of the operation)

Diagonal element 〈ψ|A|ψ〉 average value of the observable A in the state
|ψ〉

Unitary operator Û possible evolution operator that changes the
state reversibly

3.3. Show that if Ĥ is a Hermitian operator then eiĤ is a unitary operator.

3.4. Given a unitary operator Û , show that the operator i(1 + Û)(1 − Û) is
Hermitian.

3.5. For a Hermitian or unitary matrix, show that the sum of diagonal elements
(the trace) equals the sum of the eigenvalues, and the determinant equals
the product of the eigenvalues.

3.6. For each of the following matrices, find if they are unitary or Hermitian or
neither. Find their eigenvalues and eigenvectors. Find if their eigenvectors
are orthogonal.

(a)

[
1 i

i −1

]
(b)

[
0 1

0 0

]
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3.7. For the three Pauli matrices σx, σy, and σz,

(a) Show that σ2
i = 1.

(b) Show that σi’s are Hermitian as well as unitary.

(c) Find the commutator [σi, σj ] = σiσj − σjσi.
(d) Find the anti-commutator {σi, σj} = σiσj + σjσi.

3.8. Show that all the eigenvalues of any projection operator are either 1 or 0.

3.9. Show that the operator which performs a transformation from the Z basis
to the X basis has the following matrix representation:

H =
1√
2

(
1 1

1 −1

)
.

This operator is also known as the Hadamard operator and is very useful in
quantum computation.

Verify that this operator is Hermitian. Show that it can be expressed as a
linear combination of the Pauli matrices.

3.10. Show that for any two operators A and B,

AB =
1

2
[A,B] +

1

2
{A,B}.

3.11. Given a unit vector ê = (ex, ey, ez) in an arbitrary direction, we can define
the component of spin along ê by

σe = exσx + eyσy + ezσz.

(a) Show that σ2
e = 1.

(b) Find the eigenvalues and eigenvectors of σe.

3.12. Define a “vector matrix” ~σ = îσx + ĵσy + k̂σz. Show that

(~a. · ~σ)(~b · ~σ) = (~a ·~b)1+ i(~a×~b) · ~σ (3.34)

for vectors ~a and ~b.

3.13. Find the expectation value of σe in the state |0〉. Generalize this result
to find the expectation value of σe in a state |f̂+〉 where f̂ is a general
direction making angle θ with the ẑ axis.





Chapter 4

Properties of Qubits

The mathematical foundations built on motivation from experiments being
in place, we now look at the properties of qubits that distinguish them from
classical bits, and also which make their manipulation and behavior somewhat
counter-intuitive.

In this chapter we will list some properties of a quantum system that are
peculiar and touch on the so-called weirdness of quantum mechanics. We will
also take a peek into the foundational aspects of the theory that are being
battled out to this day.

4.1 The Bloch Sphere Representation of a Qubit

A generic qubit could have a non-definite state expressed as a superposition

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1.

How do we picture a qubit? As a vector in Hilbert space, the description
is abstract. The 2-d Hilbert space is a space with 4 dimensions. To get a
better feel for the sort of vector a quantum state is, we look at a geometrical
visualization of a qubit.

The space of all possible single qubits is spanned by all values of the four
real numbers defined by α and β but subject to the constraint of normalization:
|α|2 + |β|2 = 1. We have an additional constraint in the form of equivalence
of all states differing by an overall phase. The four parameters thus reduce to
two, which determine the surface of a unit sphere in the space of parameters.
Let’s see how.

Recall the representation of |ψ〉 in polar form (Equation 3.5):

|ψ〉 = r1|0〉+ r2e
iφ|1〉,

where we’ve written φ = θ2− θ1, the relative phase between the basis vectors.
We can further parametrize r1 and r2 in terms of a single angle θ′

r2
1 + r2

2 = 1 =⇒ r1 = cos θ′, r2 = sin θ′.

63
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We now have
|ψ〉 = cos θ′|0〉+ sin θ′eiφ|1〉,

which is the standard representation of a point on the unit sphere by spherical
polar coordinates θ′ ∈ [0, π] and φ ∈ [0, 2π].

But we still have one further condition, which is often not intuitively ob-
vious. For a given state at (θ′, φ), consider the point on this sphere that is
diametrically opposite: i.e., at (π − θ, π + φ) :

|ψ〉antipode = − cos θ′|0〉 − sin θ′eiφ|1〉 = −|ψ〉,

which is physically indistinguishable from |ψ〉. Thus the upper hemisphere of
the sphere is sufficient to represent the states of a qubit, i.e., θ′ ∈ [0, π/2].
It is useful to regard this space as still a sphere by replacing the parameter
θ′ by θ/2, θ ∈ [0, π]. Geometrically this is visualized as “folding” the lower
hemisphere on the upper, to obtain the Bloch sphere. The usual sphere is
a “double cover” of the Bloch sphere. We finally have a representation of the
qubit as a unique point on this sphere (Figure 4.1):

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉; (4.1)

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

The vector

~p ≡ (cosφ sin θ, sinφ sin θ, cos θ) (4.2)

is called the Bloch vector, after a notation invented by Felix Bloch in 1943
to depict the polarization states of light. Note that this sphere is not to be
regarded as one in 3-d coordinate space.

FIGURE 4.1: The Bloch sphere.

On this sphere, the north pole represents |0〉 and the south pole, |1〉. In
general, antipodal points on the Bloch sphere represent orthogonal state.
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This picture is useful for visualizing the effects of single qubit transforma-
tions, which would take a point on this sphere to another.

There is no known simple generalization of this idea for multiple qubits,
but it is useful for testing out ideas on gates and transformations for single
qubits.

Exercise 4.1. Using the polar representation for complex numbers α and β, ob-
tain the relationship between the angles θ and φ and the magnitude and
phase of α and β.

Exercise 4.2. Figure out the location on the Bloch sphere of the states
1√
2

(|0〉+ |1〉) and 1√
2

(|0〉 − |1〉).

Exercise 4.3. Show that antipodal states on the Bloch sphere (i.e., those at
(θ, φ) and at (π − θ, π + φ) are orthogonal.

4.2 Cloning and Deleting

The full specification of a superposition state |ψ〉 = α|0〉+β|1〉 is given by
the complex numbers α and β. The meaning of these numbers is physically
derived by making measurements on this state, in the computational basis.
This process would randomly “collapse” the state to either |0〉 or |1〉. The
probability of obtaining |0〉 is |α|2 and of obtaining |1〉 is |β|2. This is true in
a statistical sense: make the same measurements on a statistically large set
of identically prepared qubits: an ensemble. A measurement on a single qubit
state that is unknown projects it on to a basis state and the original state is
destroyed.

So if we are given a single quantum system in the state |ψ〉 then can
we make clones (that is, exact copies) of the state so that we can gather
the requisite measurement data? The answer given by quantum mechanics is
“NO”.

There exists no quantum mechanical way (i.e., a unitary operator) to take
one unknown state and make multiple identical copies of it.

This is the no cloning theorem first formulated in 1982 [76, 27], which
states that an arbitrary quantum system cannot be cloned by a universal
unitary transformation. If Ûcl is a unitary cloning machine, then its action
would be defined as taking as input the state |ψ〉 to be cloned along with a
“blank” state, say |0〉, and produce as output the original state and its clone:

Ûcl|ψ〉|0〉 = |ψ〉|ψ〉. (4.3)

Quantum mechanics says this is not true for arbitrary |ψ〉.
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Theorem: A unitary transformation cannot make identical copies of an
arbitrary quantum state.

Proof. Suppose there does exist a cloning machine as defined by Equation 4.3.
Consider its action on two arbitrary quantum states |ψ〉 and |φ〉:

Ûcl|ψ〉|0〉 = |ψ〉|ψ〉, (4.4a)

Ûcl|φ〉|0〉 = |φ〉|φ〉. (4.4b)

Take the inner product of (4.4a) with (4.4b),

LHS = 〈φ|〈0|Û†clÛcl|ψ〉|0〉
= 〈φ|ψ〉,

RHS = 〈φ|〈φ|ψ〉|ψ〉
= 〈φ|ψ〉2.

The only way LHS = RHS is if 〈φ|ψ〉 = 0 (they are orthogonal) or if
〈φ|ψ〉 = 1 (they are identical). Thus a more rigorous statement of the no-
cloning theorem would be that non-orthogonal states cannot be cloned by the
same unitary operator.

Another proof is as follows:

Proof. Since Ûcl is linear, its operation on a linear combination of states will
be

Ûcl(|ψ〉+ |φ〉)|0〉 = |ψ〉|ψ〉+ |φ〉|φ〉.

However, a cloner of the state |ψ〉+ |φ〉 must produce

(|ψ〉+ |φ〉)(|ψ〉+ |φ〉) = |ψ〉|ψ〉+ 2|ψ〉|φ〉+ |φ〉|φ〉,

which is NOT what Ûcl produced! In fact, the output of the cloner is actually
an ENTANGLED state (Section 4.4) while what we require is a product state.
Due to this inconsistency, Ûcl does not exist.

You will see an illustration of this using CNOT operations in Chapter 7.
The converse of this theorem is also true. Sometimes referred to as the no

deletion theorem [52], this states that given multiple copies of an unknown
quantum state, no unitary transformation can delete one of the copies to
give a blank (|0〉). This theorem thus protects the information content in a
qubit. Both these theorems are of great importance in the theory of quantum
information.
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4.3 Distinguishability of Qubit States

Classically, the outcomes of decision processes are always distinguishable:
it is taken for granted that a tossed coin will land either on heads or on tails
and upon looking at it, we can distinguish the different outcomes with cer-
tainty. In applications to quantum information processing too, we will usually
measure the output state after a process. If this state is to give us answers to
the problem we are trying to solve, it is important to be able to distinguish
alternate outcomes. In quantum, basis states can get transformed to superpo-
sitions. Alternate outcomes may be possible that must be distinguishable. It
is easy to see that this is possible if the states are orthogonal.

Suppose the possible final states are |ψ1〉 and |ψ2〉 that are not orthogonal,
〈ψ2|ψ1〉 6= 0. This means that one can write the second state in terms of the
first and its orthogonal complement |ψ1〉⊥:

|ψ2〉 = a|ψ1〉+ b|ψ1〉⊥.

Thus on measuring the output, there is a probability |a|2 that we get |ψ1〉
even if the output state being measured was |ψ2〉. There is a probability |a|2
of getting the wrong outcome when measuring ψ2. The two output states as-
sumed here cannot therefore be distinguished reliably. This fact can be proved
rigorously by showing that one cannot invent any measurement operator that
gives distinct outcomes with certainty on measuring a set of states that are
not mutually orthogonal. This property is exploited in secure quantum key
distribution to make the communication safe.

Other means of distinguishing non-orthogonal states have been invented in
which the space of states is extended, and the notion of measurement is gen-
eralized. These so-called unambiguous state discrimination techniques allow
for the possibility of getting inconclusive results after measurement. However
if positive results are obtained then they do tell the two states apart.

4.4 Entanglement

We now discuss in detail one of the most startling and yet most useful
aspects of superposition.

The most general n-qubit state would be a superposition

|ψ〉n =
2n−1∑
x=0

αx |x〉n,
∑
x

|αx|2 = 1, (4.5)

where the subscript n is to emphasize that we have an n qubit state. Now it
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is possible to construct higher-dimensional states by taking direct products
of lower-dimensional states. However not all higher-dimensional states can be
constructed this way. There will always exist states that cannot be expressed as
a direct product. Such states are called entangled states. This nomenclature
is due to Erwin Schrödinger who first discovered the implication of such states
in 1935 [61].

For example, consider two generic qubits

|ψ1〉 = α1|0〉+ β1|1〉, |ψ2〉 = α2|0〉+ β2|1〉. (4.6)

If you form the direct product, you get

|ψ1〉 ⊗ |ψ2〉 =

[
α1

β1

]
⊗

[
α2

β2

]
=


α1α2

α1β2

β1α2

β1β2

 . (4.7)

This is called a product state. Now the most general 2-qubit state is a
superposition of the form

|φ〉2 = c0|0〉+ c1|1〉+ c2|2〉+ c3|3〉. (4.8)

Equation 4.7 is of a special form:

c0c3 = c1c2. (4.9)

Not all states satisfy this property. Those states which do NOT are called
entangled states. Equation 4.9 is the criterion for a 2-qubit state to be a
product state.

For example, the state 1√
2

(|00〉+ |11〉) is entangled while 1√
2

(|00〉+ |01〉)
is not. A state like |00〉+ |10〉+ |11〉 is partially entangled.

Box 4.1: Bell States
The classic examples of entangled states are the Bell states, so named

in honor of John Bell [5] whose famous arguments resolved the Einstein–
Podolsky–Rosen paradox [31] involving entangled states. They are also re-
ferred to as EPR states for this reason. These states exhibit maximum corre-
lation or anticorrelation between their components:

|β00〉 =
1√
2

(|00〉+ |11〉) ; (4.10a)

|β01〉 =
1√
2

(|00〉 − |11〉) ; (4.10b)

|β10〉 =
1√
2

(|01〉+ |10〉) ; (4.10c)
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|β11〉 =
1√
2

(|01〉 − |10〉) (4.10d)

In the states |β00〉 and |β01〉, the spin values of each component are always
the same (correlated), while they are always opposite (anticorrelated) for the
other two states.

Verify that these states are mutually orthogonal. They can thus be used
as a basis for the 2-qubit Hilbert space H2.

When you have more than two qubits, you can have entanglement between
all or some of the component qubits. In a 3-qubit system, for example, you
could have entanglement between all three:

|ψ3〉 =
1√
3

(|010〉+ |101〉) , (4.11)

which is one of the so-called GHZ states (after Greenberger, Horne and
Zeilinger [39]). Note for this particular state that each of the component qubits
are anticorrelated, with the first and third having the opposite anticorrelation
as the second.

You could have entanglement between two qubits alone, for example:

|ψ12〉 =
1√
3

(|000〉+ |110〉) (4.12)

One can imagine more possible combinations of partial entanglement. Thus
for larger dimensional systems, entanglement becomes more complicated.

Entangled states are just some among the possible states of higher di-
mensional quantum systems. Why do we single them out for a special name
and status? What does it mean for a state to be entangled? We have already
pointed out that entangled states have properties that make them correlated
to each other. When two (or more) systems are in an entangled state, each
component system does not have a definite state. This is what it means to
say that the superposition cannot be written as a product of states of the
component systems.

Let us examine the meaning of correlations in the context of a two-qubit
system in the entangled spin state

|ψ〉 = |β00〉 =
1√
2

(|00〉+ |11〉.

Assume we have a beam of atom pairs in this state, and that we separate
each pair carefully without changing the state and send one atom each to
Alice and Bob, who proceed to measure the Sz value on their atom. Each
has equal probability of having a value ±1/2. Suppose Alice measures a value
+1/2 on her atom. This means its state has collapsed to |0〉. But this is
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possible only if the combined state collapses to |00〉, so that Bob’s atom also
collapses to |0〉. This happens even without Bob making a measurement on
his atom. If Bob now measures Sz, he will get a value +1/2. Similarly, had
Alice obtained −1/2, Bob would also measure the same value. There is perfect
correlation between the spins of the two particles. Alice and Bob can verify
this by making measurements on a large number of qubit pairs in the same
state and comparing the values. As another example, if the state were the
so-called singlet state

|β11〉 =
1√
2

(|01〉 − |10〉,

and the same experiment is performed, then there is perfect anticorrelation
between the spins of the two qubits.

In contrast, suppose that the spins were in the state

|ψ〉2 =
1√
2

(|00〉+ |10〉).

It’s easy to see that this state can be expressed as

|ψ〉2 =
1√
2

(|0〉+ |1〉)|0〉,

decomposed into a product of states of each spin. In this un-entangled state,
each spin does possess a definite state. The superposition in the state of the
first spin is merely a basis state in another basis: the Sx basis. Here there is
no correlation between spin measurements made by Alice and those obtained
by Bob.

4.4.1 Quantum vs. classical correlations

In what way are the quantum correlations in an entangled quantum state
different from correlations in a classical system? If a measurement of a quan-
tum state yields a probabilistic outcome, could we not assume that the ob-
servable measured has a definite value that was merely uncovered by the
measurement? Then the probabilities encoded in a quantum state would be
like classical probabilities, in that they indicate the lack of knowledge we have
about the system. The correlations we just saw in the entangled pair would be
just like those in classical systems. For instance, say I have a bag with pairs of
socks of random colors, each in paired, unlabelled packets. Now suppose you
pull out a packet at random, and give one of the pair each to Alice and Bob.
If Alice finds she got a red sock then immediately she can tell that Bob has
a red sock too! Perfect correlation! As another example, if Alice found a left
sock then she knows Bob has a right sock, without Bob looking at his sock:
perfect anticorrelation.

In what way is this (anti)correlation different when we talk about a pair
of quantum particles in a Bell state? Can it not be that the particles simply
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possess spin values that are the same (or opposite, depending on the state),
and the measurements just discover these values? The question here is a subtle
one: we will ask it again in a different way. Can these correlations between en-
tangled particles be explained by some hidden properties that are not evident
in quantum theory, that are assigned specific values at the time of production?

This feature has been thoroughly examined by many scholars. Most prac-
tising physicists follow the practical school of thought, known as the Copen-
hagen School, so-called after the city of famous physicist Niels Bohr, its
main proponent. According to this school, Nature is nothing more than the
experimental results, and there is no place for assumed hidden properties.
In other words, the spin of the atom in the entangled pair doesn’t have an
objective existence until brought into being by a measurement.

4.4.2 The EPR paradox

A famous 1936 paper by Einstein, Podolsky, and Rosen [31] brought the
whole matter to a head. Popularly known as EPR, they examined a thought
experiment with entangled particles1 and concluded that the quantum me-
chanical description of nature is incomplete, or else a paradox arises. Niels
Bohr countered their claim in a paper of the same title with his pragmatic
view that there is no more to nature than what quantum mechanics says about
it.

It is insightful to examine a simplified version of the EPR thought exper-
iment (due to Bohm [13], and sometimes referred to as “EPRB”) to see what
they meant. This version of the experiment actually can be, and has been
performed subsequently in the laboratory, so we have a concrete handle on
the issue.

Consider a source that produces pairs of qubits in the anticorrelated Bell
state

|β11〉 =
1√
2

(|0112〉 − |1102〉). (4.13)

Suppose these particles fly off in two different directions and Alice captures
one of them while Bob gets the other. Our two experimenters can measure
the spin of their particle using SG machines oriented along any desired axis.
The source emits many entangled pairs, and the measurements are repeated a
large number of times, recorded, and then compared. Let’s label the direction
along which Alice’s detector (SGa) is oriented as â and that of Bob (SGb) as
b̂ (Figure 4.2).

Suppose Alice and Bob decided to align their detectors along the same
direction, â = b̂ = ẑ, and recorded their measurements. A selection is made
of those pairs for which Alice measured +1. The entanglement in the state
(Equation 4.13) implies that for each of those pairs, Bob must have measured

1It is after this work that Bell states come to be known as EPR pairs.
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FIGURE 4.2: Spin measurement on an entangled pair of particles.

−1. But this is true even if â = b̂ = x̂ or ŷ. If we try to explain the correla-
tions by saying that the values were pre-existing before measurement, then we
run into problems with the indeterminacy principle! The spins of the individ-
ual particles in the pair have fixed (anticorrelated) values in all directions in
this scenario, contradicting the quantum mechanical fact that spins in three
mutually perpendicular directions are incompatible observables.

EPR has another objection to the quantum dictum that the particles do
not have definite values of spin until a measurement is made. Assume at the
beginning, a state in which neither qubit has a definite spin. When Alice
makes an SGa measurement, then the combined state collapses to one that is
an eigenstate of σa ⊗ 1. The collapsed state is also an eigenstate of 1 ⊗ σa
with the opposite eigenvalue. This conveying of information about the collapse
from one qubit to the other is mystifying, particularly if we recall that the two
detections are taking place at spatially separated points, and could be really
really far from each other! Is this even compatible with Einstein’s special
relativity, which claims that information cannot travel faster than the speed
of light? In such a scenario, it wouldn’t even make sense to decide which
measurement was made first!

Einstein, Podolsky and Rosen summarized their conclusions as follows: The
assumption that the quantum system possesses certain properties, viz. spin,
independent of whether it is measured or not, is known as realism. Also, the
value of this property cannot be altered by measurements made at spatially
separate locations. This tenet is known as locality. The EPR experiment
shows that quantum mechanics violates local realism. In order to sort out
the paradox, they concluded that

I. There is some instantaneous mechanism by which the measurement re-
sult of the particle at A is conveyed to the experiment at B, meaning
that quantum mechanics is non-local

OR

II. The quantum mechanical description of the initial entangled state by the
vector |β11〉 is incomplete, since it does not provide a full specification
of the actual system, i.e., it is not realistic.

Since non-locality was counter to relativity, EPR were inclined to choose
the latter option in claiming that quantum mechanics was incomplete, and
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some better theory, which had in it variables of the system that were hidden
to our view so far, must be correct.

As for the construction of local, hidden variable theories, the death knell
was sounded when John Bell [5] showed that any such theory must obey certain
inequalities that are NOT obeyed by certain quantum entangled states! We’ll
take a brief look into these in what follows.

4.4.3 Bell’s inequalities and non-locality

Bell’s original work, and many subsequent variants show how quantum
correlations in an entangled state are essentially different from classical ones.
One of the inequalities of Bell applies to a physical system consisting of two
subsystems, obeying the principle of local realism. He shows that the quantum
statistics for such a system involving entangled subsystems will necessarily vi-
olate this inequality, a statement generically known as “Bell’s theorem” [64].
Subsequently many similar inequalities were discovered by various authors.
(These are reviewed in [18].) We will discuss one of them (not Bell’s original
one!) to show how quantum correlations are intrinsically different from classi-
cal (local realist) ones. This follows original work by Clauser, Horne, Shimony
and Holt [17](CHSH).

We consider spin as an example but the derivation holds true for any
dichotomic variable, i.e., one with measurements outcomes described by two
values, ±1. Let’s revisit the experiment of Figure 4.2.

Consider a source emitting a very large number N of entangled spin-half
pairs, and four arbitrary directions â, â′, b̂, b̂′ for SG machines chosen by Alice
and Bob for measuring. Suppose that before measurement, the spin of the ith

pair has hidden, fixed values ri(a) and ri(a
′) for particle (1), si(b) and si(b

′)
for particle (2) along the respective axes. The correlation between particles
(1) and (2) can be measured by the average value of the product of spin
measurements:

C(a, b) =
1

N

∑
i

ri(a)si(b). (4.14)

We will have similar expressions for C(a′, b), C(a, b′), and C(a′, b′), if the ex-
periments used those pairs of axes for measurement. These expressions for the
average are the same as for classical statistical averages.

CHSH in their worked aimed to calculate the quantity

C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′). (4.15)

We’ll first see what the “classical” value is, assuming hidden variable descrip-
tion and then compare it with the predictions of quantum mechanics. First
look at the possible combinations of spin values (in units of ~/2) for the ith

pair. We introduce the notation

T1 = ri(a)[si(b) + si(b
′)], T2 = ri(a

′)[si(b)− si(b′)].
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Observe that T1 + T2 = ±2 always. For instance, when ri(a) = +1, ri(a
′) =

−1, si(b) = −1, si(b
′) = +1, then T1 = −2 and T2 = 0. You can see similar

results for all other combinations of values for these two spin measurements.
To evaluate the sum 4.15, we just sum T1 + T2 over all i and divide by N :

|C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′)| ≤ 2.. (4.16)

This is the CHSH inequality.
What does quantum mechanics predict for the sum (4.15)? Remember that

the spins are not to have fixed values before measurement. The correlation
between spins are now the quantum mechanical expectation values of spin
operator products in the state of Equation 4.13:

C(a, b) = 〈ŜaŜb〉β11 . (4.17)

Note that the operator Ŝa, spin along direction â is just ~σ · â (in units of ~/2).
You would have shown in Problem 3.12 (b) of Chapter 3, that the eigenvectors
of Ŝa are given by

|â±〉 = e−ik̂·~σ|Z±〉.

Here k̂ is a direction perpendicular to both ẑ and â, i.e., parallel to ẑ × â.

Example 4.4.1. Let’s find the expectation value of ŜaŜb in the Bell state
|β11〉.

Ŝa|β11〉 = ~σ · â(|01〉 − |10〉)
= (axX1 + ayY1 + azZ1)(|01〉 − |10〉)
= ax(|11〉 − |00〉)− iay(|01〉+ |10〉) + az(|01〉+ |10〉)

ŜaŜb|β11〉 = −axbx|β11〉 − iaxby(|10〉+ |01〉) + axbz(|10〉+ |11〉)
−iaybx(|00〉+ |11〉)− ayby|β11〉+ iaybz(|01〉 − |10〉)
+azbx(|11〉+ |00〉) + iazby(|01〉 − |10〉)− azbz|β11〉,

〈β11|ŜaŜb|β11〉 = −axbx − ayby − azbz
= −â · b̂.

Then the left-hand side of Equation 4.16 is

|â · (b̂+ b̂′) + â′ · (b̂− b̂′)| ≤ |â||b̂+ b̂′|+ |â′||b̂− b̂′| (4.18)

=
√

2(
√

1 + cosφ+
√

1− cosφ)(4.19)

where cosφ = b̂ · b̂′. (4.20)

Now the minimum value this can take is obviously when cosφ = 0, and that
value is 2

√
2, greater than the CHSH bound. Thus there exist configurations
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of detectors that can violate the CHSH inequality. See for instance Figure
4.3. This leads us to conclude that quantum mechanics is NOT compatible
with a local realistic description, that is, the assumption that the spins have
values before they are measured must be wrong. The entangled state vector
describes the pair as a single whole, with no room for describing the states
of the individual constituents. They have no well-defined spin in such a state.
There is therefore no way of setting about deriving the CHSH inequality for
such a system: the spin values of particles (1) and (2) do not exist before they
are measured.

Example 4.4.2. Let’s examine the directions for which the CHSH inequality is
maximally violated. If cosφ = 0, then we have b̂ ⊥ b̂′. The RHS of inequality
4.18 also shows that â and b̂ + b̂′ must be parallel or antiparallel, and so
also â′ and b̂ − b̂′ must be parallel or antiparallel. One way of picking such
directions is for Alice to choose ẑ and x̂ while Bob chooses the ±45◦ directions
( 1√

2

[
x̂+ ẑ

]
and 1√

2

[
ẑ − x̂

]
), as in Figure 4.3. Other sets of combinations are

also possible that satisfy the above criterion (find them!). In the language
of quantum mechanics, we must speak of the operators corresponding to the
measurement axes of A and B: in other words, we talk of then measuring
the operator σa or σb. Thus we speak of correlations between certain pairs of
observables that violate the CHSH bound for classical correlations.

FIGURE 4.3: Directions for SG detectors a, a′, b and b′ and the corresponding
observables measured by Alice and Bob, that maximally violate the CHSH
inequality.

The beauty of Bell’s inequalities was that for the first time they provided a
way to test quantum mechanics experimentally. The first experimental realiza-
tion of this was performed by the group led by Alain Aspect in 1981 [2]. Since
then, many experiments have been performed that confirm the violation of
the inequalities, and the corresponding interpretation of quantum mechanics
as theory that intrinsically does not obey “local realism”.

However, some researchers have tried to come up with non-local theories
that still are consistent with relativity, notably the GRW [37] theory of Ghi-
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rardi, Rimini, and Weber, and Bohmian mechanics [22]. The debate still con-
tinues as people come up with plausible non-local realistic theories to replace
quantum mechanics!

This section ought to have convinced you that quantum entanglement is
something new and more than classical correlations: leading to its exploitation
as a resource in information processing.

Many of the original papers cited in this chapter are reprinted in an in-
valuable volume by Wheeler and Zurek [72]. A wonderful discussion of many
of the properties of quantum systems discussed here is given in the book by
Aharonov and Rohrlich [1].

Problems

4.1. Find out what the action of each of the σi operators is on the Bloch sphere
by checking their effects on the eigenvectors |Z±〉, |X±〉 and |Y±〉.

4.2. Prove that the Bell states are mutually orthogonal and that they form
a basis for H2. You must be able to express an arbitrary 2-qubit state
|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 as a linear superposition of the Bell
states. Find the coefficients in this superposition in terms of a, b, c, and d.

4.3. Entanglement and basis change: suppose |s1〉 and |s2〉, linear combinations
of the basis states |0〉 and |1〉 form an orthonormal basis for a spin Hilbert
space. Show that the two-spin entangled “singlet” state

1√
2

(|s1〉 ⊗ |s2〉 − |s2〉 ⊗ |s1〉)

is equivalent to
1√
2

(|01〉 − |10〉).

Check that this preservation of the form of entanglement does not hold for
the other three Bell states in the transformed basis.

4.4. We found the directions â, â′, b̂, and b̂′ of Stern–Gerlach machines for
which the CHSH inequality is maximally violated for spin half particles.
Translate this experiment to photon polarization measurements and find
the corresponding directions for the axes of polarizers used by Alice and
Bob that would maximally violate the CHSH inequality.



Chapter 5

Mixed States, Open Systems, and
the Density Operator

The formalism for quantum systems developed so far applies to what are
called pure states. A system in a pure state is completely specified by the
state vector. A complete set of experimental tests will determine the system
state fully: we have maximal knowledge of the system. For example, for a spin
system, we can find a particular orientation of an SG machine such that the
state is in its + or − port. This also means that the state is an eigenvector of
some operator, or is always a linear combination of the computational basis
states.

As opposed to this, as in most practical cases, we only have incomplete
knowledge of the state. This means that the state is in practice not an eigen-
state of an observable, but consists of a mixture of eigenstates with classical
probabilities of being in each state. Such a state is called a mixed state
and CANNOT be represented by a state vector. The most convenient way of
representing and dealing with such systems, is through the density operator
formulation, as proposed first by von Neumann [70] in 1927.1

For instance, how do we describe the state of an unpolarized beam of spins,
such as those emitted from the oven in the original Stern–Gerlach experiment?
We will find that on analyzing such a beam using an SG machine in any
orientation, it is split into up-spin and down-spin beams of equal intensities.
The state of this beam can be regarded as a 50-50 mixture of basis states of
any representation. This is an example of a mixed state. We cannot represent
it as a superposition of any basis states. However, the output of an SGz ↑
filter, which splits into up-spin and down-spin beams of equal intensities when
passed through SGx or SGy machines is a pure state that can be represented
by the state vectors

|0〉 ≡ |↑z〉 =
1√
2

[|↑x〉+ |↓x〉] =
1√
2

[|↑y〉+ i|↓y〉...

Another point to keep in mind is that we have so far been describing closed
quantum systems, that are isolated from the environment or not affected by it.
More realistic systems are open to the environment, the effect of which must
be taken into account in some fashion, though one may not have complete

1The density operator was also independently proposed by Lev Landau [45] and by Felix
Bloch.
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information as to how the environment affects the system. One way of dealing
with such situations is to regard the system along with the environment as a
big super-system that is closed. So when we concentrate only on the system,
we have to average out the effect of the environment. The resulting system
state typically is mixed, and one needs the density operator formulation to
describe it. The material in this chapter is of a slightly advanced character
and may be skipped at first reading.

5.1 The Density Operator

By “state” of a system, we mean a collection of all possible knowledge we
can gather about the system, which is practically achieved by studying the
distribution of outcomes of measurements made on the system. In the case of
pure states, these outcomes together are described by a ray in Hilbert space.

Consider measuring an observable Q̂ with N possible eigenvalues qi with
corresponding eigenstates |qi〉. If we obtain a particular result qi, then we can

say that the projection operator P̂i = |qi〉〈qi| has acted on the state of the
system.

If we know the state to be the pure state |ψ〉, then the state is as well de-
scribed by a projector |ψ〉〈ψ| along this direction. The probability of outcome
qi is given by

P(qi) = 〈ψ|P̂i|ψ〉 = 〈ψ|qi〉〈qi|ψ〉
= 〈qi|ψ〉〈ψ|qi〉
= 〈qi|ρ̂|qi〉 (5.1)

This defines the density operator ρ̂ for a pure state described by a single state
vector:

ρ̂pure = |ψ〉〈ψ|. (5.2)

In general, the system could be composed of a number of (pure) states |ψn〉
where n = 1, 2...d, with classical probability pn : 0 ≤ pn ≤ 1,

∑
n pn = 1. This

mixture {pn, |ψn〉} is referred to as an ensemble of pure states with associated
probabilities. In this case, the probability of obtaining the outcome qi on
measuring Q̂ is

P(qi) =
∑
n

pn〈ψn|P̂i|ψn〉 =
∑
n

pn〈ψn|qi〉〈qi|ψn〉 =
∑
n

pn〈qi|ψn〉〈ψn|qi〉

= 〈qi|

(∑
n

pn|ψn〉〈ψn|

)
|qi〉 (5.3)

where in the third equality, we have moved the term 〈qi|ψn〉 to the beginning
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of the expression since it is a number. (This is an illustration of manipulating
expressions using the Dirac notation.)

The piece within parentheses in the middle is identified as the density
operator or the statistical operator ρ̂ for that state. This operator is com-
pletely given by the initial state.

Definition 5.1. The density operator for a system consisting of a mixed
ensemble of states {pn, |ψn〉} is

ρ̂ =
∑
n

pn|ψn〉〈ψn|. (5.4)

The sum over states in this expression looks like a superposition of states:
but this is an incoherent superposition, as opposed to coherent superposition
of basis states that defines a pure state. The incoherence stems from the fact
that the relative phases of the states |ψn〉 are not available to us.

This operator uniquely prescribes the probabilities of outcomes on mea-
surements on the system. Exactly as in Equation 5.1, we can then write the
probability of obtaining the outcome qi as

P(qi) = 〈qi|ρ̂|qi〉. (5.5)

The expectation value of Q̂ in a state ρ̂ is

〈Q̂〉ρ =
∑
i

qiP(qi) =
∑
i

qi〈qi|ρ|qi〉 =
∑
i,j

qi〈qi|qj〉〈qj |ρ|qi〉

=
∑
j

〈qj |ρ

(∑
i

qi|qi〉〈qi|

)
|qj〉.

Here we have introduced the resolution of identity 1 =
∑
j |qj〉〈qj | in the third

line, and then moved the term 〈qi|qj〉 to the end of the expression since it is
a number. In the last line, we identify the term in the parentheses as the
spectral representation of the operator Q̂.

Definition 5.2. The trace of an operator Â is defined by

TrÂ =
∑
j

〈j|Â|j〉,

a simple generalization of the trace of a matrix as the sum of its diagonal
elements.

The expectation value of the observable we are measuring is thus given by

〈Q̂〉ρ = Tr(ρQ̂). (5.6)

(The trace here is apparently taken in the {|qi〉} basis, but trace is basis-
independent, as you will prove.)
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This averaging of the physical property Q is twofold: first the quantum
average 〈Q〉n = Tr(ρnQ) over each of the (pure) states comprising the mixture,
and the usual statistical average over the whole ensemble with each state
average weighted by the probability pn of its occurrence. We can make this
explicit by writing

〈Q̂〉ρ = 〈Q̂〉 =
∑
n

pnTr(ρnQ̂). (5.7)

Exercise 5.1. Show that for vectors |φi〉 and |φj〉, Tr(|φi〉〈φj |) = 〈φj |φi〉.

Exercise 5.2. Show that the trace of an operator is independent of the basis
chosen to evaluate it.

Exercise 5.3. Show that trace as an operation is linear, i.e., Tr(A+B) = TrA+
TrB and Tr(λA) = λTrA.

Exercise 5.4. Show that the trace of products of operators is invariant under
cyclic permutations of the operators. i.e., Tr(AB) = Tr(BA), Tr(ABC) =
Tr(BCA) = Tr(CAB). etc.

Exercise 5.5. Show that the Pauli matrices are traceless.

The matrix representation of the density operator, called the density ma-
trix of the system, is useful for computations. In the computational basis {|i〉},
we can represent the density operator (Equation 5.2) as a matrix:

|ψ〉 =
∑
i

ci|i〉 (5.8)

=⇒ ρpure =
∑
i,j

cic
∗
j |i〉〈j|. (5.9)

For a mixed state, in this basis we can represent the density matrix as

ρmixed =
∑
i,j

ρij |i〉〈j|. (5.10)

If a system consists of equal mixtures of all possible computational basis states
it is said to be maximally mixed. In n dimensions, such a state is represented
by a multiple of the identity matrix:

ρmax =
1

n
1n×n.
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Example 5.1.1. The density matrix for the unpolarized electron beam dis-
cussed above is the maximally mixed state

ρm =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2

[
1 0

0 1.

]
=

1

2
1.

In contrast, the density matrix for the pure state |↑x〉 = 1√
2
(|0〉+ |1〉) is

ρp =
1√
2

(|0〉+ |1〉) 1√
2

(〈0|+ 〈1|)

=
1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

=
1

2

[
1 1

1 1

]
.

Note the difference, though when beams in either state are passed through an
SGz machine, we get ↑ and ↓ outputs with equal probability! However, when
passed through an SGx machine, the mixed state gives the same result, while
the pure state |↑x〉 gives only an ↑ beam with probability 1.

Example 5.1.2. We’ll see how the usual results regarding experimental mea-
surements follow using density matrices for pure states. Consider the state
|↑x〉 of the above example. The probability of obtaining +1 on measuring σz
in this state is

P+ = 〈0|ρ|0〉 = [ 1 0 ]

[
1

0

]
=

1

2
.

The matrix σzρ = 1
2

[
1 0

0 −1

][
1 1

1 1

]
=

[
1 1

−1 −1

]
, and

the expectation value of σz is the sum of its diagonal elements = 0.

Example 5.1.3. A mixed state need not necessarily be composed of orthogonal
states. For example, one could have a mixture containing 20% of the state
|0〉and 80% of the state |↑x〉, whose density matrix would be given by

ρ =
1

5
|0〉〈0|+ 4

5
|↑x〉〈↑x| =

1

5

[
1 0

0 0

]
+

2

5

[
1 1

1 1

]
=

1

5

[
3 2

2 2

]
.
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5.1.1 Properties of the density operator

The density operator on a Hilbert space, defined by Equation 5.4 satisfies
the following properties:

1. ρ̂ is Hermitian.

Proof: ρ̂† =
∑
n

p∗n|ψn〉
†〈ψn|†

=
∑
n

pn|ψn〉〈ψn| = ρ̂. (5.11)

2. ρ̂ is non-negative, that is, for any vector |v〉, 〈v|ρ̂|v〉 ≥ 0. (This translates
to its eigenvalues being non-negative, or det(ρ) ≥ 0.)

Proof: 〈v|ρ̂|v〉 =
∑
n

〈v|pn|ψn〉〈ψn|v〉

=
∑
n

pn|〈v|ψn〉|2 ≥ 0 (5.12)

since the right side is a sum of numbers that are always positive or zero.

3. It satisfies Trρ̂ = 1.
Proof: In an orthonormal basis {|i〉},

Trρ =
∑
i

〈i|

(∑
n

pn|ψn〉〈ψn|

)
|i〉

=
∑
n

pn
∑
i

〈i|ψn〉〈ψn|i〉

=
∑
n

pn〈ψn|

(∑
i

|i〉〈i|

)
|ψn〉

=
∑
n

pn〈ψn|ψn〉 = 1 (5.13)

In general, any operator on a Hilbert space satisfying these properties is
defined as a density operator and can be used to predict the probabilities of
outcomes of measurement on the system, bypassing the state-vector formalism
altogether.

Example 5.1.4. For a system described by continuous variables, for example
position x, the density operator will be expressed as

ρ =

∫
dx dx′ω(x, x′)|x〉〈x′|. (5.14)
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For a pure state, we will have

ρ =

∫
dx dx′ ψ(x)ψ∗(x′)|x〉〈x′|, (5.15)

where ψ(x) = 〈x|ψ〉.

Another property of the density operator that will be useful to us is con-
vexity:

Definition 5.3. Convexity: A set of operators {ρ̂i} form a convex set if

ρ = λρ1 + (1− λ)ρ2, 0 < λ < 1, (5.16)

for every pair ρ1, ρ2 ∈ {ρi}.

Convexity has a very simple meaning: any two members of a convex set
can be connected by a straight line without leaving the set. (See Figure 5.1.)

FIGURE 5.1: (a) A convex set, (b) A non-convex set.

5.1.2 Distinguishing pure and mixed states

A given density operator could represent a pure or a mixed state. If the
system is pure, then the state is a ray in Hilbert space, and the density operator
can be expressed as

ρ = |ψ〉〈ψ|, for some |ψ〉.

Such a density matrix satisfies

ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ, (5.17)

Tr(ρ2) = Tr(ρ) = 1. (5.18)

This is not true if ρ represents a mixed state, where

ρ =
∑
n

pn|ψn〉〈ψn|,

for which ρ2 =
∑
n,m

pnpm|ψn〉〈ψn|ψm〉〈ψm| 6= ρ. (5.19)
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In the orthonormal basis {|i〉}, we have

Tr(ρ2) =
∑
i

∑
n,m

pnpm〈i|ψn〉〈ψn|ψm〉〈ψm|i〉

=
∑
i,n,m

pnpm〈ψm|i〉〈i|ψn〉〈ψn|ψm〉

=
∑

n,mpnpm|〈ψn|ψm〉|2

≤

(∑
n

pn

)2

= 1 (5.20)

The equality holds only when 〈ψn|ψm〉 = a pure phase for all pairs n and m,
which means that the density matrix comprises only one state vector in Hilbert
space: a pure state. In fact, the quantity Tr(ρ2) is sometimes called the purity
of the state. A completely pure state has Tr(ρ2) = 1 and a completely mixed
state has Tr(ρ2) = 1

n . These ideas will be very useful when we study quantum
information theory. There we will also encounter the notion of entropy as a
measure of information, which can also be used to distinguish pure and mixed
states.

Example 5.1.5. For the state pure state |+〉,

ρ2
p =

1

4

(
1 1

1 1

)2

=
1

4

(
2 2

2 2

)
= ρ,

Trρ2
p =

1

2
+

1

2
= 1.

For the unpolarized electron beam (Example 5.1.1), which is a maximally
mixed state, we have

ρ2
m =

1

4
1,

Trρ2
m =

1

2
.

5.1.3 The Bloch ball and the density operator

The representation of a single qubit state on the Bloch sphere can be ex-
tended to the density operator. The Bloch sphere is parametrized by spherical
angles or in terms of the Bloch vector of Equation 4.2, which characterizes
the polarization of the state. Can we use this kind of description for a mixed
state?
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For a single qubit state, ρ is a 2 × 2 matrix and we can represent it as a
linear combination of the Pauli spin matrices and the identity:

ρ = a01+ ~a · ~σ, ~a ≡ (a1, a2, a3).

Since ρ is Hermitian, we need a0 and ai to be real. Since Tr(ρ) = 1 and the
Pauli matrices are traceless, we must have p0 = 1

2 . Thus, if pi = 1
2ai, we can

write

ρ =
1

2
(1+ ~p · ~σ) =

1

2

[
1 + p3 p1 − ip2

p1 + ip2 1− p3

]
. (5.21)

Since ρ must be positive, we need det ρ ≥ 0.

det ρ =
1

2
(1− ~p2).

So ρ is non-negative only if

~p2 ≤ 1, (5.22)

with the equality holding for

pure states: |~p| = 1; det ρ = 0. (5.23)

The vector ~p, also referred to as the polarization vector, is a point on or
inside the unit sphere: the Bloch ball. Thus, states of single qubits can be
represented on the Bloch sphere if they are pure and inside the Bloch sphere
if they are mixed.

FIGURE 5.2: Bloch ball: points inside the Bloch sphere represent qubits in
mixed states
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Example 5.1.6. For a pure state, the Bloch representation of the density
matrix is of the form

ρ =
1

2
(1+ p̂ · ~σ),

where p̂ is the unit polarization vector of the state. To see this, use the Bloch
sphere representation of the state vector along the direction p̂ = {θ, φ}:

ρ(p̂) = |ψ(p̂)〉〈ψ(p̂)|

=

[
cos θ2

eiφ sin θ
2

] [
cos θ2 e−iφ sin θ

2

]
=

[
cos2 θ

2 e−iφ cos θ2 sin θ
2

eiφ cos θ2 sin θ
2 sin2 θ

2

]

=
1

2
1+

1

2

[
cos θ e−iφ sin θ

eiφ sin θ − cos θ

]

=
1

2
(1+ p̂ · ~σ).

Exercise 5.6. Calculate the expectation value 〈n̂ · ~σ〉 of the spin along the di-
rection n̂, in the mixed state characterized by a polarization vector ~p to
validate the interpretation of ~p as the polarization along the direction n̂.

Exercise 5.7. Locate in the Bloch ball the states given by the following density

matrices: (a) 1
2

[
1 0

0 1

]
(b)

[
1 0

0 0

]
.

5.1.4 Decomposition of the density operator

Often the density operator is the primary descriptor of a state. The de-
composition in terms of component states

ρ =
∑
i

pi|i〉〈i|,

is not always unique.
For a pure state, it must be obvious that there is only one such decompo-

sition, and this can be proved from the definitions:

Theorem 5.1. For a pure state, there is a unique decomposition of ρ̂ in the
form of Equation 5.4, and in fact that decomposition consists of only one term.
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Proof. We can see this by invoking the convexity property (Equation 5.16).
Suppose our pure state density matrix admits such a decomposition

ρ̂pure = λ|ψ1〉〈ψ1|+ (1− λ)|ψ2〉〈ψ2|
= λρ1 + (1− λ)ρ2.

Now since the state is pure, there exists some vector |u〉 such that

ρ̂pure = |u〉〈u|.

Consider an orthogonal vector |v〉 : 〈u|v〉 = 0.

=⇒ 〈v|ρ̂pure|v〉 = 〈v|u〉〈u|v〉 = 0.

=⇒ λ〈v|ρ̂1|v〉+ (1− λ)〈v|ρ̂2|v〉 = 0.

Since λ and (1−λ) are positive, this equation can only be satisfied if 〈v|ρ̂1|v〉 =
0 = 〈v|ρ̂2|v〉. This means ρ̂1 and ρ̂2 are orthogonal to |v〉. But |v〉 can be any
vector orthogonal to |u〉. So we must have

ρ1 = ρ2 = ρ̂.

On the other hand, a mixed state ρ has no unique decomposition in terms
of pure states! This is easiest to see in our example of an unpolarized beam
with density matrix 1

21: on subjecting this beam to SG tests along z or x or
y or any other direction n̂, it yields equal proportions of |↑〉 and |↓〉 states.
This means that it can equally well be represented as equal parts of |0〉 and
|1〉, or |↑x〉 and |↓x〉 or even |↑n〉 and |↓n〉!

Exercise 5.8. Show that the density matrix 1
21 can be expressed as 1

2 (|↑〉〈↑| +
|↓〉〈↓|) in any basis.

In fact we can see from the convexity property of density matrices (5.16)
that a given density operator ρ can be expressed in infinitely many ways in
that form, so that it is impossible to identify any unique component density
operators ρ1 and ρ2. For example, in the case of a single qubit state, three
different decompositions in terms of pure states that sit on the surface of the
Bloch sphere, are shown in Figure 5.3. An infinite number of such decompo-
sitions is possible by choosing different chords.

Suppose that we prepare a mixed state ρ with pure states |ψn〉 in certain
proportions pn, of the form in Equation 5.4. The pn’s in the density matrix
represent the probability of finding the state in |ψn〉. However, when this state
is passed on to someone who doesn’t know how it was prepared, there is no
way they can tell which states were used to prepare the system. Therefore,
the pn’s can no longer be interpreted as probability of being in state |ψn〉,
since the decomposition is not unique. For this reason, it is not possible to
interpret the eigenvalues of a density matrix as physical probabilities of the
system being in particular states.
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FIGURE 5.3: Density matrix ρ allowing three different decompositions.

5.2 Quantum Mechanics with Density Operators

We now have an alternate formulation of quantum mechanics, in terms
of density operators instead of state vectors, that is good for open systems
as well. Let’s go through the axioms of quantum mechanics framed in this
language.

5.2.1 States and observables

Postulate 1. Quantum State: The state of a quantum system is described
by a density operator in Hilbert space, i.e., a positive Hermitian operator with
unit trace.

Postulate 2. Observables: An observable A is represented by a Hermitian
operator Â on Hilbert space. When measured in a state ρ, the probability of
an outcome an is given by

P(an)ρ = Tr(ρP̂n) (5.24)

where P̂n = |n〉〈n| is the projection on the appropriate eigenspace of Â. The
expectation value of the observable is given by

〈Â〉ρ = Tr(ρÂ). (5.25)

5.2.2 Generalized measurements

When measurements are made on open systems, we are forced to generalize
our notion (from Section 3.3) of projections on the eigenspaces of the observ-
able being measured. Those are special cases and are called von Neumann or
projective measurements.

Most real measurements are not of this kind. To take a simple but extreme
example: how do we describe the measurement of the position of a photon in
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an experiment where it strikes a screen that emits a phosphorescent flash?
In this case the position may be noted, but the photon has been absorbed
by the screen! Thus we can no longer say the measurement is projective with
the post-measurement state being given by Equation 3.17. In fact the pho-
ton itself is destroyed by measurement. Another assumption of the projective
measurement model is that the measurement is repeatable: successive actions
of the projection operator on the same state give the same result. Most real
measurements are not repeatable. We therefore need to generalize the idea of
measurement.

The main characteristic of any operator representing measurement is that
it must tell us how to calculate the probabilities of outcomes. The projective
measurements considered in Chapter 3 can be expressed in the density opera-
tor formalism as follows. If the outcome is α then the state is transformed by
the projection operator P̂α = |α〉〈α|:

ρ
Measure Â, obtain α−−−−−−−−−−−−−→ P̂αρP̂

†
α. (5.26)

The probability of obtaining the outcome α is given by

P(α) = Tr(P̂αρP̂
†
α) = Tr(P̂†αP̂αρ) = Tr(P̂αρ). (5.27)

The last step follows from the orthogonality of projection operators (Equa-
tion 3.21): P̂†αP̂α = P̂α. It is this property that we drop in the case of gener-
alized measurements.

For generalized measurement, we think in terms of a complete set of mea-
surement operators M̂m, each of which corresponds to a different measurement
outcome m. But these operators do not need to be orthogonal like projection
operators.

FIGURE 5.4: Generalized measurement.

Postulate 3. Measurement: a measurement process capable of yielding m
possible distinct outcomes can be described by a set of Hermitian measurement
operators M̂m satisfying

∑
m M̂

†
mM̂m = 1 (the completeness relation). The

probability of an outcome m is

P(m) = Tr(M̂†mM̂mρ) (5.28)
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and the state after measurement is given by the density operator

ρm =
M̂mρM̂

†
m

Tr(M̂†mM̂mρ)
. (5.29)

The special case of projective measurements corresponds to M̂†mM̂m ≡
|m〉〈m| = P̂m.

5.2.3 Measurements of the POVM kind

In most applications of measurement, we are not interested in the post-
measurement state of the system, but only in the statistics, or the relative
probabilities of different outcomes, that we can collect by measuring an en-
semble. A special case of the measurement postulate caters to this need, and is
known as the POVM formalism. The set of measurement operators is known
as a positive operator-valued measure2 or POVM for short. The reason
for this technical-sounding name is not important; we will just describe the
main elements of this formalism here, due to its usefulness and pervasiveness
in literature.

If we consider the set of operators

Êm = M†mMm,
∑
m

Êm = 1, (5.30)

then the probability of outcome m on making a measurement on the state ρ
is

P(m) = Tr(Êmρ).

It can be easily seen that the operators Êm are positive, but not necessarily
orthogonal. That is,

ÊmÊn 6= δmnÊm.

They are called the POVM elements, with the set {Êm} called the POVM.
For our purposes, the POVM is just a set of positive operators that add up
to unity. Some texts also call these operators as forming a non-orthogonal
partition of unity (as opposed to the orthogonal partition made by projection
operators).

Example 5.2.1. If we consider the projectors Pm = |m〉〈m| as the measure-
ment operators, then POVM elements are

Êm = P
†
mPm = Pm,

the same as the measurements operators themselves. Some texts call these
projection-valued measures or PVMs.

2The word “measure” becomes relevant only in the case of infinite dimensional Hilbert
spaces.
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Example 5.2.2. One context in which POVM is very useful is in distinguishing
two non-orthogonal states with maximum probability. Consider for example
the states

|ψ1〉 = |0〉, |ψ2〉 = |+〉 =
1√
2

(|0〉+ |1〉).

The operators |1〉〈1| and |−〉〈−| project onto orthogonal subspaces. We can
form a partition of unity by adding a third operator, so that the set

Ê1 =
(

2−
√

2
)
|1〉〈1|,

Ê2 =
(

2−
√

2
)
|−〉〈−|

Ê3 = 1− (Ê1 + Ê2).

forms a POVM. Verify that each of the Êi is positive.
If we measure these operators, Ê1 and Ê2 giving outcomes yield positive

conclusions: there will be no outcome corresponding to Ê1 if the state were
|ψ1〉, and none corresponding to Ê2 if the state were |ψ2〉. But when the
outcome corresponding to Ê3 occurs, then we cannot tell which state we had.
These operators thus give us a way of unambiguously distinguishing the two
states except in the third (inconclusive) case.

The POVM formalism is especially useful when we consider a system in
a mixed state as a subspace of a larger system in a pure state. If we per-
form projective measurements on a larger space, the effect on the subspace
is of POVM measurements (see Box 5.1). This is in fact the motivation for a
theorem due to Neumark, which states that any POVM can be realized as a
projective measurement on an extended Hilbert space.

5.2.4 State evolution

How is the evolution of a system described in terms of density matrices?
The evolution operator U for a closed system must be unitary. So for a closed
system evolving from initial time t0 = 0 to some final time t, we can write

ρ(t) = U(t)ρ(0)U†(t). (5.31)

For a mixed state, ρ =
∑
n pn|ψn〉〈ψn|. Assuming that time evolution pre-

serves this linearity, we can extend Equation 5.31:

ρ(t) =
∑
n

pnU(t)|ψn〉〈ψn|U†(t). (5.32)

Now the unitary time-evolution operator is obtained from the energy operator,
or Hamiltonian Ĥ for the system:

Û(t) = exp(−iĤ(t− t0)/~).
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Can we write a differential equation for time evolution, like the Schrödinger
equation 3.23 for the state vector? If we differentiate Equation 5.31 with re-
spect to time:

d

dt
ρ(t) =

i

~

(
−ĤÛρ(0)Û† + Ûρ(0)ĤÛ†

)
=

i

~

(
−Ĥρ(t) + ρ(t)Ĥ

)
=

i

~

[
ρ(t), Ĥ

]
. (5.33)

For an open system, the evolution of the density matrix can no longer be
expressed as a unitary transformation. The description of such evolution is
beyond the scope of this text.

5.3 Composite Systems

There is another sense in which density operators are a useful way to
describe nature. In general, it is impossible to isolate the system of interest
from some parts of its environment. We then have to regard our system as a
subsystem of a larger system: “system + environment”. If the large system in a
pure quantum state consists of subsystems, then the state of any subsystem is
essentially described by a density operator. The way to get there is to perform
a reduction of the density matrix of the larger system, by a procedure called
the partial trace over all subsystems except the one of interest.

5.3.1 Reduced density operator

Consider a composite of two systems A and B, described by a pure state
density operator ρAB .

FIGURE 5.5: Illustrating a bipartite composite system.

For the purposes of this book, we will only concentrate on systems consist-
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ing of two subsystems, the so-called bipartite systems (Figure 5.5). We can
perform a partial trace over the system B alone to obtain the state of system
A. If the set {|kB〉} forms a basis for system B then

ρA = TrBρ
AB =

∑
k

〈kB|ρAB |kB〉. (5.34)

Trace operation is linear, and if we demand that partial trace is also linear in
its inputs, we can compute partial traces in practice.

Definition 5.4. If subsystems A and B are given by Hilbert spaces spanned
by the bases {|iA〉} and {|jB〉} respectively, we define the partial trace of ρAB

with respect to subsystem A as

TrAρ
AB =

∑
i

〈iA|ρAB |iA〉 (5.35)

which will be an operator on the Hilbert space of subsystem B alone.

Example 5.3.1. Consider a simple example where the system state can be
written in separable form:

ρAB = σA1 ⊗ σB2 .

Then quite trivially,

ρA = TrB(σA1 ⊗ σB2 ) = σA1 TrBσ
B
2 = σA1 .

Example 5.3.2. A less trivial case where the two subsystems are entangled,
so that the state of the system is a Bell state:

|ψAB〉 =
1√
2

(
|0A〉|0B〉+ |1A〉|1B〉

)
.

=⇒ ρAB = |ψAB〉〈ψAB |

=
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) .

To obtain ρA by a partial trace over B, we sandwich each term between the
basis states of B and add up:

ρA = TrBρ
AB

= 〈0B |ρAB |0B〉+ 〈1B |ρAB |1B〉
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We illustrate the calculation of this by first evaluating the contribution by the
first term in ρAB :

〈0B | (|00〉〈00|) |0B〉 + 〈1B | (|00〉〈00|) |1B〉
= |0〉〈0B|0〉〈0|〈0|0B〉+ |0〉〈1B |0〉〈0|〈0|1B〉
= |0〉〈0|+ 0.

Evaluating the other terms similarly, we find that

ρA =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2
1.

Thus the subsystem A is in a maximally mixed state! Similarly,

ρB = TrAρ
AB =

1

2
1.

This result is a hallmark of entanglement: though the composite system is
in a well-defined state, i.e., its density operator contains maximal informa-
tion about all measurement outcomes in the state, we can say nothing about
measurement outcomes on either of the component subsystems: they are in
maximally mixed states.

Exercise 5.9. Calculate the density matrices for both subsystems for the other
three Bell states.

Exercise 5.10. Consider a 2-qubit system AB with the density matrix ρ =
1
2 |β00〉〈β00| + 1

2 |10〉〈10|. Compute the reduced density matrices ρA and
ρB .

The fact that the reduced density matrices for entangled systems represent
mixed states is generic, and can be used to characterize entanglement. As we
have already seen, the reduced density matrices for separable systems will
always be pure.

Box 5.1: POVM from Projective Measurements on a Composite System
POVM measurements on quantum systems can be realized as projective

measurements on an extended “system+ancilla” Hilbert space. Let’s consider
a system A that is not interacting with the independent ancilla B. The com-
bined AB system is in a product state that can be represented by the density
operator

ρAB = ρA ⊗ ρB .

A projective measurement on this state is the action of projection operators
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P̂m on this state. The probability of outcome m is then

P(m) = Tr
[
P̂m(ρA ⊗ ρB)

]
= TrA

[
TrB

(
P̂mρ

A ⊗ ρB
)]

= TrA(Êmρ
A) (5.36)

where the Êms are operators on the system A. We can identify the matrix
elements of these operators by expressing the above equation in components:
using orthonormal bases {|i〉} for the system A and {|µ〉} for the ancilla B,

TrB

(
P̂mρ

A ⊗ ρB
)

=
∑
ijµν

(P̂m)jνiµ(ρA)ij(ρ
B)µν

=
∑
ij

(Em)ji(ρ
A)ij

=⇒ (Em)ji =
∑
µν

(P̂m)jνiµ(ρB)µν .

It is easy to see that the Êms defined this way are complete. Suppose ρB is
diagonal in the basis {|µ〉}:

ρB =
∑
µ

pµ|µ〉〈µ|,

∑
m

Em =
∑
µ

pµ〈µ|
∑
m

P̂m|µ〉 = 1.

5.3.2 Schmidt decomposition

Another useful way of dealing with composite systems, the Schmidt de-
composition is about expressing the state of a bipartite system in terms of
orthonormal states of the two subsystems.

Theorem 5.2. If {|uAi 〉} and {|vBj 〉} are orthonormal sets of vectors in the
Hilbert spaces of subsystems A and B, respectively, the state of the combined
system can be expressed as

|ψAB〉 =
∑
i

λi|uAi 〉|vBi 〉. (5.37)

The constants λi are called Schmidt coefficients, and are non-negative real
numbers satisfying

∑
i λ

2
i = 1. The number of terms in the expansion is known
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as the Schmidt number. While such an expansion may not in general be
unique, the Schmidt number is unique for a given state.

Proof. The Schmidt decomposition theorem (5.37) can be proved by simple
results in linear algebra.

Consider a general pure state in the computational basis {|iA〉|jB〉}:

|ψ〉 =
∑
ij

Cij |i〉|j〉.

Now the matrix C of complex numbers is a square matrix, and therefore (from
results in linear algebra) has a singular value decomposition (SVD) of the form
C = UDV where D is a diagonal matrix and U and V are unitaries. So we
can write

|ψ〉 =
∑
ij

∑
k

UikDkkVkj |i〉|j〉.

By defining Dkk = λk,
∑
i Uik|i〉 = |uk〉,

∑
j Vkj |j〉 = |vk〉 we get the form of

Equation 5.37 for |ψ〉.

In terms of density matrices,

ρAB =
∑
i

λ2
i |uAi 〉〈uAi | ⊗ |vBi 〉〈vBi |. (5.38)

If we perform partial traces on this, we will get

ρA =
∑
i

λ2
i |ui〉〈ui|, ρB =

∑
i

λ2
i |vi〉〈vi|, (5.39)

There are some important take-home points to note here:

• Both the reduced density matrices have the same eigenvalues.

• ρ could have zero eigenvalues and those terms are not present in the
expansion above. So the sets {|uAi 〉} and {|vBj 〉} are not bases for HA
and HB , but can be extended to bases by including eigenvectors for the
zero eigenvalues.

If the composite system is in a product state, then there is obviously only
one term in the Schmidt decomposition. Thus the Schmidt number for product
states is always 1. Therefore an entangled state has Schmidt number > 1. This
is one of the first ways of quantifying entanglement.

Example 5.3.3. Let’s find the Schmidt form of some simple states:
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• |ψ1〉 = 1√
2

(|00〉+ |01〉). This is a Bell state and is already in Schmidt

form. It is clearly entangled: it has 2 terms.

• |ψ2〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉)) has

only one term: it is a product state.

• |ψ3〉 = 1√
3

(|00〉+ |01〉+ |10〉). This and more general states are more

tricky. We would need to find the SVD of the matrix of coefficients Cij
for the state represented in the computational basis.

In our example, C = 1√
3

[
1 1

1 0

]
, which turns out to be directly diago-

nalizable. So the SVD reduces to diagonalization.

Eigenvalues are λ1,2 = 1
2
√

3
(1±

√
5) and normalized eigenvectors are:

α1 =

[
α11

α12

]
=

1√
10 + 2

√
5

[
1 +
√

5

1

]
,

α2 =

[
α21

α22

]
=

1√
10 + 2

√
5

[
1

−(1 +
√

5)

]
.

We can see that these eigenvectors are orthogonal, so

U =

[
α11 α21

α12 α22

]
= V †.

The Schmidt vectors are simply

|u1,2〉 = {α1, α2},
|v1,2〉 = {α1, α2}.

5.3.3 Purification

The notion of Schmidt decomposition immediately leads to a converse
construction known as purification: given a density matrix ρA for a mixed
state of a system A, one can construct a supersystem AB of which it is a
subsystem, such that |ψAB〉 is a pure state, and

ρA = TrB |ψAB〉〈ψAB |. (5.40)

The most obvious way to construct a purification of a state (in terms of
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orthonormal basis {|iA〉} )

ρA =
∑
i

pi|iA〉〈iA|

is to take a copy of this state for system B (in terms similarly indexed or-
thonormal basis {|iB〉}, and to construct the pure state

|AB〉 =
∑
i

√
pi|iA〉|iB〉. (5.41)

It is straightforward to verify that the reduced density matrix TrBρ
AB will

give ρA:

TrBρ
AB = TrB

∑
ij

√
pi
√
pj
(
|iA〉〈jA|

)(
|iB〉〈jB |

)
=

∑
ij

√
pi
√
pj |iA〉〈jA|〈iB|jB〉

=
∑
ij

√
pi
√
pj |iA〉〈jA|δij

=
∑
i

pi|iA〉〈iA| = ρA.

Naturally we expect unitary freedom in choosing purifications, and indeed one
can show that if there exist two purifications |AB1〉 and |AB2〉 for the system
A, then B1 and B2 are related by a unitary transformation:

|AB1〉 = 1⊗ U2|AB2〉.

Problems

5.1. What are the eigenvalues of the density matrix for the pure state α|0〉+β|1〉?

5.2. Calculate the eigenvalues of the 1-qubit density matrix expressed in terms
of the Bloch vector.

5.3. Find the reduced density matrices for each subsystem and also the Schmidt
decomposition for the state

|ψAB〉 =
1

2
√

2

(
|0A〉(|0B〉+

√
3|1B〉) + |1A〉(

√
3|0B〉+ |1B〉)

)
.
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5.4. Consider the 2-qubit density matrix

ρ =
1

8
1+

1

2
√

2
(|01〉 − |10〉).

Suppose you measure σx for the first qubit and σz for the second. What is
the probability that they are both +1?

5.5. Calculate the eigenvalues of the following density matrices. Which of these
represent pure states and which, mixed?

(a)

(
1 0

0 0

)
(b) 1

2

(
1 1

1 1

)
(c) 1

3

(
2 1

1 1

)
(d) 1

3

(
2 3

3 1

)
.





Chapter 6

Computation Models and
Computational Complexity

Now that we have the laws for qubits, we need to develop a system for meaning-
fully manipulating them. Much of the current paradigm for quantum comput-
ing is motivated by classical computation theory, especially the circuit model
for computation. In this chapter, we will briefly overview the classical model
of Boolean circuit theory, and also some of the theoretical concepts involved
in classifying the computational complexity of problems. Roger Penrose [53]
has a beautiful account of the history of the theory of computation. Another
wonderful book on similar lines is that of Douglas Hofstadter [41], both of
which will stimulate you to think along the lines of a computer scientist.

6.1 Computability and Models for Computation

For a long time historically, computation was a matter of actually solving,
or finding algorithms to solve, various mathematical problems using mechan-
ical or other algorithms. It was only in the early twentieth century that the
process of computation was modelled in mathematical terms, largely in the
works of Alan Turing, Alonso Church, Kurt Gödel, and Emil Post. Their efforts
were directed at extracting the basic properties of a computational process,
independent of the platform on which it was executed.

The first question regarding computation that a theoretician asks is
whether or not the given problem is computable. What exactly does this mean?
If the problem is somehow reduced to the calculation of a function, then is this
function computable? In order to meaningfully answer this question without
having to examine all possible algorithms designed to compute the function,
the famous mathematician Alan Turing came up with a theoretical model
computer known as the Turing Machine, which is a simplification of your
desktop computer to the bare bones.

101
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6.1.1 Turing machine

Turing’s abstract computing machine captures the concept of an algorithm
to evaluate a function. It can be thought of as a mechanical analogue of an
algorithm broken down to its bare bones. Now an algorithm basically takes
an input in some symbolic form, performs basic manipulations in steps that
may even be recursive and finally finishes up with an output. In the paradigm
of a computing machine, the machine has a means of accepting and reading
an input, a set of instructions on what basic steps to perform, which may
depend on the output at a previous step. The machine must therefore be able
to move back and forth over previous steps and write out the answer at
each step, and halt when the process is over. This mechanism of comparing
outputs to conditions in the program can be achieved easily by attributing an
internal state to the machine.

FIGURE 6.1: A schematic of a Turing machine.

Turing modelled this process in an abstract machine (TM), schematically
shown in Figure 6.1, consisting of the following.

1. A tape which is a string of cells that can contain one of a finite set of
symbols, Γ = {Si}, which could, for example, be binary 0 and 1, a blank
(�0) and a special symbol B, for the left edge of the tape.

2. A read/write head that can take input from or write output to a cell
at a time when fed into the machine.

3. A register that stores the internal state of the machine, which could
be one of a finite set of states {qi}. There are two special states, S, the
starting state and H, the halting state.

4. A table of instructions (like a program) that make the head execute
a Left move, a Right move, and a Print, depending on the symbol
currently read by the head. This is like a function f(q, x) = 〈q′, x′,m〉
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where q is the current state of the machine, x is the current symbol read,
q′ is the new state after execution of the step, x′ is the symbol written
on to the tape, and m is a move L, R, or 0.

Example 6.1.1. To see how a TM might work, consider one with binary
symbols, Γ = {0, 1, �0,B} and internal states Q = {S, q1, q2, q3, H}. Let the
table (program) be as follows:

HHHHHx
qi B 0 1 �0

S 〈q1,B, R〉
q1 〈q1, 0, R〉 〈q1, 1, R〉, 〈q2, �0, L〉
q2 〈q3, �0, L〉, 〈q3, �0, L〉
q3 〈H,B, 0〉 〈q3, 0, L〉, 〈q3, 1, L〉 〈H, �0, L〉

Can you see what this machine achieves? Take for example an input string
110 on the tape followed by blanks. The tape would look like

B 1 1 0 �0 . . .

The sequence of states followed by the machine are:

〈S,B〉 → 〈q1,B〉
R−→ 〈q1, 1〉

R−→ 〈q1, 1〉
R−→ 〈q1, 0〉

R−→ 〈q2, �0〉
R−→ 〈q3, �0〉

L−→ 〈q3, 1〉
L−→ 〈q3B〉 → 〈H,B〉.

The tape now looks like

B 1 1 �0 �0 . . .

You can see that this machine erases the last symbol on the tape. Try it
out on a different input.

Exercise 6.1. Try to construct the table of instructions for a TM that adds 1 to
the entry on the tape.

Every TM is specified by its own set of symbols Γ, set of internal states
Q, and program. So there exists a specific Turing machine for every specific
algorithm. However, the machine may be made programmable according to
different algorithms, if the program is also fed in as part of the input. Thus a
programmable Turing machine can simulate any other Turing machine: this
is the universal Turing machine (UTM).

In his work, strengthened by the work of Alonso Church, who was simulta-
neously working on Hilbert’s famous computability problem, Turing was able
to prove the thesis that any algorithm could be simulated by a UTM. Church’s
work strengthened this to the Church–Turing thesis:
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Theorem 6.1. Any function that can be computed by an algorithm can be
efficiently simulated by the Universal Turing Machine.

Turing was then able to formulate the problem of computability in terms
of whether or not such a universal machine would halt, i.e., find a solution. So
problems on which this machine halted would then be called computable.

Interestingly enough, the famous halting problem, viz. whether or not a
particular algorithm on a Turing machine will halt, is itself uncomputable!

The question then begged to be asked as to whether a given problem that
is not computable by a UTM can be made so by a different paradigm of com-
putation. This led to extensions of the Turing machine concept to probabilistic
Turing machines where the algorithms made use of fuzzy logic.

6.1.2 Probabilistic Turing Machine

One of the major challenges to the Church–Turing thesis came from al-
gorithms that were probabilistic, that is, could solve problems efficiently but
with a certain (bounded) probability of failure. These problems, for instance
the Solovay–Strassen primality test (1977) cannot be efficiently solved on the
deterministic Turing machine described above.

Computer scientists therefore extended the validity of the Church–Turing
thesis to probabilistic algorithms by designing a probabilistic Universal Turing
Machine.

A probabilistic or randomized Turing machine is one in which randomness
is built into each step which chooses possible options according to a probability
distribution. Such a machine therefore would need to have an additional tape:
the random tape, containing a string of random numbers to decide the options
at each step. Without going into details, we will state that a probabilistic
universal Turing machine (PTM) can replace the earlier deterministic one
to save the Church–Turing Thesis in its stronger form.

There is a plethora of randomized complexity classes that can be defined
for randomized algorithms that we will not go into, but this extends the class
of efficiently solvable problems.

6.1.3 Quantum Turing Machine

The challenge to this model of computation came with trying to simulate
quantum mechanical systems on a PTM; this was still unsolvable. The natural
question to ask was whether or not it was possible to generalize to a quantum
Turing machine (QTM) that would further expand the class of solvable
problems. This was done by David Deutsch in 1985 though thought of earlier
by Benioff and Bennett.

The most important idea behind this machine, which is also probabilistic,
is that it is reversible, in the same way as quantum time evolution is reversible.

The idea behind discussing Turing models is to see if the class of problems
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that are hard to solve can be made smaller. As it turned out, while QTMs
cannot reduce the class of unsolvable problems, they do reduce that of hard
problems.

The Turing model is the most mathematically abstract model for compu-
tation, and is widely used to establish computability and upper bounds on
the efficiency of a given algorithm. There are several other models involving
for example, decision trees, cellular automata, or logical calculus. The most
practical approach is called the circuit model where elementary logic opera-
tions are used as building blocks to evaluate the function. It was shown that
the circuit model was equivalent to the Turing model, so that there is no loss
in generality in concentrating on this, as we will in most of this book.

6.2 The Circuit Model and Universal Gates

Classical computation using binary variables works on Boolean logic, and
implementation of basic logical operations are done through logic gates that
are well known. We will revise their behaviour and notation and express their
action as matrix operators.

We will think of a computation as effected by a circuit evaluating some
Boolean function whose input is a binary n-bit number, and output may be
an m-bit number:

f : {0, 1}n 7→ {0, 1}m. (6.1)

As a circuit this is represented in the following diagram:

fn m




The computation is effected by a combination of logic gates. One can
represent an n-bit input to a gate as a 2n × 1 column vector and the output
as a 2m × 1 column vector. The action of the gate is then represented by a
2m × 2n matrix.

A single classical bit takes two mutually exclusive logical values, that can
be written as the two basis vectors:

0 ≡

[
1

0

]
, 1 ≡

[
0

1

]
. (6.2)

The logical operation NOT takes a bit and gives its complement: x→ x̄. We
can algebraically represent this operation of negation as x→ 1−x. Physically
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it ca nbe implemented by the NOT gate, which flips the value of the input
bit, as specified by the truth table and operation

Input Output

0 1

1 0

,

[
1

0

]
→

[
0

1

]
,

[
0

1

]
→

[
1

0

]
. (6.3)

This action can be executed by operation of the following 2 × 2 matrix on
either of the bit values:

NOT =

[
0 1

1 0

]
. (6.4)

There are more operations possible on two and higher bits. The two-bit num-
bers are given by 4 column vectors

00 ≡


1

0

0

0

 , 01 ≡


0

1

0

0

 , 10 ≡


0

0

1

0

 , 11 ≡


0

0

0

1

 . (6.5)

A very useful two-bit operation is the AND, which gives an output 1 if an only
if both input bits are 1. As a gate, it is given by the truth table and operation

Input Output

00 0

01 0

10 0

11 1

,


1

0

0

0

→
[

1

0

]
,


0

1

0

0

→
[

1

0

]
,


0

0

1

0

→
[

1

0

]
,


0

0

0

1

→
[

0

1

]
.(6.6)

To represent this operation we need a 22 × 2 matrix:

AND =

[
1 1 1 0

0 0 0 1

]
(6.7)

Algebraically, AND can be executed by (x, y)→ x ∧ y = xy.
Various other logical operations on two bits are possible, such as the OR,

the complements of AND and OR called NAND and NOR respectively, and
the exclusive-OR or XOR. These along with their symbols and algebraic equiv-
alents are listed in Table 6.1.

Exercise 6.2. Find the matrix representations of the OR and XOR gates.

In classical computations, we often assume that we work on copies of a
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TABLE 6.1: Basic classical gates and their symbols.

Gate Logical Symbol Arithmetic Equivalent Circuit Symbol

NOT: x̄ 1− x

AND: x1 ∧ x2 x1x2

OR: x1 ∨ x2 x1 + x2 − x1x2

XOR: x1 ⊕ x2 x1 + x2 − 2x1x2

NOR: x1 ↓ x2 1− x1 − x2 + x1x2

NAND: x1 ↑ x2 1− x1x2

COPY: (fanout) x −→ x, x

SWAP: (crossover) x1, x2 −→ x2, x1

certain input bit, and sometimes inputs are switched. These are included ex-
plicitly among the logic gates, as actions we need to perform though we may
ignore them at times. This becomes especially important when we map clas-
sical functions to quantum ones, because in manipulating qubits, copy can no
longer be implemented, and swap is non-trivial.

We can concatenate gates in series to obtain an effective action by multi-
plying the matrices representing the gates:

A B ≡ BA .

Further, gates could act in parallel in which case the effective action is
obtained by taking the tensor product of the corresponding matrices.

A
≡

B
A⊗B

In general, the evaluation of a function can be converted to an algorithm
involving logic gates acting on the input bits, and a corresponding circuit can
be constructed. Now an n → m function is equivalent to evaluating each of
the m outputs as a {0, 1}n → {0, 1} function. We can therefore restrict our
attention to n → 1 functions. Note that for a given n there are 22n

such
distinct functions.

Now we show that any such function can be evaluated using a small subset
of the above logic gates: a set of universal gates.
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6.2.1 Universal gates

It is well known that AND, NOT and OR form a universal set of gates.
Consider for example the case n = 1. We have four distinct functions imple-
mented as in Table 6.2.

TABLE 6.2: The four 1-bit functions.

Function Action Form Gate

f1: 0→ 0

1→ 0 f(x) = x ∧ 0 AND

f2: 0→ 0

1→ 1 f(x) = x Identity

f3: 0→ 1

1→ 0 f(x) = x̄ NOT

f4: 0→ 1

1→ 1 f(x) = x ∨ 1 OR

For n > 1, the functions fall into two classes: those giving output 0 and
those giving output 1. Suppose for a given function that the output is 1 for
the set of inputs {xa}. The function can then be constructed in terms of what
are called the minterms of f , defined as:

fa(x) =

{
1, x ∈ {xa}
0 otherwise.

(6.8)

The minterms are easily constructed from the bits in the input by the product
(AND) of the bits or their complements. For instance, say xk = 10110 ∈ {xa}.
Then

fk(x) = x5 ∧ x̄4 ∧ x3 ∧ x2 ∧ x̄1. (6.9)

We can then construct f(x) as the sum (OR), of the minterms. Then we have
the so-called disjunctive normal form of f(x):

f(x) = f1(x) ∨ f2(x) ∨ . . . (6.10)

Thus we need OR, AND, and NOT operations to construct this function.
Since we will need more than one copy of the bits in the input to construct
the minterms, we require COPY as well.

There is an alternative inductive proof for this. Assume that we have a
circuit built only of AND, NOT, and OR gates to construct f(x) for some
n. Then to construct an n + 1 → 1 function, we define two n → 1 functions,
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whose values are given by the output of f(x), as the (n + 1)th bit is set to 0
or 1:

f0(xnxn−1 . . . x1) = fn+1(0xnxn−1 . . . x1), (6.11a)

f1(xnxn−1 . . . x1) = fn+1(1xnxn−1 . . . x1). (6.11b)

Then,

f(x) = (f0 ∧ x̄n+1)⊕ (f1 ∧ xn+1). (6.12)

Thus fn+1 can be implemented by the circuit of Figure 6.2.

FIGURE 6.2: Classical circuit for function evaluation.

6.3 Reversible Computation

We are studying classical gates to help us develop quantum gates. Quantum
gates are unitary. This means they are reversible: they can be “run backward”.
More practically, the meaning is that the inputs can be deduced from the
outputs. Most classical gates however, are irreversible, and cannot as such
be extended to quantum gates. For example, the AND gate, being 2 → 1 is
irreversible: it gives an output of 0 for more than one input set: (0, 0), (0, 1),
and (1, 0). So given only the output, the input cannot be deduced. So is the
OR gate and all the other famous 2-bit 2 → 1 gates! For an n-bit gate to be
reversible it must at least be a 1 → 1 mapping. Further it must give distinct
outputs for different inputs. Thus the outputs are all simply permutations
of the inputs. In terms of matrix representations, reversible gates must be
invertible. The classical two-bit gates represented by non-square matrices can
clearly not be inverted.

The idea of reversibility in classical computation has been studied long
before quantum gates were thought of (see for example Bennett [7]). It began
with the ideas of Landauer [46], who argued that erasure of information is
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accompanied by a loss in energy. Irreversible gates essentially erase some bits
of information in their functioning, and this should lead to intrinsic dissipation
of energy. Thus if one wants the most energy-efficient computing machine it
should employ reversible gates.

bit 0 bit 1

FIGURE 6.3: A simple thermodynamic system encoding a bit of information.

A simple way to understand how erasing information costs is in terms
of the thermodynamic quantity known as entropy. We will see more of this
concept when we study quantifying information. At present we want to see how
Landauer argued that information erasure causes an increase in the entropy
of the environment and therefore a decrease in the energy of the system. His
main point was that information was not something abstract, but was in fact
the physical system used to represent it. In an illustrative example due to
Szilard [68], a bit of information can be encoded in terms of the location of a
molecule in the left or right of a partition in a transparent box (Figure 6.3). If
we look at the box and find the molecule in the left partition then the system
encodes a logical 0, and if it is on the right side then it encodes a logical 1.
We can write one bit of information in this system by putting the molecule in
the appropriate half.

One way to erase the information contained in the location of the molecule
is to remove the partition and push the molecule to one end by compressing
the “gas” with a piston. If we then replace the partition, the system reads 0
irrespective of what was encoded in it initially (Figure 6.4).

FIGURE 6.4: Erasing a bit of information.

Thermodynamics tells us how to calculate the work done in this process.
The entropy of a thermodynamic system is related to the logarithm of the
number of microscopic states available to the system. Since the molecule could
be in one of two locations, the entropy associated with the single bit encoded
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in the box is given by kB ln 2, where kB, the Boltzmann constant1, is a pro-
portionality factor. If the process of erasure is carried out at a constant tem-
perature T then the energy dissipated in this process equals the work done in
pushing the piston, which is kBT ln 2. This is the least amount of energy that
is lost per bit when one performs an irreversible computation.

While there has been considerable debate in the literature regarding Lan-
dauer’s principle, recently there appears to be experimental confirmation of
the heat dissipated when a bit of information is erased. [12].

6.3.1 Classical reversible gates

In the early 1970s, this line of thinking prompted Bennett to come up
with ways to beat the Landauer limit: by introducing reversible computation.
The gates we have studied so far, such as AND and XOR, are intrinsically
irreversible since they are two-one functions. An n→ m function can, however,
be implemented reversibly if it is embedded in a reversible n + m → m + n
function.

The additional m inputs take certain fixed values, and are referred to
as ancilla bits, while the extra n outputs are ignored. These are sometimes
referred to as garbage bits.

(x, 0) 7−→
(
f(x), g(x)

)
. (6.13)

↙ ↓ ↓ ↘
input ancilla output garbage

The advantage of reversibility is that the entire process can be run in
reverse after storing (copying) the answers, so that all the bits are returned
to their original states. The garbage is thus effectively recycled! The circuit
diagram for such a reversible implementation is given in Figure 6.5.

f

m bit output f(x)
n bit input x


0 n (ignore)

m ancillary bits 0


0

FIGURE 6.5: Reversible implementation of an irreversible function

The function may be reversible only if the circuit to compute it is built
out of reversible gates. NOT is a reversible 1-bit gate. A reversible 2-bit gate
is the CNOT or controlled-NOT gate. This classic gate acts as NOT on the

1kB = 1.38× 10−23J/K. This constant appears in the relationship between energy and
temperature at the level of particle constituents of a thermodynamic system.
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second (target) input bit if the first (control) bit is set to 1; otherwise it leaves
it unchanged. The truth table and circuit representation is:

CNOT:

x y x′ y′

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

x • x

y x⊕ y

(6.14)

Here the top bit is the control bit. The filled circle on the connecting wire
between the two bits represents control by the value 1. The lower bit is the
target bit.

Exercise 6.3. Check that the matrix representation for the CNOT gate is

C =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Now the CNOT gate is a reversible implementation of the XOR gate. You
can see that the second output y′ represents the XOR of the inputs. So if we
ignore the first output, we have here a reversible XOR gate:

XOR : (x, y) 7→ (x, x⊕ y). (6.15)

This is reflected in the circuit symbol for CNOT, where the target bit is shown
with an ⊕ symbol acting on it, controlled by the first bit.

It is easy to see that this gate is the inverse of itself: if a second CNOT
acts on the outputs of one CNOT, we get back the inputs to the first CNOT.
(Note however that a reversible gate is not necessarily its self-inverse.)

x •
x

• x

y
x⊕ y

x⊕ x⊕ y = y

The CNOT gate can be used to reversibly embed several other useful gates
such as the COPY gate and the SWAP gate:

COPY : (x, 0) 7→ (x, x) x • x

0 x

(6.16)

SWAP : (x, y) 7→ (y, x) x

S

y

y x

(6.17)
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×
≡

×

x • • y

y • x

where (x, y)
CNOT12−−−−−−→ (x, x⊕ y)

CNOT21−−−−−−→ (y, x⊕ y)
CNOT12−−−−−−→ (y, x).

6.3.2 Universal reversible gates

The classical universal sets obtained earlier, including AND, NOR, etc.
are not reversible. The question now is whether our pet CNOT is universal.
One way to see why it is not, is given by Preskill [57]. It turns out that the
CNOT gate, as in fact, all 2-bit reversible gates, is an affine transformation.
Any 2-bit gate whose output is a permutation of the input bits is of the form[

x

y

]
7→M

[
x

y

]
+

[
a

b

]
(6.18)

where M is an invertible matrix and a and b are constants. There are invert-
ible functions that are non-affine, especially for n > 3. Therefore, 2-bit gates
are insufficient to generate such functions. Research has shown that certain
conditional 3-bit gates are in fact universal. The most important for these are:

• gate: T is a doubly controlled NOT gate. Two control bits have to be
set to 1 for NOT to act on the third bit. Else nothing changes. The truth
table and circuit representation are as follows:

x y z x′ y′ z′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

x • x

y • y

z z ⊕ xy

(6.19)
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• Fredkin gate: F is a controlled swap gate. If the control bit is set, then
the other two bits are swapped.

x y z x′ y′ z′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

x • x

y × xy + x̄z

z × xz + x̄y

(6.20)

Exercise 6.4. Find out the matrix representations for the T and F gates.

Box 6.1: Billiard Ball Reversible Computer
The Fredkin gate has an interesting origin. It arose out of a mechanical

model for reversible computation based on elastic collisions of a system of
billiard balls and reflecting walls in a frictionless environment, proposed in
1982 by Fredkin and Toffoli [35]. A ball appearing at a port represents a
logical 1 at that port, while the absence of a ball at a port represents a logical
0. The movement is restricted to a grid with unit distance, and the balls have
radius 1/

√
2 to capture discrete time steps. Inside the “computer”, a billiard

ball shot forward in a direction 45◦ up could collide with another ball or with
horizontal reflecting walls, so that it always stays on the grid. At the output
ports one obtains a readout of the process based on which ports are occupied
and which are not. A series of well-placed reflectors would achieve a circuit
built out of Fredkin gates. Since the collisions of the balls with the reflectors
are nearly perfectly elastic, no energy is lost and we have an energy-conserving
implementation of a reversible computation. A further property of the Fredkin
gate, reflected by the billiard ball model, is that it is conservative, that is, the
number of 1’s in the input is preserved in the output. This just translates
into no ball being lost in the computer. Conservativeness is also a concern of
physical implementations of computation.

One way to see how such a 3-bit gate may be universal is to show how
to implement the (irreversible) universal set {AND, NOT, OR, COPY} using
only this gate.
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Example 6.3.1. The universality of the Fredkin gate can be demonstrated by
using it to implement the four universal logic gates:

AND OR NOT and COPY

x • x

y ×
0 × xy

x • x

y × x ∧ y
1 ×

x • x

0 × x

1 × x̄
For the output of the OR gate, we have used

x+ x̄y = x+ (1− x)y = x+ y − xy = x ∧ y.

Also note how the required output appears at one port and the other ports
are ignored. This is a common feature in implementing irreversible gates em-
bedded in bigger, reversible ones.

Exercise 6.5. Show how {AND, NOT, OR, COPY} can be implemented by Tof-
foli gates alone.

Thus, these classical universal gates can implement any function, provided
some of the inputs are chosen to take fixed values, and some of the outputs
are ignored, as in Figure 6.5.

Example 6.3.2. A reversible half-adder:
Let’s see how to build a simple reversible circuit, for example a 1-bit adder,

using Toffoli gates alone. The function we need must calculate the sum which
is addition mod 2 of the inputs: s = x ⊕ y, and the carry which is the AND
of the inputs: c = xy.

fadd(x, y . . .) = (x, y, x⊕ y, xy).

Check that the following circuit does what we need:

1 •

x • • x

y • s = x⊕ y

0 c = xy

Exercise 6.6. Construct a half-adder using Fredkin gates alone.
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6.4 Resources and Computational Complexity

We now come to the issues that make computer scientists look to the quan-
tum paradigm for answering some of their questions on efficient algorithms.
Efficiency is quantified in terms of how the resources used for the compu-
tation scale with the number of input bits n. Typically, polynomial scaling
is termed “efficient” while exponential scaling is not. Resources are typically
time, space and energy, though the last one is less a theoretical concern than
for the physical implementation.

When analyzing the efficiency of an algorithm, it is desirable to factor out
dependencies on the kind of computer the algorithm may be implemented on.
The resulting features are to be intrinsic to the mathematical problem itself,
and are defined in terms of how they scale as a function of the input size,
rather than in absolute terms. These behaviors are termed complexity.

Time complexity is the most commonly considered aspect of efficiency of
algorithms, and can be quantified by the number of elementary steps, such as
the addition of two numbers, in the execution of an algorithm. Space complex-
ity can be quantified by the amount of memory to be allocated to the execution
of the algorithm. While the actual complexity of a problem depends on the
particular algorithm used and also the size of the input, we try to generalize
the concept by considering the asymptotic behavior, as the input size becomes
very large.

Computational complexity is often quantified in three different ways. The
way in which an algorithm scales as n is expressed in the following ways for
large n:

1. O(g(n)) (big oh): which specifies that the function g(n) is the upper
bound on the behavior of a resource;

2. Ω(g(n)) (big omega): specifies that the function g(n) is the lower bound
on the behavior of a resource;

3. Θ(g(n)) (big theta): this is the strongest condition, when a given resource
scales as both O(g(n)) and Ω(g(n)) with the same function g(n).

The first type, O which gives the upper bound, is the most commonly used.

Example 6.4.1. Let’s look at the time complexity of simple arithmetic oper-
ations.

• Addition of two n-bit integers takes exactly n steps and has complexity
Θ(n).

• Multiplication of two n-bit integers by the usual brute force method
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takes n − 1 additions and at most n carries. Thus the complexity is
O(n2).

• Matrix multiplication of two n×n matrices takes n multiplications and
n additions, and therefore is of complexity O(n × n2) = O(n3). If the
matrices are not square, but m × n and n × l then the complexity is
O(mnl).

Box 6.2: Complexity Classes
There exists a plethora of complexity classes in this vast and deep subject

and we list some of the more important ones here. These complexity classes
assume a Turing model for the computer.

• P (Polynomial time): This class contains problems that are solvable in
polynomial time, that is they are of O(nk) for some k, on a deterministic
Turing machine.

• NP (Non-deterministic polynomial time): this is the class of decision
problem (with only “yes” or “no” answers) for which, given a solution, it
can be verified in polynomial time in a non-deterministic Turing machine
model. It is yet an unsolved problem as to whether an NP problem can
be solved in polynomial time. Examples include integer factorization and
discrete logarithm.

• coNP consists of decision problems whose complement is in NP.

• NP-complete (NPC) is the class of problems containing the hardest
problem in NP. This class includes problems which may be outside NP.
Examples are the Knapsack problem, the traveling salesman problem,
Boolean satisfiability problem.

In some situations, especially in the quantum algorithms we are going to
study in this book, we talk of the “query complexity” of an algorithm. Here,
the algorithm is reduced to a series of binary answers to a query made to a
function evaluator looked upon as a black box, whose functioning is unknown
to us. This is calculated as the number of times the black box has to be queried
to get to the solution. Of course, if the black box is replaced by a “white box”:
the details of the circuit used to implement the function, then we can relate
the query complexity to the actual computational complexity of the entire
process.
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Quantum Computation
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Chapter 7

Quantum Gates and Circuits

We are now ready to see how computing with qubits can be done. In this
book, we will mainly use the circuit model for computation which was first
introduced by Deutsch [25]. We will represent by quantum “wires,” the qubits
upon which manipulations. The length of the wire is to be interpreted as the
time axis. Manipulations on qubits can be done using basic unitary operators
that are the equivalents of logic “gates.” An algorithm, or a complete set
of steps for achieving a processing task, is a combination of wires and gates
representing a quantum circuit. This circuit must be thought of as a time
sequence of events with every wire a way of representing qubit states, and
with gates representing processing of those states.

|in〉
G1

|on〉

|in−1〉 • G2 |on−1〉

... G3
...

|i1〉 G4 |o1〉

FIGURE 7.1: Illustrating a quantum circuit with n qubits.

This notation is based on one by Richard Feynman, with the convention
that time flows from left to right.

Sometimes, an n-qubit state is represented by a wire with a /n decoration
on it, that is referred to as a register.

|i〉n /n Circuit /n |o〉n

In practice the circuit is effectively a unitary operator acting on the input
qubits. A few major differences between classical circuits and quantum ones
are:

• Quantum circuits never contain loops or feedbacks: they are acyclic

• Quantum wires are never fanned out: since arbitrary quantum states
cannot be cloned

121
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• Though the action of a circuit can be analyzed using classical states, the
effect on superpositions is what gives it true quantum power.

The fact that quantum evolution is unitary results in quantum gates (and
circuits) being reversible. This means that any manipulation of quantum infor-
mation can be undone, unless an irreversible process such as measurement or
decoherence happens on the system. This, and the peculiar features of qubits
discussed in Chapter 4, makes for startling differences in the way we must
think about quantum algorithms.

Mathematically a gate can be represented as a matrix. Classical reversible
gates can have only ones and zeros as elements: reversibility implies that they
can only perform a permutation of the inputs. For example, a reversible XOR
gate is given by y′ output in the truth table of what has sometimes been called
a Feynman gate:

x y x′ y′

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

=⇒

00 01 10 11


00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

(7.1)

Such a gate is also implementable as a quantum gate, but the most generic
quantum gate is represented by a complex matrix.

7.1 Single Qubit Gates

Classically, there exists only one reversible single bit gate: the NOT gate
which effects 0 → 1, 1 → 0. However, any unitary operation on the qubits
|0〉 and |1〉 is a valid single qubit gate. As we will see, such a gate can
always be regarded as a linear combination of the Pauli gates X, iY , Z and
the identity.

In circuit notation, a gate G that acts on state |i〉 to produce state |o〉 is
represented as

|i〉 G |o〉

The matrix representation of G is found by computing its action on the
computational basis states:

Gij = 〈i|G|j〉 (7.2)

The full power of the quantum gate emerges when it acts on superposition
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states. Consider for example the action of NOT, defined in the computational
basis by

X|0〉 = |1〉
X|1〉 = |0〉

; X =

[
0 1

1 0

]
= σx (7.3)

When X acts on a generic quantum state |ψ〉 = α|0〉 + β|1〉 we get X|ψ〉 =
α|1〉 + β|0〉. This represents interchanged probabilities of the state being in
|0〉 or |1〉.

Other useful quantum single-qubit gates, that have no classical analogue,
are described below.

1. Phase Flip (Z) gate:

Z|0〉 = |0〉
Z|1〉 = −|1〉

; Z =

[
1 0

0 −1

]
= σz (7.4)

This gate gives the state |1〉 a negative sign, an operation that is mean-
ingless in classical logic, but is relevant when it acts on superposition
states of a qubit. For instance, the state 1√

2
(|0〉 + |1〉) changes to the

orthogonal state 1√
2
(|0〉 − |1〉).

2. Hadamard (H) gate:

H|0〉 = 1√
2

(|0〉+ |1〉) ;

H|1〉 = 1√
2

(|0〉 − |1〉) ;
H =

1√
2

[
1 1

1 −1

]
=

1√
2

(σx + σz) (7.5)

This is an invaluable gate in quantum information processing: it pro-
duces equal superpositions of the basis states. Its action can be expressed
algebraically as

H|x〉 =
1√
2

(|x〉+ (−1)x|x̄〉) =
1√
2

∑
y=0,1

(−1)xy|y〉. (7.6)

3. Phase (Φ) gate: Φ|0〉 = |0〉;
Φ|1〉 = eiϕ|1〉

; Φ =

[
1 0

0 eiϕ

]
(7.7)

Exercise 7.1. Show that the Z,H, and Φ matrices are all unitary.

Exercise 7.2. Calculate the output of each of these gates when the input is a
general qubit state α|0〉+ β|1〉.

Exercise 7.3. What is the action of the Pauli Y gate?
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It is useful to visualize the action of single qubit gates by looking at their
action on the Bloch sphere. A gate must take any point on the Bloch sphere
to another, and can be a rotation about an arbitrary axis through the center
of the Bloch sphere. Inversions about the center are also allowed.

Example 7.1.1. To see the effect of the Pauli X matrix on a qubit state on
the Bloch sphere,

X

(
cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

= cos
θ

2
|1〉+ eiφ sin

θ

2
|0〉

= eiφ
[
cos

(
π

2
− θ

2

)
|0〉+ e−iφ sin

(
π

2
− θ

2

)
|1〉
]

(7.8)

This is a state for which θ → π − θ and φ → −φ. The transformation is
illustrated in Figure 7.2.

FIGURE 7.2: Action of X̂ on the Bloch sphere.(a) The θ and π − θ cones
are indicated to show you how the transformation works. (b) The result is
equivalent to a rotation about x̂ by π.

Exercise 7.4. Show that the Pauli gates Y and Z gates rotate a state on the
Bloch sphere by π about the ŷ and ẑ axes, respectively.

Exercise 7.5. The effect of the H gate on the Bloch sphere can also be regarded
as a rotation by π about some axis. Find that axis.

Exercise 7.6. What is the effect of the phase gate Φ on a state located at (θ, φ)
on the Bloch sphere?
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A general rotation can always be constructed as combinations of rotations
about the x̂, ŷ, and ẑ axes. Hence a very useful set of gates is the rotation
gates, expressed as functions of the Pauli matrices as follows:

Rx(θ) ≡ e−iθσx/2 =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
(7.9a)

Ry(θ) ≡ e−iθσy/2 =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
(7.9b)

Rz(θ) ≡ e−iθσz/2 =

[
e−iθ/2 0

0 eiθ/2

]
(7.9c)

Exercise 7.7. Show by using the series expansion of ex that if A is a matrix such
that A2 = 1 then eiAθ = cos(θ)1+ i sin(θ)A.

FIGURE 7.3: Rotation of a qubit by Rn(θ) on the Bloch sphere.

You can now see that a rotation about an axis n̂ = nxî + ny ĵ + nyk̂ by an
angle θ is given by

Rn̂(θ) = e−iθn̂·~σ/2 = cos

(
θ

2

)
1− i sin

(
θ

2

)
(nxσx + nyσy + nzσz) . (7.10)

The action of this gate is illustrated in Figure 7.3.

Exercise 7.8. Verify that gate Rn̂(θ) takes a state with Bloch vector â to one
rotated by θ about the n̂ axis.
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Box 7.1: Useful Representations of Single Qubit Gates
The Pauli matrices, along with the 2× 2 identity matrix, are said to form

a basis for the space of 2 × 2 matrices. So any single qubit gate A can be
expressed as a linear combination

A = a01+ ~a · ~σ.

1. Since A is unitary, it can be expressed up to an overall phase as

U = u01+ i~u · ~σ, (7.11)

for real u0, u1, u2, u3 s.t. u2
0 + ~u · ~u = 1.

2. This can be re-expressed as

U = eiαeiβn̂·~σ, (7.12)

where α is a phase, n̂ is a unit vector parallel to ~u and β is an angle,
which turns out to be half the angle of rotation of the initial state about
the axis n̂.

Successive action of gates

Two successive operations are two unitary gates, say A and B, acting one
after another. Algebraically, we represent the resultant by the action of the
usual matrix product of the two gates:

|ψ〉 A−→ A|ψ〉 B−→ BA|ψ〉. (7.13)

Note that the order of the gates is important. Operators do not in general
commute. The circuit representation of this process is like a time sequence,
and the order of gates is obvious:

|ψ〉 A B

7.1.1 Measurement gate

At the end of a computation we need to measure the output in order to read
out the result of the computation. This leads to obtaining classical information
(in bits) out of the quantum system. One sets up an experiment that measures
an appropriate physical quantity to give one of its eigenvalues as the result
(recall Section 3.3 and the nature of measurements in quantum mechanics). We
denote this process generically by a measurement gate . The double

line for the output state is to emphasize that it is a classical state. By default
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the measurement is assumed to be in the computational basis. The state just
prior to measurement encodes the probabilities of its collapsing to |0〉 or |1〉 .

7.2 Multi-Qubit Gates

Two qubits together can be represented as 4-column vectors in Hilbert
space. The most general 2-qubit gate is therefore a 4×4 unitary. An operation
on two qubits that acts independently on each of the two can be expressed as
a direct product of two single-qubit operations as defined in Equation 3.31:

O = O1 ⊗O2.

For example, the 2-qubit H gate is represented by the action

H⊗2|x〉|y〉 = H|x〉 ⊗H|y〉, (7.14)

with matrix representation

1

2

[
1 1

1 −1

]
⊗

[
1 1

1 −1

]
=

1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (7.15)

You need to distinguish between the different possibilities shown in Figure
7.4. The circuit diagrams for these gates will clarify the difference.

H ⊗ 1 H ⊗H 1⊗H

H H

H
H

FIGURE 7.4: H gates acting in different ways on two qubits.

These sort of gates can easily be generalized to any dimensions.

Exercise 7.9. Construct the matrix representations for the operators shown in
Figure 7.4.

Exercise 7.10. Find the matrix representing X ⊗ Z.
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The interesting thing about multi-qubit gates is that in general, they would
not act independently on the individual qubits, but entangle them. This is
the hallmark of quantum information processing that gives the most crucial
advantage over classical processing. For example, consider the most famous
2-qubit gate, the controlled-NOT or CNOT gate whose classical version we
saw in Chapter 6. This gate flips the target qubit when the control qubit is set
to 1. The truth table of the CNOT is used to define the action of the quantum
gate on the computational basis states:

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ≡
[
1 0

0 X

]
(7.16)

Notice that the truth table for the second output corresponds to the well-
known XOR operation on the inputs. The operation is, however, completely
reversible. We denote the action of this gate by

UCNOT|x〉|y〉 = |x〉|x⊕ y〉. (7.17)

Note that when we use letters x and y to label quantum states, they refer to the
computational basis states. This gate is represented by the circuit of Figure 7.5.
An important caveat here: though the control qubit seems to come out of the

|x〉 • |x〉

|y〉 |x⊕ y〉

FIGURE 7.5: CNOT gate.

gate unchanged when it is in a computational basis state, the output will in
general be entangled with the state of the target qubit, as we will see in the
next example.

Example 7.2.1. As an illustration of how a controlled gate acts on superpo-
sition states, consider

CNOT (α|0〉+ β|1〉)|0〉 = CNOT (α|00〉+ β|10〉)
= α|00〉+ β|11〉 (7.18)

which is an entangled state. Figure 7.6 gives the circuit for this process.

α|0〉+ β|1〉 •
α|00〉+ β|11〉

|0〉


FIGURE 7.6: CNOT producing entanglement.



Quantum Gates and Circuits 129

This example also illustrates the No-cloning theorem of Chapter 4. The CNOT
gate appears as a cloner if the target qubit is |0〉:

UCNOT|x〉|0〉 = |x〉|x〉. (7.19)

However, this is true iff |x〉 is a computational basis state. If the control qubit
is a generic quantum state |ψ〉, the output of this gate is an entangled state.
If our gate were a cloner, then the output ought to have been |ψ〉⊗ |ψ〉, which
is a separable state.

The notion of a conditional or controlled gate can be extended to any
unitary single-qubit operation U by defining

UCU |x〉|y〉 = |x〉Ux|y〉 (7.20)

The notation makes it obvious that the operator U acts on the target qubit |y〉
only if the control qubit is set to 1. Figure 7.7 shows the circuit representation
for this action.

|x〉 • |x〉

|y〉 U Ux|y〉

FIGURE 7.7: Circuit representing a controlled-U gate.

The matrix representation of such a gate is

UCU =

[
1 0

0 U

]
. (7.21)

You can prove that UCU is unitary if U is.
One can use either of the input qubits as the control or the target. We will

use the notation Cij to denote the ith bit as the control bit and the jth bit as
the target.

Exercise 7.11. Show that (H ⊗H)C12(H ⊗H) = C21, i.e., if you change basis
from computational basis to the X basis {|+〉, |−〉}, then the control and
target bits get interchanged. The circuit for the problem looks like Figure
7.8.

H • H
≡

H H •

FIGURE 7.8: CNOT with second qubit as control and first as target.
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X • X
≡

FIGURE 7.9: A 0-controlled gate.

The control action can be conditioned on the control bit set to 0 instead
of 1. Such a gate is represented in Figure 7.9.

For more than one qubit, a variety of control possibilities are illustrated
in Figure 7.10.

Multiple target CNOT • • •

≡

Multiple control (CCNOT): •

• (No simple equivalent)

FIGURE 7.10: Different control operations

Example 7.2.2. Creating Bell states
Prototype entangled states are the Bell states of Equation 4.10, and they

can be produced using CNOT gates. For example,

|0〉 ⊗ |0〉 H⊗1−−−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 C12−−→ 1√
2

(|00〉+ |11〉), (7.22)

producing the first Bell state |β00〉. It’s easy to deduce that the general Bell
state is produced by the simple circuit given in Figure 7.11:

|x〉 H •
|βxy〉

|y〉

FIGURE 7.11: Circuit for preparing Bell States

Exercise 7.12. Verify that the operation depicted in circuit 7.11 is reversible.
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Exercise 7.13. Verify that the Bell states can be written as

|βxy〉 =
1√
2

(|0y〉+ (−1)x|1ȳ〉) .

The reverse of the circuit 7.11 can be used to convert the Bell basis to the
computational one. Making a measurement after that can tell us which of the
Bell states we started with. This is called a Bell Measurement, depicted in
Figure 7.12.

• H x
|βxy〉

y

FIGURE 7.12: Circuit for Bell measurement.

Example 7.2.3. Let us analyze the output of the circuit shown in Figure 7.13.
|ψ〉 is a generic unknown qubit α|0〉+β|1〉. A Bell measurement is performed on
this qubit and one of an entangled pair prepared in the state |β00〉 (Equation
4.10).

|ψ〉 • H M1

M2

|β00〉


|φ0〉 |φ1〉 |φ2〉 |φ3〉

FIGURE 7.13: Bell measurement on part of an entangled state.

We will algebraically analyze the output at each stage of the circuit:

|φ0〉 = |ψ〉 ⊗ |β00〉 = (α|0〉+ β|1〉)⊗ 1√
2

(|00〉+ |11〉)

=
1√
2

(α|000〉+ α|011〉+ β|100〉+ β|111〉) .

|φ1〉 = C12 ⊗ 1|φ0〉 =
1√
2

(α|000〉+ α|011〉+ β|110〉+ β|101〉) .

|φ2〉 = H ⊗ 1⊗ 1|φ1〉

=
α√
2

[
1√
2

(|0〉+ |1〉)(|00〉+ |11〉)
]

+
β√
2

[
1√
2

(|0〉 − |1〉)(|10〉+ |01〉)
]
.
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Now |φ3〉 is a single-qubit state of the last wire, obtained after measuring the
first two qubits of |φ2〉. So let’s regroup the terms in |φ2〉 separating out the
states of the first two qubits from the third:

|φ2〉 =
1

2
[α(|000〉+ |100〉+ |011〉+ |111〉)

+β (|010〉+ |001〉 − |110〉 − |101〉)]

=
1√
2
|00〉

[
1√
2

(α|0〉+ β|1〉)
]

+
1√
2
|01〉

[
1√
2

(α|1〉+ β|0〉)
]

+
1√
2
|10〉

[
1√
2

(α|0〉 − β|1〉)
]

+
1√
2
|11〉

[
1√
2

(α|1〉 − β|0〉)
]

When the first two qubits are measured, |φ2〉 collapses to the state correspond-
ing to the output. This leaves the third qubit in a corresponding state, that
is closely related to |ψ〉as tabulated in Table 7.1.

TABLE 7.1: Resulting state after measurement.

Measurement result |ψ3〉
00 |ψ〉
01 X|ψ〉
10 Z|ψ〉
11 XZ|ψ〉

The idea behind this circuit is quantum state teleportation, which will be
further discussed in Section 9.1.1.

Example 7.2.4. Measuring an operator
Consider a unitary operator Û that can be used as a quantum gate. If

Û happens to be an observable as well, then it must be Hermitian. So its
eigenvalues must be ±1. The Pauli operators are examples of such operators.
Now we’ll show that the circuit in Figure 7.14 effects a measurement of Û on
the state |ψ〉 input in the lower register.

Remember, this means that at the end of the circuit, the meter reads 0
or 1 corresponding to the eigenvalues +1 or −1, and the state on the bottom
wire must be the corresponding eigenstate |u+〉 or |u−〉 of Û .
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|0〉 H • H

|ψi〉 U |ψo〉

FIGURE 7.14: Circuit for measuring an operator
We have

Û |u+〉 = |u+〉, Û |u−〉 = −|u−〉.

We can expand the initial state in the U -basis:

|ψi〉 = a|u+〉+ b|u−〉.

Working through the circuit,

|0〉 ⊗ |ψi〉
H1−−→ 1√

2

(
|0〉+ |1〉

)
⊗
(
a|u+〉+ b|u−〉

)
=

1√
2

(
a|0〉|u+〉+ a|1〉|u+〉+ b|0〉|u−〉+ b|1〉|u−〉

)
CU12−−−→ 1√

2

(
a|0〉|u+〉+ a|1〉Û |u+〉+ b|0〉|u−〉+ b|1〉Û |u−〉

)
= a

(
|0〉+ |1〉

)
√

2
|u+〉+ b

(
|0〉 − |1〉

)
√

2
|u−〉.

On measuring the first qubit, in the X basis, we get 0 with probability |a|2
and 1 with probability |b|2 with the second qubit left in the corresponding
eigenstate of Û . The circuit thus implements a measurement of the observable
U . If the input state were an exact eigenstate of U then the corresponding
eigenvalue is measured with probability 1.

7.3 Quantum Function Evaluation

We’ve taken the circuit analogy for quantum computation up to gates. Can
we go further? Can we identify a set of universal gates, as we did for classical
computation?

Since a computation is essentially the evaluation of a function of the inputs,
let’s first fix what we mean by a quantum function evaluation. Consider a
function f : {0, 1}n 7→ {0, 1}m that takes an n-bit input x and produces an
m-bit output f(x). A reversible implementation of this function would have
an n + m-bit input and the same number of bits in the output. We will use
this to define the unitary operator implementing f(x).
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Definition 7.1. A quantum function evaluator is a unitary operator Uf ,
for f : {0, 1}n 7→ {0, 1}m, such that

Uf |x〉|y〉 = |x〉|f(x)⊕ y〉. (7.23)

This is essentially an f -controlled XOR gate (which is like an f -controlled
NOT gate if m = 1), expressed in the circuit of Figure 7.15.

|x〉
Uf

|x〉

|y〉 |f(x)⊕ y〉

FIGURE 7.15: Quantum function evaluator.

Here, |x〉 is an n-qubit basis state while |y〉 is an m-qubit one. Note that
Uf will be represented by an n+m square matrix. If the input lower register
y = 0, then the output on the register is just f(x).

Exercise 7.14. Show that Uf as defined in Equation 7.23 is unitary and therefore
reversible.

The important feature of a unitary transformation is not only that it admits
an inverse, but also that it is linear. So it acts on superpositions thus:

Uf (c1|x1〉+ c2|x2〉) |y〉 = c1Uf (|x1〉|y〉) + c2Uf (|x2〉|y〉) . (7.24)

For instance, if the input is the uniform superposition of two qubits, the
linearity of Uf means that

Uf
1√
2

(|0〉+ |1〉) |0〉 =
1√
2

(|0〉|f(0)〉+ |1〉|f(1)〉) .

The output is an entangled superposition state of both registers, containing
both f(0) as well as f(1). This generalizes to multiple qubits as well. A uniform
superposition of n qubits is the normalized sum of all 2n possible n-qubit basis
states |0〉, |1〉 . . . |2n − 1〉. So we have

Uf
1√
2n

(
2n−1∑
x=0

|x〉n

)
|0〉m =

1√
2n

2n−1∑
x=0

|x〉n|f(x)〉m (7.25)

where the subscripts on the states indicate the dimensionality. The function
has been evaluated in parallel on all inputs. This has been referred to as
quantum parallelism. The catch is, however, that this superposition does
not mean much to our classical minds, until we measure the output, upon
which one of the answers is selected! We can never know all the f(x)’s at
once, nor can we clone the output and hope to learn f(x) by making repeated
measurements of the output state.

Nevertheless, this feature is enormously useful in designing quantum algo-
rithms. One has to additionally choose clever modifications of the output such
that the state containing the answer occurs with high amplitude. We will see
this in action in the next chapters.
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7.4 Universal Quantum Gates

We now wish to push the circuit analogy further and explore the possibility
of universal quantum gates. Let’s start with single-qubit gates. We’ve seen
that these are 2× 2 unitary matrices, which take a point on the Bloch sphere
to another. It is easy to see that there are infinitely many possible 1-qubit
gates. These however cannot form a universal set since controlled operations
cannot be implemented by taking direct products of 1-qubit gates. How do we
implement controlled gates in general?

7.4.1 Controlled-U gate

Working toward a general construction for a controlled U gate for arbitrary
U makes use of the following representation for U :

Theorem 7.1. Any unitary 2× 2 matrix can be decomposed as

U = eiθ A σx B σx C, s.t A B C = 1, (7.26)

where A,B, and C are also unitary.

Proof. The proof hinges on the fact that any unitary matrix implements a
rotation on the Bloch sphere, up to an over-all phase factor eiθ. Suppose V
is some unitary matrix. The matrix V σxV

† is also unitary, so that it can be
represented (see Equation 7.11) as

V σxV
† = a01+ ~a · ~σ, a2

0 + ~a · ~a = 1.

But V σxV
† is a similarity transformation of σx. So it must preserve its trace,

which is zero. Therefore a0 = 0 and

V σxV
† = â · ~σ for a real unit â.

Note that σx = x̂ · ~σ. Then V σxV
† must be rotating x̂ to a new direction â.

Similarly, another unitary W will achieve

WσxW
† = b̂ · ~σ for a real unit b̂.

Thus we have

V σxV
† WσxW

† = (â · ~σ) (b̂ · ~σ)

= â · b̂1+ i â× b̂ · ~σ.

(Refer to Equation 3.34 you proved in one of the problems of Chapter 3.) We
can now think of â and b̂ as directions with an angle γ between them so that

â · b̂ = cos γ, â× b̂ = sin γn̂, which is perpendicular to â and b̂.
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Then we can construct

U = eiθV σxV
† WσxW

†

= eiθ (cos γ1+ i sin γn̂ · ~σ)

= eiθeiγn̂·~σ,

which is a valid representation for a unitary operator! If we identify

V = A, V † W = B and W † = C,

then we have the requisite representation for U .

We can implement C-V σxV
† WσxW

† by the circuit of Figure (7.16).

|x〉 • •

|y〉 W † W V † V

FIGURE 7.16: Circuit to evaluate C-U up to the phase factor

It is straightforward to see that when x = 0, the output is V V †WW †y = y,
and when x = 1, the output is V σxV

† WσxW
†y = Uy up to the phase. So

this gives C-U up to the phase factor. We need to additionally implement the
controlled phase C-Θ where

Θ =

[
eiθ 0

0 eiθ.

]

Now check that

C−Θ =

[
1 0

0 Θ

]
=

[
1 0

0 eiθ

]
⊗ 1.

We then have the implementation of the full C-U illustrated in Fig-
ure (7.17), that uses only CNOT gates and single-qubit gates.

|x〉 • •
[

1 0

0 eiθ

]

|y〉 W VW † W

FIGURE 7.17: Implementation of controlled U gate.

Here, V and W are arbitrary unitaries. We are now half-way through in our
quest for universal quantum gates, of which one set is given in the following
theorem:
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Theorem 7.2. Universal Quantum Gates: the CNOT gate along with
single-qubit gates is universal.

How do we prove this? Now classically, the Toffoli gate, which is a C-
C-NOT gate, is universal. We’ll now show that given our construction for
C-U gates, we can build doubly controlled C-C-U gates as follows. Consider
a unitary Q such that Q2 = U . Then we can build a C-C-U by the circuit
in Figure 7.18. Let’s work through this circuit algebraically to show that it

|x〉 • • •

|y〉 • •

|z〉 Q Q† Q

FIGURE 7.18: Implementation of C-C-U gate.

works as expected:

|x〉|y〉|z〉 → |x〉|y〉 Qx|z〉
→ |x〉|x⊕ y〉 Qx|z〉
→ |x〉|x⊕ y〉 (Q†)x⊕y Qx|z〉
→ |x〉|y〉 (Q−1)x⊕y Qx|z〉
→ |x〉|y〉 Qy Q−x⊕y Qx|z〉

The power of Q that acts on |z〉 in the end is

y − (x⊕ y) + x = y − (x+ y − 2xy) + x = 2xy.

So the effect of this circuit is

|z〉 → Q2xy|z〉 = Uxy|z〉,

which is exactly what we want. We can for instance construct a quantum
Toffoli gate by using Q2 = X. One such “square root of NOT” gate is

√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
. (7.27)

Example 7.4.1. A useful question to ask in designing circuits is how to min-
imize the number of basic gates required for a given implementation. In our
construction for the C-C-U gate given above, we require 2 CNOTs plus 2
CNOTs for each C-Q gate, that is a total of 8 CNOTs. Can we be more
frugal? Here is an example from Mermin [48] of a construction for a Toffoli
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gate using only 4 CNOT gates. Consider two unitaries A and B such that
A2 = 1 = B2. This means that

A = V †XV, B = W †XW.

Thus each C-A and C-B gate requires only one CNOT gate and two single-
qubit gates.

You should be able to work out that the circuit of Figure 7.19 implements
a doubly controlled (BA)2 gate, up to a phase α.

• •
[

1 0

0 eiα

]

• •

B A B A

FIGURE 7.19: Efficient implementation of a Toffoli gate.
Now

AB = V †XVW †XW = (â · ~σ)(b̂ · ~σ)

= â · b̂1+ i(â× b̂) · ~σ.

If we choose the angle between â and b̂ to be π/4, and also let â × b̂ point
along x̂, then we have

AB = cos
π

4
+ i sin

π

4
σx =

1√
2

(1+ iX)

(AB)2 =
1

2
(1+ 2iX + (−X)2) = iX.

Thus we can regard AB as the square-root of X up to a phase of i. This phase
can be cancelled if we choose α = −π/2 and this circuit implements a Toffoli
gate with just 4 CNOTs and single-qubit gates.

One can construct multiply controlled U gates, a Cn-U gate, by a cascad-
ing circuit using n control bits, Toffoli gates and n − 1 auxiliary bits, as in
Figure 7.20.

Verify that this works! The use of the Toffoli gates performs an “AND” of
all the control bits, which finally controls the U gate. Also note that all the
auxiliaries can be returned to their original state of |0〉 by adding the reverse
of each of the actions after obtaining Cn-U .
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xn−1 •
xn−2 •
xn−3 •

n controls ...
...

...
...

...
x0 •


0 •

0

n− 1 ...
...

...
...

...
...

auxiliaries 0 •


0 •

y U Ux0x1...xn−1y

FIGURE 7.20: Implementation of Cn-U gate

7.4.2 Universal gates

We’ve proved that the CNOT gate along with all possible single-qubit gates
form a universal set. But this set is still infinite. We’d like to do better: to
get a finite set of gates as in the classical case. Of course we must realize that
the set of possible single qubit gates is itself infinite as opposed to the finite
number of gates in classical computation. Yet it is surprising that there exist
more rigorous theorems (e.g., the Solovay–Kitaev Theorem [23]) confirming
the universality of a smaller set of gates, such as for example, H, CNOT,

S =

[
1 0

0 i

]
and T =

[
1 0

0 eiπ/4

]
or the Toffoli and H gates. But these sets of

gates cannot be used to construct arbitrary gates to infinite precision. So the
theorems actually prove that one can approximate arbitrary unitary gates, to
any degree of accuracy, by using a finite set of gates. We will not dwell on
these theorems or their proofs here.
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7.5 Comments on Measurement

Some issues regarding measurement in quantum circuits are to be noted
here, which you can prove for yourself with some thought:

1. Deferred measurement: when measurements are made in a circuit
and after that further gates are implemented (whether controlled by the
measurement or no), it can always be assumed that the measurement is
made at the very end of the circuit. This is saying that measurement can
always be assumed to have been deferred to the end of the computation
without any effect on the results.

2. Implicit measurement: any quantum wires that are left at the end
of the circuit can be assumed to have been measured: their states will
anyway have collapsed when other wires are measured for the purpose
of readout.

3. Irreversibility: quantum measurement is in general an irreversible pro-
cess, and if included in a circuit, will make it irreversible. However, if
the measurement reveals no information about the state being measured
(refer for instance to the teleportation protocol of Example 7.2) then the
circuit is still reversible!

Many of the results in this chapter are discussed in the paper by Barenco
et al. [3], and in the book by Mermin [48].

Problems

7.1. Show that the n-qubit Hadamard gate acts as

H⊗n|x〉n =
1√
2n

2n−1∑
y=1

(−1)x·y|y〉. (7.28)

where x · y is the bitwise product of x and y:

x · y = x0y0 ⊕ x1y1 ⊕ . . . xn−1yn−1. (7.29)

7.2. Often it helps to simplify circuits when we can identify equivalences be-
tween some combinations of gates. Prove, for example, the following circuit
identities:
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(a) HXH = Z

(b) HYH = −Y
(c) HZH = X

7.3. Show the following relations concerning rotation matrices:

(a) Rn(θ1)Rn(θ2) = Rn(θ1 + θ2)

(b) XRn(θ)X = Rn(−θ)

7.4. The “SWAP” gate S interchanges two inputs, defined by

S|xy〉 = |yx〉.

(a) Give the matrix representing this gate.

(b) Show that it can be implemented by 3 CNOT gates as

S12 = C12C21C12.

(c) Show that the matrix is equivalent to

S12 =
1

2
(1+X1X2 + Y1Y2 + Z1Z2)

7.5. The controlled phase-flip gate takes |11〉 to −|11〉 while leaving the other
basis states unchanged. It is sometimes represented as follows, since its
action is symmetric in the inputs:

|x〉 • |x〉

|y〉 • (−1)xy|y〉
(a) Construct the matrix for this gate.

(b) Build a CNOT gate using controlled phase-flip gates an another single-
qubit gate.

(c) What is the difference in the outputs of the following two circuits?

• •

• • and • •

• •
(d) Evaluate the output of the circuit

|x〉 H •

|y〉 H • •

|z〉 H •
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7.6. Show that classical conditional operations are equivalent to quantum con-
trol, i.e., show that the following two circuits are equivalent:

• •
≡

U U

7.7. Verify the following circuit identities:

(a) X
≡

X • • X

(b) X X

≡
• •

(c) Z Z
≡

Z • •

(d)
≡

Z • • Z

7.8. Consider the four possible 1-bit functions

f0 : 0→ 0

1→ 0
,

f1 : 0→ 0

1→ 1
,

f2 : 0→ 1

1→ 0
,

f3 : 0→ 1

1→ 1
.

Construct the matrix representation of Uf for each. Also give a simple circuit
to implement each using basic 1-qubit gates.

7.9. Consider 1-bit integer addition. Write down the truth tables for sum and
carry bits. Then construct a quantum half-adder by implementing the truth
tables, using only CNOT gates.

7.10. Examine the following circuit and analyze the final output. Here, the input
is an unknown entangled state

|ψ〉 = α|01〉+ β|10〉

and |GHZ〉 =
1√
2

(|000〉+ |111〉) .

•
|ψ〉

H • H •


• •

|GHZ〉

 H H
?

• H •





Chapter 8

Quantum Algorithms

In the last chapter, we introduced the circuit model for quantum computation,
where a computation is essentially the evaluation of a function. In the binary
system of computation a function is a map f : {0, 1}n 7→ {0, 1}m. The function
takes an n-bit input and produces an m-bit output. However, this can be
regarded as m functions fi : {0, 1}n 7→ {0, 1}, that take an n-bit input and
give a one-bit output, each of which is one bit of f(x). We can thus restrict our
attention to n→ 1 functions alone, in other words, we can reduce our problem
to questions with yes/no answers, a so-called binary decision problem.

In order to evaluate a function, we have to feed it all allowed inputs and
tabulate the corresponding outputs. We can construct circuits evaluating dif-
ferent functions by suitable combinations of gates. Now a given function eval-
uation or computational task is to be optimized by exploiting quantum me-
chanics. How is this done efficiently?

We have seen that the quantum function evaluator for f : {0, 1}n 7→
{0, 1}m is defined by the 2n+m-square unitary operator of Definition 7.1:

U |x〉n|y〉m = |x〉n|y ⊕ f(x)〉m.

This is essentially an f-controlled NOT gate as in Figure 7.15:

|x〉n /n

Uf
|x〉

|y〉m /m |y ⊕ f(x)〉

For y = 0 the output is simply |f(x)〉. If the function evaluator is fed a uniform
superposition of all n-qubit basis states, then the linearity of the operator Uf
ensures that the output is a uniform superposition of functions on each input,
(entangled with the corresponding input state,) as in Figure 8.1.

1√
2n

∑
|x〉 /n

Uf
1√
2n

∑
|x〉n|f(x)〉m

|0〉 /m

FIGURE 8.1: The quantum function evaluator with a uniform superposition.

Here the top line is sometimes called the input register, since the input to the
function is fed through it, and the bottom one is the so-called output register,
since it reflects the state containing the evaluated function.

143
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The advantage of the quantum function evaluator is that it can take all
possible inputs simultaneously as a superposition of states, and the corre-
sponding outputs are all simultaneously present in the output state. This has
often been called quantum parallelism. However, in this basic form it gives us
no advantage, since to actually discover the value of the function, we must
measure the output, upon which the output state will collapse to one of the
possible outputs at random. The trick to making quantum computing work
is to cleverly manipulate this basic function evaluator in such a way that the
probability amplitude for the answer to the problem is maximum. It is quan-
tum interference that enables this to happen. If this had not been possible,
quantum computing would have been a forgotten chapter in the history of
science. As it happens, this field received new impetus when Peter Shor shook
up the world in 1994 with his famous algorithm for finding the prime factors
of large integers.

All known quantum algorithms seem to fall into three broad classes:

1. Based on the Fourier transform: Deutsch–Josza, Shor’s algorithm etc.

2. Based on quantum search, involving amplitude amplification: Grover’s
algorithm etc.

3. Quantum simulations.

In this chapter we will examine the first two kinds, leaving the last to more
physics-specific texts. The algorithms are typically framed as yes-no answers
to inputs to the function evaluator treated as a black box (Figure 8.2). This
is also referred to as querying the oracle, as the unknown function evaluator
is regarded, like a mysterious priestess who will only give single-bit answers
when questioned!

? ?

1

FIGURE 8.2: Classical black box function evaluator as an oracle.

8.1 The Deutsch Algorithm

Let’s start with 1-bit functions f : {0, 1} 7→ {0, 1}. There are totally
four possible functions, and evaluated on inputs 0 and 1 can give answers
0 or 1. To actually determine which of these our black box is we need to
query it with both inputs, whether classically or otherwise, and we obtain no
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advantage using quantum computing. However, as David Deutsch [24] showed
in 1985, it is possible to distinguish the function on the basis of some property,
more efficiently in the quantum case. The particular classification Deutsch’s
algorithm considers is the following: they are either constant (C), i.e., f(0) =
f(1), or balanced (B), i.e., the outputs contain an equal number of 0’s and 1’s
(f(0) = f(1)).

Example 8.1.1. For n > 1, functions need not fall into the classes C or B
alone. For example, consider f1 and f2 defined by:

f1 :

f(00) = 0

f(01) = 1

f(10) = 0

f(11) = 1

, f2 :

f(00) = 0

f(01) = 1

f(10) = 0

f(11) = 0

Here, f1 is balanced while f2 is neither constant nor balanced.

Deutsch’s algorithm1 is formulated for the following problem. Although it
might seem contrived, it is the first algorithm to demonstrate the principles
of the new paradigm.

The problem: given a black-box (oracle) that implements a 1-bit function
f(x), how will you determine whether the function belongs to class C or to
class B with a minimum number of runs of the black box (or equivalently,
queries to the oracle)?

Classically, it is clear that we have to run the machine twice, with inputs
0 and 1.

The Deutsch algorithm shows how this problem can be solved in just
one run of the black box. The circuit is shown in Figure 8.3, that we will work
through step by step.

|0〉 H
|+〉

Uf

H

{
0 7→ C
1 7→ B

|1〉 H
|−〉

|ψ0〉 |ψ1〉 |ψ2〉
FIGURE 8.3: The Deutsch algorithm.

Step 1: Supply as input the uniform superposition

H|0〉 =
1√
2

(|0〉+ |1〉). (8.1)

1The presentation given here is not the original one in [24] but an improved version
presented first by [19].
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Step 2: On the bottom register, supply the state H|1〉 = 1√
2
(|0〉−|1〉). This is

the crucial feature that introduces useful interference in the result. The reason
for this will be clear when we evaluate the output of the black box. So the
input state is

|ψ0〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

=
1

2
[|00〉 − |01〉+ |10〉 − |11〉] (8.2)

Step 3: Run the function evaluator. The output is

|ψ1〉 = Uf |ψ0〉

=
1

2

[
|0〉|f(0)〉 − |0〉|f(0)〉+ |1〉|f(1)〉 − |1〉|f(1)〉

]
=

1

2
|0〉
[
|f(0)〉 − |f(0)〉

]
+

1

2
|1〉
[
|f(1)〉 − |f(1)〉

]
. (8.3)

Step 4: Measure the top register in the X-basis. That is, change basis by
applying the H gate on the first qubit and then measure it. Just before the
measurement, the output state on both wires is

|ψ2〉 = H1|ψ1〉

=
1

2
√

2
|0〉
[
|f(0)〉 − |f(0)〉+ |f(1)〉 − |f(1)〉

]
+

1

2
√

2
|1〉
[
|f(0)〉 − |f(0)〉 − |f(1)〉+ |f(1)〉

]
(8.4)

If the function is C, then f(0) = f(1) and the amplitude for |0〉 is 1 while
that for |1〉 is 0. On the other hand, when f is B then f(0) = f(1) and
the amplitude for |1〉 is 1 while that for |0〉is 0. Thus a measurement of
the output gives us the answer to the query with certainty. We have run the
function evaluator only once. The quantum advantage has given us a double
speedup in this case.

The reason why this works is that Step 2 implements the so called “phase
kickback” trick. If the state |−〉 on the lower register fed into the black box,
then the output acquires a phase that depends on f(x). This phase can effec-
tively be regarded as attached to the state of the upper register.

Uf

[
|x〉 ⊗ (|0〉 − |1〉)√

2

]
=

1√
2
|x〉
[
|f(x)〉 − |f(x)〉

]
=

{
1√
2
|x〉(|0〉+ |1〉) if f(x) = 0,

1√
2
|x〉(|1〉 − |0〉) if f(x) = 1

= (−1)f(x)|x〉 1√
2

[|0〉 − |1〉] . (8.5)
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The output is separable, with the lower register unchanged in state |−〉, while
the upper register is effectively the input with an f(x)-dependent phase.

With this effect, we can re-analyze the algorithm with the uniform super-
position |x〉 = 1√

2
(|0〉+ |1〉) in the input register:

1√
2

(|0〉+ |1〉) Uf−−→ 1√
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]
(8.6)

H−→ 1√
2

[(
(−1)f(0) + (−1)f(1)

)
|0〉

+
(

(−1)f(0) − (−1)f(1)
)
|1〉
]

(8.7)

where it’s obvious that a measurement gives |0〉 if f(x) is C and |1〉 if f(x)
is B.

8.1.1 Deutsch–Josza algorithm

The Deutsch algorithm was extended to n-bit functions by Josza and others
in 1992 [26].

The problem: Given an n → 1 function f : {0, 1}n 7→ {0, 1} that is
guaranteed to be either constant or balanced, find out which it is in a minimum
number of runs.

Classically, we would proceed by querying the oracle with each n-bit
number. If we find an answer that is not equal to the previous one then we
have a balanced function. In worst-case scenario, we might find the same f(x)
until the half the possible inputs, i.e., after querying the function 2n/2 times.
The answer to the next query would solve the problem. Thus we need to run
the oracle at worst 2n−1 + 1 times: exponential in the number of bits of input.

The quantum algorithm achieves the distinction in just one run! This
is a dramatic speedup indeed. The circuit (Figure 8.4) is an n-qubit extension
of that for the Deutsch problem:

|0〉n /n H⊗n /n

Uf
H⊗n /n

|1〉 H

FIGURE 8.4: The circuit for the Deutsch–Josza algorithm.

The input to the circuit is the uniform n-qubit superposition

H⊗n|0〉n =
1√
2n

2n−1∑
x=0

|x〉. (8.8)

Due to the phase-kickback trick, the output of Uf on the input register is the
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superposition

|ψ1〉 =
1√
2n

2n−1∑
x=0

(−1)f(x)|x〉. (8.9)

After the Hadamard, this state becomes

H⊗n|ψ1〉 =
1

2n

2n−1∑
x,y=0

(−1)[f(x)+x·y]|y〉. (8.10)

Here, we have used the result of Equation 7.28 and x ·y is the bitwise product
of x and y summed modulo 2, as in Equation 7.29. Now when f(x) is constant,
the amplitude for the state |0〉 in this superposition is

coefficient of |0〉 =
1

2n

∑
x

(−1)f(x) = 1.

In other words the probability of getting |0〉 is one for a constant function.
Whereas if f(x) is balanced, then the amplitude for |0〉 is a sum of an equal
number of +1s and −1s, that is, zero. Thus if the function is balanced, the
output measures to any number other than 0. We thus distinguish the two
classes in one run of the black box, which is nearly an n-fold speedup compared
to the classical case.

8.2 The Bernstein–Vazirani Algorithm

We’ll now look at algorithms that show more substantial speedups com-
pared to classical ones. One such algorithm was invented by Umesh Vazirani
and his student Ethan Bernstein in 1993 [11]. This algorithm identifies a linear
Boolean function in one query of the oracle.

The problem: given a function evaluator for

f : {0, 1}n 7→ {0, 1} where f(x) = a · x, a ∈ [0, 2n], (8.11)

and the dot is a bitwise product with modulo 2 addition:

a · x ≡ a0x0 ⊕ a1x1 ⊕ · · · ⊕ an−1xn−1, (8.12)

determine the function, or in other words find a.

Example 8.2.1. An example of such a function for n = 2 and a = 11, which
evaluates to

f(00) = 0
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f(01) = 0.1⊕ 1.1 = 1

f(10) = 1.1⊕ 0.1 = 1

f(11) = 1.1⊕ 1.1 = 0

Classically, we can determine the kth bit of a if we feed the oracle the
input x = 2k, that has only the kth bit as 1 and all the rest as 0. This becomes
obvious when you look at the binary expansion of a:

a = a0 + a121 + · · ·+ ak2k + . . . =⇒ ak = a · 2k. (8.13)

This calls the function n times.
The quantum algorithm, which uses the same circuit as for the

Deutsch–Josza algorithm, succeeds with one call!
Let’s analyze the output of the circuit of Figure 8.4 for this form of the

function:∑
x

∑
y

1

2n
(−1)f(x)+x·y|y〉 ⊗ |−〉 =

1

2n

∑
y

[∑
x

(−1)a·x+y·x

]
|y〉 ⊗ |−〉

. (8.14)

The amplitude for |y〉 is 1
2n

∑
x(−1)a·x+y·x = 1

2n

∑
x(−1)(a+y)·x = 1 if

y = a! It’s easy to see why it is zero for all other values of y. Thus with
certainty, the output of the circuit gives us a.

A more explicit way of seeing why this works is by analyzing the circuit for
Uf . This analysis is lucidly given in Mermin [48]. The black box for a·x flips the
bit in the lower register whenever a bit of the input x and the corresponding
bit of a are both 1. For instance, suppose we had a = 11010 with n = 5. Then
it can easily be seen that a · x is implemented by the circuit of Figure 8.5.

a = 11010

x4 •
x3 •
x2

x1 •
x0

|0〉 |a · x〉

FIGURE 8.5: A circuit that executes Uf for f = 11010 · x.

Coming to the circuit for solving the Bernstein–Vazirani problem, it has
an H gate before each qubit enters the function evaluator and after. This is
true even of the lower register, which can be thought of as initialized to |1〉.
Note that an H gate before and after a CNOT interchanges the roles of the
control and target qubits (see Figure 7.8).
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|0〉 |1〉

|0〉 |1〉
|0〉 |0〉
|0〉 |1〉
|0〉 |0〉
|1〉 • • •

FIGURE 8.6: Analysis of circuit for the Bernstein–Vazirani algorithm for a =
11010.

The solution is therefore the circuit of Figure 8.6, whose output directly
reads out the bits of a.

The algorithm thus gives an n-fold speedup over the classical case.

8.3 Simon’s Algorithm

Even though the Bernstein–Vazirani algorithm offers such a great speedup,
the classical solution is still not exponential. Daniel Simon came up with an
algorithm [65] in 1994 that is the first to demonstrate a dramatic exponential
speedup over a hard classical problem, but the solution is probabilistic. This
feature is characteristic of many quantum algorithms. Simon’s problem also
illustrates a class of problems that basically use Fourier transforms, in the
form of the amplitudes of the output states that “interfere” to give a large
probability for the expected solution.

The problem: Given a black box implementing a function

f : {0, 1}n 7→ {0, 1}n−1 such thatf(x⊕ a) = f(x), a ∈ [0, 2n − 1], (8.15)

determine a with the minimum number of queries to the box.

Example 8.3.1. The functions considered in Simon’s algorithm can be thought
of as “periodic” under bitwise addition. For example, let’s look at the 3-bit
function

x 000 001 010 011 100 101 110 111

f(x) 3 2 2 3 1 4 4 1

The first repetition is of the value f(1) = f(2). The “period” is therefore
a = 001 ⊕ 010 = 011 = 3. You can verify that all the other repetitions also
satisfy the same condition.
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The classical solution to this problem is hard, i.e., the number of runs
of the function grows exponentially as the size of the input. We would query
the oracle with successive values of n-bit numbers x until we found a repeated
value for the output: f(xi) = f(xj). Then we could calculate a = xi ⊕ xj .
However, a could be any one of 2n possible numbers. By the mth run, 1

2m(m−
1) pairs have been compared and eliminated as possible a’s. For reasonable
chance of success, we need 1

2m(m−1) ≥ 2n =⇒ a lower bound on the number

of trials m = Ω(2n/2), which is exponential in the number of bits.
The quantum circuit (Figure 8.7) that solves this problem is essentially

the same as the Deutsch–Josza circuit except that the lower register is also
expanded to n qubit, and initialized to |0〉n (we dispense with the phase
kickback).

|ψ0〉 |ψ1〉 |ψ2〉

|0〉n /n H⊗n /n

Uf

H⊗n /n

|0〉n /n f(x0)

FIGURE 8.7: The circuit for the Simon algorithm.

The input to the oracle gives us

Uf |ψ0〉 ⊗ |0〉 = Uf

[
2n−1∑
x=0

|x〉 ⊗ |0〉

]
=

2n−1∑
x=0

|x〉 ⊗ |f(x)〉. (8.16)

In order to analyze the solution, let us use the reverse of the principle of
delayed measurement, and assume we measure the lower register after the
action of Uf . Let’s denote the outcome by f(x0), which is generated from
two possible inputs x0 or x0 ⊕ a. The top register therefore collapses to a
superposition of these two states alone:

|ψ1〉 =
1√
2

(|x0〉+ |x0 ⊕ a〉) . (8.17)

If we now apply H to each qubit in the upper register, we get

|ψ3〉 =
1√
2

1√
2n

2n−1∑
y=0

[
(−1)x0·y + (−1)(x0⊕a)·y

]
|y〉. (8.18)

Now a · y is either 0 or 1. If a · y = 1, then the amplitude for |y〉 is zero and
all those states do not occur in the output. Thus the only states that can be
measured in the output are those for which the condition a · y = 0 is satisfied.
This is a binary algebraic equation with n unknowns (the bits of a). We can
find a if we can obtain n independent equations, corresponding to n different
values of y. If we repeat the experiment until we have collected n distinct,
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non-zero y’s then we can solve for the bits of a. It is not guaranteed that we
will get a distinct y on each run, so we may most probably have to run the
oracle more than n times.

To determine the complexity of this problem, we will need to estimate
how the number of runs of the oracle scales with n. It can be shown (see Box
8.3) that the number of times the oracle has to be queried is n+m where m
doesn’t depend on n. This algorithm is thus a sub-exponential solution to a
classically hard problem.

Box 8.1: Complexity Analysis for Simon’s Algorithm
As in many quantum algorithms, the analysis of why the algorithm is com-

putationally more efficient than the classical case involves a detailed math-
ematical examination of the solution. In the case of Simon’s algorithm, the
output after measurement is an n-bit string y such that

a · y = an−1yn−1 ⊕ an−2yn−2 ⊕ · · · ⊕ a1y1 ⊕ a0y0 = 0.

We need to collect at least n−1 such distinct bit-strings in order to determine
the coefficients a. So we need to query the oracle at least n−1 times and need
to find a lower bound on the probability of success.

Suppose we ran the algorithm k times and got linearly independent y’s.
What’s the probability that the next run gives a different y? The minimum
probability for this occurring is

2n − 2k

2n
= 1− 2k−n.

So the probability of getting n− 1 independent y’s is just

P =

(
1− 1

2n

)(
1− 1

2n−1

)
. . .

(
1− 1

2

)
.

Now notice that (1− s)(1− t) = 1− (s+ t) + st ≥ 1− (s+ t). So we have

P ≥

(
1−

n∑
i=1

1

2i

)
1

2

≥
(

1− 1

2

)
1

2
=

1

4
.

This means that there is a finite minimum probability with which we will
succeed in n runs. To ensure success, we’ll have to run the algorithm a few
more times, independent of n, so that the number of runs is still O(n).

The trick that makes the kind of algorithms considered so far work is that
the output before measuring in the X basis has f(x)-dependent phases. Until
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now these phases were restricted to ±1. More general phases come about if
the Fourier transform is implemented. In this section, we introduced the idea
of using the H gate on the output to produce interfering amplitudes. This is
just a special case of the quantum Fourier transform, as we will see in the
next section.

8.4 Quantum Fourier Transform and Applications

The Fourier transform, a mathematical tool named after the 18th century
French mathematician Joseph Fourier, is an invaluable tool in engineering
and the sciences. No technical education is complete without a firm grasp
of this technique and its uses. The simplest way to understand the Fourier
transform F of a function f(x) is to imagine the function as made up of
various components that are periodic (like a sine function) with a frequency
y, and F(f(x)) as a function f̃(y) measuring the amplitude of each frequency
component in the function. In other words, we construct a decomposition
of the function in terms of the oscillatory exponential e−2πiyx, where the
coefficients in that decomposition are the Fourier transform:

f(x) =
1√
2π

∫ ∞
−∞

dy e2πiyxf̃(y). (8.19)

This formula is said to define the inverse Fourier transform of f̃(y), while the
Fourier transform is defined as

F(f(x)) = f̃(y) =
1√
2π

∫ ∞
−∞

dx e−2πiyxf(x). (8.20)

The factor in front of the integral captures the normalization. A function
can in general have an infinite number of frequency components, and the
frequencies can be distributed continuously. That’s how the Fourier transform
is a continuous function of the frequency y.

The two Equations 8.20 and 8.19 define a Fourier transform pair. The
Fourier transform naturally produces complex numbers, so that f(x) and f̃(y)
are in general complex. When we compute the Fourier transform on a digi-
tal machine, we need to discretize the integral to get the Discrete Fourier
Transform (DFT).

8.4.1 The discrete Fourier transform and classical algorithm

When f(x) is a discrete function over the finite range N = 2n of discrete n-
bit inputs x, we can think of it as a vector with N components {f0 f1 ... fN−1}.
The integral over x in Equation 8.20 is then a sum over an index k with
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x → k/N and the limits are restricted from 0 to N − 1. We then get the
discrete Fourier transform of order N defined as

f̃(y) =
1√
N

N−1∑
k=0

e−2πiyk/Nfk.

This is another vector with N components {g0 g1 ... gN−1}, given by

gj =
1√
N

N−1∑
k=0

e−2πijk/Nfk. (8.21)

These are just the coefficients of orthogonal harmonic components e2πijk/N of
the function, which can be expressed as the inverse discrete Fourier transform
(IDFT):

fk =
1√
N

N−1∑
j=0

e2πijk/Ngj . (8.22)

We can regard the DFT as a complex matrix transformation of the vector
{fk}:

gj =
N−1∑
k=0

Mjkfk; fk =
N−1∑
j=0

M−1
jk gk, (8.23)

where Mjk are the elements of an N ×N matrix M given by

Mjk =
1√
N
e2πijk/N =

1√
N
ωjkN . (8.24)

Here ωN = e2πi/N is the N th root of unity. More explicitly,


g0

g1

...

gN−1

 =
1√
N



1 1 1 · · · 1

1 ωN ω2
N · · · ωN−1

N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

...
...

...

1 ωN−1
N ω

2(N−1)
N · · · ω

(N−1)2

N




f0

f1

...

fN−1

 (8.25)

Example 8.4.1. The simple case of N = 2, ω2 = eiπ = −1 and

DFT2 =
1√
2

[
1 1

1 ω2

]
=

1√
2

[
1 1

1 −1

]
(8.26)

which is just the Walsh–Hadamard transform.
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Exercise 8.1. Write out the DFT matrix for N = 4.

Exercise 8.2. Calculate the DFT on the N -dimensional zero-vector.

Example 8.4.2. Unitarity of the DFT:
The crucial point that allows us to extend the DFT to an operator on

quantum states is that it is unitary. To prove this, we need to show that

M†M = 1 =⇒
N−1∑
l=0

MjlM
∗
lk = δjk (8.27)

where Mjk is defined by Equation 8.24.

When j = k :
1

N

∑
l

ωjlNω
−lj
N =

1

N

∑
l

1 = 1; (8.28)

When j 6= l, then
∑
l ω

l(j−k)
N is the sum of N terms of a geometric series whose

first term is 1 and ratio is ω
(j−k)
N . So we have

∑
l

ω
l(j−k)
N =

1− ωN(j−k)
N

1− ω(j−k)
N

= 0 (8.29)

Thus Equation 8.27 is proved.

Box 8.2: Classical FFT Algorithm
Computing the DFTN of a vector involves evaluating N2 elements of the

DFT matrix, and looks like a job that scales as 22n with the number of bits
n = log2N . In implementing the DFT transform on a digital machine, one
can easily optimize by exploiting the properties of the integer powers of ωN .
There are cycles among elements of DFTN , since ωNN = 1. So while a direct
matrix multiplication of the form of Equation 8.24 would typically require
O(N2) basic operations, the optimized fast Fourier transform (FFT) algorithm
requires O(N log2N) operations only.

For example, consider N = 4; ω4 = e2πi/4 = i, ω2
4 = −1, ω4

4 = 1.

DFT4 =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 (8.30)
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Now there is a relationship between the upper and lower halves of this matrix.
Look at the highlighted columns, repeated for the upper and lower halves: they
form a 2× 2 matrix that acts on the even index components (note the index
starts at 0).

1

2

(
1 1

1 −1

)
=

1√
2

DFT2. (8.31)

The part that acts on the odd index components is for the upper half

1

2

(
1 1

i −i

)
=

1√
2

(
1 0

0 i

)
×DFT2 (8.32)

=
1√
2

Diag(1 ω4)×DFT2.

The negative of this acts on the lower half. Thus the DFT of a 4-d vector is
reduced to two DFT’s of a 2-d vector. This is at the heart of the classical FFT
algorithm.

The above example shows that DFTN can be reduced to DFTN/2. The
FFT algorithm works by recursively dividing the original vector into even
numbered and odd numbered elements, until at the final stage there are just
two terms and DFT2 can be applied. The process is then reversed by succes-
sively doubling the vectors and eventually covering the entire input. Let’s see
how this is possible in general: let N = 2M .

DFTN (f(x)) = f̃(y) =
1√
2M

2M−1∑
x=0

ωxy2Mf(x). (8.33)

Breaking this up into even and odd terms,

DFT2M (f(x)) =
1√
2M

(
M−1∑
x=0

ω2xy
2M f(2x) +

M−1∑
x=0

ω
(2x+1)y
2M f(2x+ 1)

)

=
1√
2

(
1√
M

M−1∑
x=0

ωxyM f(2x)︸ ︷︷ ︸
DFTM of even terms

+
1√
M

M−1∑
x=0

ω
(x)y
M f(2x+ 1)︸ ︷︷ ︸

DFTM of odd terms

×ωy2M
)

(8.34)

At any stage l of evaluating the DFT, one can divide the input into two
to write it in terms of DFTl/2, and continue successively until one is left with
DFT2’s.

Successive division of the terms in the input into two until we reach the
two-term pairs is called decimation. The process of decimating higher-order
DFT’s looks like the following for N = 8:
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x0 x1 x2 x3 x4 x5 x6 x7

x0 x2 x4 x6 x1 x3 x5 x7

x0 x4 x2 x6 x1 x5 x3 x7

x0 x4 x2 x6 x1 x5 x3 x7

even odd

We then start evaluating upward from the 2-point DFTs, successively dou-
bling at each stage. The generic 2-point DFT looks like Figure 8.8, called a
butterfly diagram for its symmetric structure. The labels on the sides represent
the multiplicative factors and two lines joined at a node represent addition of
the corresponding terms.

FIGURE 8.8: The 2-point DFT: butterfly diagram.
For N = 8, we have worked out the decimation process in Example 8.4.4.

The butterfly diagram looks like Figure 8.9.

FIGURE 8.9: Butterfly diagram for computing an 8-point DFT.
The output vector {y0 y1 . . . y8} is the DFT of the input vector.
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Exercise 8.3. Show how the DFT of a 6-d vector reduces to the DFT’s of the
even and odd indexed 3-d components.

8.4.2 Complexity of the classical FFT algorithm

Suppose the computation of DFTN requires T (N) basic operations. From
Equation 8.34, we see that this is related to T (N/2) since we need to evaluate
two DFT’s of order N/2 and also do N multiplications of the exponential
factors. Thus,

T (N) = 2T (N/2) +O(N). (8.35)

Using this recursively to solve for T (N) one gets

T (N) = O(N log2N). (8.36)

8.5 Definition of the QFT from Discrete Fourier Trans-
form

The quantum Fourier transform (QFT) is simply the DFT operation on the
amplitudes of a quantum state. The DFT matrix is unitary, and can therefore
represent a quantum transformation. We can define the QFT (order N = 2n)
of an n-qubit basis state |x〉 by

F̂N |x〉 =
1√
N

N−1∑
y=0

ωxyN |y〉. (8.37)

Interestingly, as we have seen in Equation 8.26, the QFT transform for n = 2
is just the Hadamard gate.

When applied to a superposition state |ψ〉 =
∑
i Ci|i〉, the QFT performs

a DFT on the coefficients Ci:

F̂N |ψ〉 =
∑
i

CiUN |i〉

=
1√
2n

∑
i

Ci
∑
j

ωijN |j〉 (8.38)

=
∑
j

(
DFTNC

)
j
|j〉. (8.39)

where C denotes the vector of coefficients in the state representation.
An efficient algorithm for evaluating the QFT is inspired by the FFT

algorithm, where we compute the bit-wise breakup of the action of F̂ on its
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input. Remember, |y〉n =
⊗n−1

j=0 |yj〉. Each yj takes a value 0 or 1. The QFT

has superpositions of |y〉 with a phase ω
xy/N
N , containing the integer product

of x and y. We want to break this up into the constituent bits, the yjs. So we
write

xy =
(
x0 + 2x1 + · · ·+ 2n−1xn−1

) (
y0 + 2y1 + · · · 2n−1yn−1

)
. (8.40)

Now any product in this expansion that has a coefficient of 2n or higher can
be dropped since it would contribute unity to the phase: ω2n

N = 1. So we find

xy

N
=

(x0

2n
+

x1

2n−1
+ · · ·+ xn−1

2

)
y0

+
( x0

2n−1
+

x1

2n−2
+ · · ·+ xn−2

2

)
y1

...

+
(x0

22
+
x1

2

)
yn−2

+
(x0

2

)
yn−1. (8.41)

Using the binary “point” notation

0.x1x2x3...xn =
x1

2
+
x2

22
+
x3

23
+ ...

xn
2n
, (8.42)

xy

N
= y0(0.xn−1xn−2 · · ·x0) + y1(0.xn−2 · · ·x0) + · · ·+ yn−1(0.x0). (8.43)

Using this to write the QFT in bit-wise expansion, we can associate an expo-
nential factor with each bit of y, the output becomes the following product
state:

F̂N |x〉 =
1√
2n

∑
y

e2πixy/N |y0〉 ⊗ |y1〉 · · · |yn−1〉

=
1√
2n

( ∑
y0=0,1

e2πiy0(0.xn−1xn−2···x0)|y0〉

)

⊗

( ∑
y1=0,1

e2πiy1(0.xn−2···x0)|y1〉

)
⊗

· · · ⊗

 ∑
yn−1=0,1

e2πiyn−1(0.x0)|yn−1〉


=

(
|0〉+ e2πi(0.xn−1xn−2···x0)|1〉√

2

)
⊗
(
|0〉+ e2πi(0.xn−2···x0)|1〉√

2

)
⊗

· · · ⊗
(
|0〉+ e2πi(0.x0)|1〉√

2

)
(8.44)
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Each term in the product of Equation 8.44 is the state of an output qubit
for the corresponding qubit of the input. This translates into a circuit for
evaluating F̂2n . The order of occurrence of the terms must be noted: the first
term is the least significant bit, and the last is the most significant bit of the
output.

Example 8.5.1. QFT circuit for n = 2:

|x1x0〉
F̂−→ |0〉+ e2πi(0.x0)|1〉√

2
⊗ |0〉+ e2πi(0.x1x0)|1〉√

2

This means

|x1〉 −→
|0〉+ e2πi(

x0
2 )|1〉√

2
= |y1〉

|x0〉 −→
|0〉+ e2πi(

x1
2 +

x0
4 )|1〉√

2
= |y0〉

Here |y1〉 has an x0-dependent phase of eiπ for |1〉, which can be obtained
by an H acting on |x0〉. Similarly |y0〉 has a x1-dependent phase of eiπ and
an x0-dependent phase of eiπ/2 for |1〉. The first is obtained by an H on |x1〉

while the second is the x0-controlled action of the gate R1 =

(
1 0

0 eiπ/2

)
:

|x1〉 H R1 |y0〉

|x0〉 • H |y1〉
Note that the output is to be read in reverse order!

Exercise 8.4. Work out the circuit for the QFT for n = 3.

|xn−1〉 H Rn−1 Rn−2 . . . R1 |y0〉

|xn−2〉 • H Rn−2 Rn−3 . . . |y1〉
...

...
...

|x1〉 • • H R1 |yn−2〉

|x0〉 • • • H |yn−1〉

FIGURE 8.10: Circuit for the quantum Fourier transform F̂2n , on n qubits.

You should now be able to work out that Figure 8.10 is an efficient quantum
circuit for the QFT on n qubits.. We require controlled phase gates, with phase
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matrices like

Rd =

(
1 0

0 eiπ/2
d

)
, (8.45)

where d can be interpreted as the distance from the control bit. Notice that
the output bits are in reverse order. One can either agree to read the output
in reverse order or to perform a swap at the end.

The efficiency of this circuit is related to the number of basic gate oper-
ations required per input bit. We can easily see that this is n H-gates and
n(n − 1)/2 C-R-gates for n bits, which is O(n2). This is exponentially faster
than the classical FFT which takes O(n2n). Hurray for quantum algorithms!

But before we exult too much, observe that the output of the quantum
Fourier transform is a superposition of basis states whose phases represent the
Fourier transform of the corresponding input bit. A measurement at the end of
the above circuit gives us no information whatsoever about the Fourier trans-
form of the input! So we cannot use this circuit as a super-efficient Fourier
transform computer! Instead, we have to incorporate it in procedures that re-
quire FT-dependent phases. And Peter Shor did just that in his path-breaking
algorithm for prime factorization.

8.5.1 Period-finding using QFT

Preliminary to the Shor algorithm, let’s focus on one that lends itself
naturally to the QFT: computing the period r of a periodic n-bit function

f : {0, 1}n 7→ {0, 1}n such that f(x+ r) = f(x), r ∈ [0, 2n − 1]. (8.46)

We will take 2n = N in what follows. The function could repeat more than
once in the interval [0, N − 1], so we have

f(x+ kr) = f(x), kr < N.

We assume we are presented with a black box (oracle) that evaluates such a
function. The algorithm uses a circuit that is a direct extension of Simon’s
algorithm (Section 8.3), in which we’ll use the full QFT instead of the 1-bit
version (the Hadamard transform) used there. The circuit (Figure 8.11) is
straightforward.

|0〉n /n H⊗n

Uf
/n F̂N /n

|0〉n /n

|ψ0〉 |ψ1〉
FIGURE 8.11: Circuit for quantum period finding.
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The input to the Uf black box is once again

|ψ0〉 =
1√
N

N−1∑
x=0

|x〉n ⊗ |0〉n, (8.47)

So the output ought to be

|ψ1〉 =
1√
N

N−1∑
x=0

|x〉 ⊗ |f(x)〉. (8.48)

We will again assume that we measure the lower register at this point, ob-
taining some number f0. Then the top register collapses to a superposition of
only those states |x〉 for which f(x) = f0. All such x’s are of the form x0 + kr
for some x0 < r, and some integer k : kr < N . Suppose the number of periods
within the interval [0, N − 1] is p:

p = [N/r] , (8.49)

where the square bracket notation stands for the ceiling function (greatest
integer less than the argument). The state of the computer is then a superpo-
sition of p terms of the form

|ψ1〉 =
1
√
p

p−1∑
k=0

|x0 + kr〉 ⊗ |f0〉. (8.50)

Now subjecting the top register to a QFT, we get

F̂N

(
1
√
p

p−1∑
k=0

|x0 + kr〉

)
=
N−1∑
y=0

(
1√
Np

p−1∑
k=0

e2πi(x0+kr)y/N

)
|y〉. (8.51)

This is a superposition of basis states with a probability of occurrence of a
particular y given by the mod-squared of the term in the brackets:

P(y) =
1

Np

∣∣∣∣∣
p−1∑
k=0

e2πi(x0+kr)/N

∣∣∣∣∣
2

=
1

Np

∣∣∣∣∣
p−1∑
k=0

e2πikry/N

∣∣∣∣∣
2

(8.52)

So y has an r-dependent probability of occurrence. The crux of this algorithm
is that the most probable value of y gives us enough information about r for
us to compute it. In fact, the claim is that the values of y that are measured
are close to an integer multiple of N/r.

Let’s first see this in the special case when there are exactly integer number
of periods in the interval [0, N − 1], i.e., when

p =
N

r
.
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We will compare the probability of y for mp when m is some integer, and
when not:

P(y) =
1

r

∣∣∣∣∣1p
p−1∑
k=0

e2πiky/p

∣∣∣∣∣
2

. (8.53)

P(y = mp) =
1

r
, (8.54)

P(y 6= mp) =
1

rp2

∣∣∣∣∣
p−1∑
k=0

eikθ

∣∣∣∣∣
2

, where θ = 2π
y

p
, (8.55)

=
1

rp2

sin2(pθ/2)

sin2(θ/2)

= 0
(
since pθ is an integer multiple of 2π

)
. (8.56)

So the only values of y obtained in this case are integer multiples of N/r.
For a general function, it is highly unlikely that there are exactly integer

numbers of periods in the interval [0, N − 1]. Yet, the most probable values of
y turn out to be close to integer multiples of N/r! To see this, let us start by
writing

y = m
N

r
+ δm, (8.57)

where m is an integer and |δm| ≤ 1
2 . Let’s substitute this in Equation 8.52:

P(y) =
1

Np

∣∣∣∣∣
p−1∑
k=0

e2πikr(mN/r+δm)/N

∣∣∣∣∣
2

=
1

Np

∣∣∣∣∣
p−1∑
k=0

e2πikrδm/N

∣∣∣∣∣
2

=
1

Np

sin2(pθm)

sin2 θm
, where θm =

πr

N
δm. (8.58)

Now since p is nearly N/r, the numerator is nearly sin2(πδm). Also, rδm/N
is very small, so the denominator is nearly θm ∼ πδmr/N .

Therefore,

P(y) ∼ 1

Np

sin2(πδm)

(πδmr/N)2
=

1

r

sin2(πδm)

(πδm)2
. (8.59)

Since δm < 1/2, and
sin θ

θ
≥ 2

π
for 0 ≤ θ ≤ π/2, (see Figure 8.12), we have

P(y ∼ m/r) ≥ 4

π2r
. (8.60)
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FIGURE 8.12: Graph comparing sin θ and 2θ/π.

There are r possible such y’s, so the probability of any such y is greater
than 4/π2 ∼ 40%. This result is to be interpreted as saying that when we
rerun the algorithm many times, with high probability we measure y’s that
are integer multiples of N/r. Now from such numbers we can use classical
algorithms to deduce r, most famously the Euclid algorithm for continued
fractions. The period-finding algorithm thus succeeds to a high probability.

Such analyses of the probability of obtaining good results are a common
feature of most known quantum algorithms.

Box 8.3: Finding r Given N/r: Continued Fractions
The output y of a run of the period-finding algorithm is close to an integer

multiple of N/r. Consider the number x = y/N ∼ m/r. We now look at the
continued fraction expansion of x:

x = c0 +
1

x1
= c0 +

1

c1 +
1

x2

= c0 +
1

c1 +
1

c2 +
1

x3

= · · · (8.61)

= c0 +
1

c1 +
1

c2 +
1

c3 + · · ·

(8.62)

At each stage of the expansion (Equations 8.61), ci is the integer part of
the denominator xi from the previous stage, and each xi, known as the ith

partial sum, is a fraction ∈ [0, 1]. To find the fractional expression for 1
xi

,
Euclid’s GCD algorithm can be used. Equation 8.62 is the continued fraction
expansion of x. If x is a rational number then the continued fraction expansion
terminates after a finite number of steps. For n-bit m and r, it turns out that
the continued fraction can be computed in O(n3) steps.

Now there is a theorem (proved in [50], Appendix 4) stating that m/r is
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one of the partial sums xi of the continued fraction of x. r < N , and the
best guess for r is the partial sum having the largest denominator less than
N . This is tested out and if it is not the period then the we try again with a
different x.

8.5.1.1 Shor’s factorization algorithm

The above algorithm for period finding, due in some form to Peter Shor,
is really the heart of the factorization algorithm. For the more curious, the
relationship between factoring and period-finding is through a series of mathe-
matical results that we will outline here. (This section is purely for the purpose
of completeness, and the results of pure mathematics used will not be derived
or explained.)

For a good understanding of what follows, one must be familiar with mod-
ular algebra, that is algebra restricted to the range [0, N − 1] by considering
all results of algebraic operations as periodic with period N . Then “mod N”
essentially means “the remainder after dividing the result by N”. For example,
addition mod 4 will mean 2 + 2 = 0 and 2 + 3 = 1.

• If a is a random integer < N such that a and N are coprime, then it is
possible to find an integer r ∈ [1, N ] such that

ar mod N = 1.

r is called the order of a in mod N .

• For a with order r mod N , the function

f(x) = ax mod N,

is periodic with period r. To see how:

f(x+ r) = ax+r mod N = (ax mod N)(ar mod N)

= ax mod N × 1 = f(x).

Therefore, finding the period of a function f(x) is the same as finding
the order of some integer coprime with N .

• Now if N is a large integer, choose a random integer a coprime with N
and find its order r using the period-finding algorithm. Now if r is even
then construct b = ar/2.

b2 = 1 mod N

=⇒ b2 − 1 = 0 mod N

So b±1 must have factors common with N . If we find the GCDs of b±1
and N we have the prime factors of N !
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8.5.2 Phase estimation

One version of Shor’s algorithm is based on phase estimation. This appli-
cation of the quantum Fourier transform is used to estimate the eigenvalue of
a unitary operator, which is a phase:

Û |u〉 = eiθ|u〉; θ = 2πφ (8.63)

where φ is a fraction.
As a preliminary to this algorithm, let’s look at a toy version. Suppose you

are given U and an eigenstate |u〉. We have seen that the circuit of Figure 7.14
simulates a measurement of U .

|0〉 H • H

|u〉 U |u〉

Here,

1√
2

(
|0〉+ |1〉

)
⊗ |u〉 → 1√

2

(
|0〉+ e2πiφ|1〉

)
⊗ |u〉. (8.64)

If φ were a single bit, then you can see that the output is 0 if φ = 0.0 and 1
if φ = 0.1. This circuit thus gives us the value in one run. But in general φ
will be several bits long. A measurement of the upper register in the H basis
will yield a 0 or 1 with probabilities cos2 πφ and sin2 πφ. A statistically large
number of measurements will allow us to recover φ from the counts. But this
is an inefficient method.

Note that the H transform on the upper register is the one-bit Fourier
transform. In order to estimate φ to more bits of accuracy, we must have
a qubit for each significant figure of φ and then perform an inverse Fourier
transform, as shown in the circuit of Figure 8.13.

|0〉 H . . . •

QFT−1

...
...

...
...

...

t qubits |0〉 H • . . .

|0〉 H • . . .


|u〉 /n U U2 . . . U2t−1 |u〉

FIGURE 8.13: Circuit for phase estimation.

Imagine φ upto t bits as

φ = 0.φ1φ2 · · ·φt =
φ′

2t
, φ′ = φtφt−1 · · ·φ1. (8.65)
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Then we start with t working qubits in the input register, and use them to

control gates of the form U2k

. After the control gates, the output on the kth

line is

1√
2

(|0〉+ |1〉) −→ 1√
2

(
|0〉+ e2πi2kφ|1〉

)
(8.66)

=
1√
2

(
|0〉+ e2πi(0.φ1φ2···φk)|1〉

)
. (8.67)

You can see that just before the QFT gate, the state of the upper register is

1√
2t

(
|0〉+ e2πiφ|1〉

)
⊗
(
|0〉+ e4πiφ|1〉

)
⊗ . . .⊗

(
|0〉+ e2πi.2tφ|1〉

)
(8.68)

=
1√
2t

2t−1∑
k=0

e2πiφk|k〉 (8.69)

This is just the QFT mod 2t of φ′ and an inverse Fourier transform will give
you φ′ exact to t significant figures.

8.6 Grover’s Search Algorithm

Another famous algorithm that made a splash in the world of quantum
computing was invented by L. K. Grover in 1997 [40]. This algorithm is in
a different class from the ones we have studied so far, which may all be said
to be QFT-based. Grover’s algorithm introduced a new technique: amplitude
amplification. Even though it did not demonstrate an exponential speed-up
over the classical case, it was still dramatic enough to get noticed.

The problem Grover attacked was that of search for an element in an
unstructured database. The problem is like doing a reverse search in a phone
directory: you have a number and need to know the person it belongs to. Thus
there is no regular short-cut to the search, you have to go through each entry
in the book and check if it matches the number you have.

The problem can be phrased in the language of oracles, if we assume that
the criterion for the search is built into a function evaluator: a function that
tells you whether the input number matches the search criterion or not. So
we imagine that the numbers x are indices to the entries in the database, and
one index, let’s say k, belongs to the entry being searched for. Then

fk(x) =

{
1 if x = k

0 otherwise.
(8.70)

Here, if x is an n-bit number, then the size of the database is 2n = N . As
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this becomes really large, the problem becomes harder. In fact, classically this
problem has a complexity O(N). Grover’s algorithm turns out to be O(

√
N).

As in most quantum algorithms, the first step exploits quantum paral-
lelism, and inputs the uniform superposition of all x’s to the oracle Ufk , the
unitary implementation of fk(x):

|ψ〉 =
1√
2n

N−1∑
x=0

|x〉. (8.71)

It also uses the phase kickback trick to give f -dependent phases to the states
in this superposition:

|ψ〉 ⊗ |−〉
Ufk−−→ 1√

2n+1

N−1∑
x=0

(−1)fk(x) |x〉 ⊗ |−〉. (8.72)

We need to look more closely at the form of the output state. Remember
that fk(x) is zero unless x = k. Thus each |x〉 in the above superposition has
the same phase (+1) as before except the state |k〉 which has a phase −1.
Thus though we do not know what k is, this step is equivalent to tagging that
particular state:

N−1∑
x=0

(−1)fk(x) |x〉 = |0〉+ |1〉+ · · · − |k〉+ · · ·+ |N − 1〉. (8.73)

Algebraically, this step is equivalent to the action of the following oracle op-
erator on the input register alone:

Ô = 1− 2|k〉〈k|, (8.74)

since |k〉〈k| projects the state |k〉 out of the superposition. It helps to visualize
this step, as well as the rest of the algorithm, by looking at what happens to
the input state |ψ〉 in the Hilbert space H⊗n. This space is spanned by the n
unit vectors {|x〉}. Concentrate on the 2-d hyperplane spanned by the solution
ket |k〉 and the vector |α〉, a linear combination of all the other basis states,
representing the hyperplane perpendicular to |k〉. You can visualize the input
state |ψ〉 in this plane, as having a (small) component 1√

N
along |k〉. The oracle

operator Ô of Equation 8.74) reverses the sign of this component, performing
a reflection in the hyperplane |α〉 as shown in Figure 8.14.

Check out what this figure shows us. The initial uniform superposition is
equally “far” from all the basis kets, including the target |k〉. In fact, it makes
an angle

θ = sin−1 1√
N

(8.75)

with |α〉 in this plane. The idea behind Grover’s algorithm is to increase this
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FIGURE 8.14: Geometric Visualization of the action of the Grover Iterate

angle to π
2 or as close to it as possible, by manipulating the phases of the state

of the quantum computer.
Grover took a clue from the action of the operator Ô, and came up with

another one Ŝ, which implements a reflection in the plane of |ψ〉, which brings
the input state closer to |k〉. By iterating this process a sufficient number of
times, the input state |ψ〉 is rotated to |k〉. To see how this happens, let’s
construct Ŝ:

Ŝ = 1− 2
(
1− 2|ψ〉〈ψ|

)
= 2|ψ〉〈ψ| − 1. (8.76)

The action of the Grover iterate Ĝ = ŜÔ is to rotate the input state by an
angle 3θ towards |k〉. This can be seen in the basis of vectors |k〉 and |α〉:

Ĝ|ψ〉 = cos 3θ|α〉+ sin 3θ|k〉. (8.77)

If this is repeated p times,

Ĝp|ψ〉 = cos[(2p+ 1)θ]|α〉+ sin[(2p+ 1)θ]|k〉. (8.78)

Thus the iteration can stop when

(2p+ 1)θ ∼ π

2

p ∼ 1

2θ

(π
2
− θ
)
. (8.79)

For large N , we have sin θ = 1√
N
' θ, so that the number of iterations required

is given by

p =
π

4

√
N − 1

2
= O(

√
N). (8.80)
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|0〉n /n H⊗n

Ufk

Ŝ

Ĝ

· · ·
Ĝ

|0〉 H · · ·

Ĝ ...O(
√
N) times

FIGURE 8.15: Circuit implementing Grover’s algorithm

The circuit representation for this algorithm is given in Figure 8.15.
The process of rotating the superposition |ψ〉 towards the solution essen-

tially works because of increasing the amplitude for |k〉, so this method goes
under the name of “amplitude amplification”.

Example 8.6.1. Let’s look at the case N = 4, for 2-bit indices. The initial
angle is given by sin θ = 1

2 =⇒ θ = π
6 . After a single iteration, the angle

becomes π
2 : thus a single run of the algorithm gives the answer.

Example 8.6.2. The deity who constructs the oracle in Grover’s algorithm
must give us a circuit implementing Uf for the checking the criterion. Let’s
say we have a 5-bit database and the 19th entry is the search item. In binary,
the index for the solution is k = 18 = 10010. The oracle output must be 1 for
this input and 0 otherwise. It’s easy to see that the circuit of Figure 8.16 will
do the trick:

x4 •
x3

x2

x1 •
x0

y

FIGURE 8.16: Construction of oracle for k = 18.

Example 8.6.3. We’ll see how to construct the circuit for Ŝ (Equation 8.76).

Ŝ = −(1− 2|ψ〉〈ψ|)
= −H⊗n (1− 2|0〉〈0|)H⊗n

= H⊗nP̂H⊗n

where the operator P̂ leaves all basis states unchanged except |0〉, whose
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sign is flipped. (We can also ignore the overall negative sign.) This can be
implemented by an (n − 1)-fold 0-controlled Z gate. Since Z = HXH, we
have the circuit of Figure 8.17 for Ŝ.

H H

n− 1 ...
...

H H

H H



FIGURE 8.17: Construction of operator Ŝ.

8.6.1 Extension to multiple solutions

A simple extension to this algorithm works when the search criterion has
multiple solutions. The oracle then gives an answer “yes” whenever any one
of the M possible solutions is input. The Hilbert space then has a “solution
subspace”M, spanned by M solution states. Let us denote by |β〉 the uniform
superposition of all these vectors, and by |α〉, its orthogonal complement.

|β〉 =
1√
M

∑
x∈M

|x〉, (8.81)

|α〉 =
1√

N −M

∑
x/∈M

|x〉. (8.82)

In this situation, the input state is

|ψ〉 =

√
M

N
|β〉+

√
N −M
N

|α〉. (8.83)

The angle θ is now given by

sin θ = 〈ψ|β〉 =

√
M

N
. (8.84)

The operator Ô tags all of the M solutions with a ‘−’ sign, and the Grover
iterate is defined the same way as before. After p iterations we get the state

Ĝp|ψ〉 = cos[(2p+ 1)θ]|α〉+ sin[(2p+ 1)θ]|β〉, (8.85)

and the number of iterations required is nearly

p ≈ π

4

√
N

M
. (8.86)

You should check for yourself that this works out.
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8.6.2 Quantum counting

A fallout of the multiple search algorithm is the counting algorithm. Be-
fore we know how many times to iterate, we need to know how many solutions
M there are to the search criterion. Can we deduce a quantum algorithm for
finding M given Ufk? The solution found by Brassard et al. [15], is a com-
bination of Grover’s search and Shor’s phase estimation algorithms. The key
point here is to note that the number of solutions is related to the eigenvalues
of the operator Ĝ, which can also be expressed in the |α〉-|β〉 basis as the 2-d
matrix

Ĝ =

(
cosϕ − sinϕ

sinϕ cosϕ

)
where sinϕ = 2

√
M(N −M)

N
. (8.87)

The eigenvalues of this matrix are e±iϕ. We can therefore use the phase estima-
tion algorithm to deduce ϕ. We need to feed the algorithm with an eigenstate
of Ĝ. Now you can see for yourself that |ψ〉 is a linear superposition of the two
eigenstates of Ĝ, so the circuit of Figure 8.18 will work to t bits of accuracy.

|0〉 H . . . •

QFT−1

...
...

...
...

...

t qubits |0〉 H • . . .

|0〉 H • . . .


|0〉 H

Ĝ G2

. . .

G2t−1n+ 1 qubits ...
...

...

|0〉 H . . .


FIGURE 8.18: Circuit for quantum counting.

For Further Reading

The subject of quantum algorithms has rapidly evolved from its begin-
nings. Good references, apart from the original papers that may be found in
the bibliography, are the excellent text book by Kaye, Laflamme, and Mosca
[43] and the introductory text by Rieffel and Polak [58].
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Problems

8.1. Some texts implement the quantum function evaluator as a “controlled-Ũf”

gate (Figure 8.19), where Ũf acts only on the lower register, and is defined

by Ũf |y〉 = |y ⊕ f(x)〉:

|x〉 • |x〉

|y〉 Ũf |y ⊕ f(x)〉

FIGURE 8.19: The quantum function evaluator as a controlled Ũf gate.

How is the action of this implementation different from the f -controlled
NOT gate of Figure 7.15? Check by using standard basis states as well as
superpositions as inputs.

8.2. Show that the phase kickback trick works because the input state in the
bottom register is an eigenstate of the Ũf operator for the Deutsch algo-
rithm.

8.3. Deutsch’s original version of his algorithm used |0〉 as the input to the
bottom register instead of |0〉 − |1〉. Show that in this case you obtain
the correct answer with probability 3/4. Also show that the algorithm has
probability 1/2 of succeeding.

8.4. Prove the shift-invariance property of the Fourier transform, i.e., show that

F̂ |x+ k〉 = eiθF̂ |x〉 (8.88)

for some θ. Find θ in terms of k.

8.5. For the operator Rd of Equation 8.45, give a construction for the controlled
Rd gate using CNOT and single-qubit gates.

8.6. Find the eigenvalues and eigenvectors of the matrix Rd. What can you say
about the commutators (i) [Rd, X] (ii) [Rd, Y ] (iii) [Rd, Z] (iv) [Rd, R

′
d] ?

8.7. Work out a circuit that calculates the inverse quantum Fourier transform.

8.8. Consider a periodic function f(x + r) = f(x) for 0 ≤ x < N where N is
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an integer multiple of r. Suppose you are given a unitary operator Uy that
performs the transformation Uy|f(x)〉 = |f(x+ y)〉. Show that the state

|f̃(k)〉 =
1√
N

N−1∑
x=0

e−2πikx/N |f(x)〉 (8.89)

is an eigenvector of Uy. Calculate the corresponding eigenvalue.

8.9. Compute the output of the controlled-QFT gate
shown in the figure if the input is H⊗3|x〉.

•

F̂

8.10. On examining the period finding algorithm, we can find a relationship with
the phase-estimation algorithm. On applying the oracle, we get

1√
N

∑
|x〉|0〉 Uf−−→ 1√

N

∑
|f(x)〉.

Express |f(x)〉 in terms of its Fourier transform, |f̃(k)〉. Invert this expres-
sion and show that |f̃(k)〉 are of the same form as Equation 8.89 of Problem
8.8. Now show that the period finding algorithm is the phase estimation for
the operator Uy defined there.

8.11. Apply the quantum phase estimation algorithm to the following cases and
obtain the results:

(a) U = X, |u〉 = |−〉, t = 2,

(b) U = Rd, |u〉 = |1〉, t = d+ 1.
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Chapter 9

Information and Communication

The most successful practical applications of quantum mechanics in informa-
tion theory have been in the field of communication. This is a very old field that
has taken inputs from engineering, pure mathematics and computer science
apart from physics. It is only natural that application of quantum techniques
here should be among the first to be considered and implemented. Modern
technology in optical communication using laser light and optical fiber cables
is sufficiently advanced that it can quickly be adapted to using photons as the
quantum carriers of information.

In analyzing information communication, we normally consider the follow-
ing areas:

1. Coding: representing information accurately in terms of physical vari-
ables and the removal of redundancy leading to more efficiency, which
is known as compression;

2. Transmission: the information-carrying capacity of a channel and the
possible errors introduced into the data, and how to analyze and correct
them; and

3. Secure communication: including data encryption techniques, especially
sharing of secret keys for encryption.

Before we look into the nature and characterization of information in quan-
tum systems, we need some terminology commonly used in this subject. The
classic paradigm of information and communication is indicated in the cartoon
in Figure 9.1.

Two parties that may be in separate locations (we call them Alice and
Bob after the tradition in communication theory) need to communicate some
data. The term data refers to information converted into a form suitable for
the physical protocol being used for transfer. Data is produced from informa-
tion by a process called encoding. This process is essentially a mathematical
function executed by a computing machine. At this stage, we are concerned
with the quantification of information present in the data, the efficiency of
encoding and how much the data can be compressed. If the security of the
data is of importance, then this is the stage where secrecy is built into the
message, a process called encryption.

Alice, the sender, then transmits the encoded data by physical means
known as the channel. At this stage, we are concerned about the efficiency of

177
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FIGURE 9.1: Communication of information

the channel, quantified by the rate at which data can be transmitted by the
channel. Another important factor at this stage is noise. Data could get cor-
rupted by various means and an error-correcting scheme like those we looked
at in Chapter 10 has to be built into the communication protocol. If the data
needs to be securely transmitted, then at this stage an eavesdropper (Eve)
can tap into the channel and check how much it can be compromised.

When the data reaches its destination with Bob, it needs to be decoded
to be readable by Bob. This process is essentially the reverse of encoding,
and the efficiency of the whole protocol can be computed at this stage. The
security of the protocol can also be checked if Alice and Bob now compare
some of their data through other means.

Quantum data processing can help us with making this process more effi-
cient as well as more secure, as we will see in this chapter. The chief properties
of quantum systems that will be exploited here are entanglement and the in-
distinguishability of non-orthogonal states.

9.1 Entanglement as a Resource

As we have seen in Chapter 4, multi-qubit systems can exist in correlated
states known as entangled states. In computing algorithms, entanglement is
implicit, but nowhere is it more dramatically useful than in protocols for com-
munication, where quantum correlations are exploited for security of commu-
nication as well as for coding efficiency. This quantum correlation shared by
spatially separated parties is used as a communication resource. The term
ebit has been coined to quantify this resource. An ebit can be thought of as
the amount of entanglement in a Bell state.
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FIGURE 9.2: Quantum Teleportation

9.1.1 Teleportation

As an illustration of the power of entanglement as a resource, we examine
the rather dramatically titled protocol of quantum state teleportation. This
idea was first introduced by Bennett in 1993 [6]. The teleportation problem is
the following: Alice needs to transfer to Bob (at a distant location) an unknown
qubit |ψ〉 generically denoted by α|0〉+ β|1〉. The key point here is that Alice
does not know what α and β are. Quantum channels are not available for
use, so she cannot simply transmit the qubit to Bob. The unknown state of
the qubit cannot be determined since a measurement would destroy the state.
Multiple measurements need to be performed on identical copies of the state
in order to estimate α and β, but Alice has only one copy, and the no-cloning
theorem forbids her from making more copies.

Prior to the process, we assume that Alice and Bob share an entangled
pair of qubits in the state |β00〉. The protocol, illustrated in Figure 9.2, works
as follows: Alice first makes a Bell measurement on the two qubits in her
possession (one unknown qubit and the other entangled with Bob’s qubit).
Refer to Figure 7.12 of Chapter 7 for the circuit equivalent to this process.

The results of her measurements are two classical bits of information, which
Alice now transmits to Bob, through a standard classical channel. Then Bob
can basically retrieve the quantum state |ψ〉 by performing certain predeter-
mined operations B̂ on his qubit, that depend on the result of Alice’s mea-
surements. We can see how this works by representing the process as a circuit
(Example 7.2) and working through it. Bell measurement involves transform-
ing the two qubits into the Bell basis and then measuring them. The state of
the three particles just before Alice measures her two qubits is

|φ〉 =
1

4
|00〉

[
α|0〉+ β|1〉

]
+

1

4
|01〉

[
α|1〉+ β|0〉

]
+

1

4
|10〉

[
α|0〉 − β|1〉

]
+

1

4
|11〉

[
α|1〉 − β|0〉

]
(9.1)
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Upon Alice’s measurement, all three qubits collapse to one of the states in
Table 7.1. Thus to retrieve |ψ〉, Bob must perform one of the set of conditional
operations in Table 9.1.

TABLE 9.1: Bob’s conditional operations in the teleportation protocol.

Alice transmits Bob performs

00 B̂ = 1 (Identity)

01 B̂ = X

10 B̂ = Z

11 B̂ = ZX

The entire protocol can be represented by the circuit in Figure 9.3.

|ψ〉
Bell Measurement

• Classical
Alice

• Communication
|β00〉

{
Bob X Z |ψ〉

FIGURE 9.3: Circuit for teleportation.

We’ve worked through this circuit in Example 7.2, and you should have no
doubts that the state |ψ〉, which was initially with Alice, is finally in Bob’s line.
This process uses up the entangled pair, which is why we regard entanglement
as a resource.

9.1.2 How teleportation does not imply faster-than-light
communication

A niggling question (which certainly worried Einstein as recorded in the
EPR paper [31]) would be how the information contained in |ψ〉 was “instan-
taneously” transferred from Alice to Bob when Alice measured her qubits.
The key point here is that no such signaling that is faster than light (thereby
violating the special theory of relativity) is in fact occurring. Until Bob actu-
ally knows what the outcome of Alice’s measurements were, he does not know
that he is in possession of the qubit |ψ〉. Thus, information is transferred only
when Alice conveys to him her measurement outcomes, and in this scheme,
she does not signal faster than light, but is in fact using conventional (classi-
cal) methods of communication. In fact, the processes adopted in this typical
protocol are an example of “local operations and classical communication” or
LOCC, which is one of the key phrases in quantum information theory.
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Box 9.1: No Signaling Theorem
The fact that quantum mechanics does not allow distant parties to ex-

change information instantaneously using the non-local correlations of entan-
glement, can be proved neatly using the density operator formalism. Suppose
Alice and Bob share a state

ρAB =
∑
i,j

pij |i〉A|j〉B

that may be entangled. Suppose Alice performs a measurement on her system,
characterized by generalized measurement operators Mm. How does this affect
the state of Bob’s system? Bob’s new density matrix is

ρ′B = TrA

[∑
m

(Mm ⊗ 1)ρAB(M†m ⊗ 1)

]
=

∑
m

TrA
[
(Mm ⊗ 1)ρAB(M†m ⊗ 1)

]
=

∑
m

TrA
[
(M†mMm ⊗ 1)ρAB

]
= TrA

[∑
m

(M†mMm ⊗ 1)ρAB

]
= TrAρ

AB

= ρB .

Thus it is not possible to affect Bob’s state by any local operation performed by
Alice: Bob’s knowledge cannot be changed — information cannot be conveyed
— by Alice through the non-local correlations of entangled states.

9.1.3 How teleportation does not imply cloning

Another common misconception for a beginner in quantum mechanics is
that teleportation looks as if the state |ψ〉 is copied out from Alice’s location to
Bob’s. A little consideration will show that in fact this is not happening. The
moment Alice measures her qubits, the state |ψ〉 ceases to exist on her end.
She only has two classical bits with her. The unknown state with its implicit
α and β coefficients is completely transferred to Bob. The state |ψ〉 exists only
in one location: either at Alice’s end or at Bob’s, and is NOT cloned at any
point.
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9.2 Quantum Dense Coding

An interesting aspect of quantum information transfer is how one can
actually transfer two classical bits of information while physically transmitting
only one qubit. This process seems to involve compressing two bits into one
qubit and is accordingly called dense coding. The key to the process is the
use of entanglement. This protocol preceded and inspired the teleportation
protocol discussed above [10]. So our friends Alice and Bob enter the picture
with their shared Bell state, which they are going to use as a resource to
communicate two bits of information between them.

The trick is fairly simple. Suppose Alice and Bob share the Bell state |β00〉.
Alice performs a local operation on her piece of the entangled pair depending
on the two-bit number she wishes to communicate, and then transfers the
qubit over an appropriate quantum channel to Bob. Bob then measures both
qubits in the Bell basis to obtain the two-bit number. The local operation Â
that Alice performs is according to Table 9.2.

TABLE 9.2: Operations for super-dense coding.

Number Operation

00 Â = 1

01 Â = X̂

10 Â = Ẑ

11 Â = X̂Ẑ

Let’s check how this works on an example: suppose Alice wishes to com-
municate the number 2 or 10 in binary. The sequence of operations undergone
by the Bell pair is then as follows:

|β00〉 = 1√
2
[|00〉+ |11〉] ẐA

−→ 1√
2
[|00〉 − |11〉] Bell basis change−−−−−−−−−−−→ |10〉. (9.2)

You can verify the last step by performing the operations for the Bell mea-
surement explicitly as a CNOT and then an H on the first qubit.

Exercise 9.1. Show how the above dense coding protocol works if the entangled
state shared by Alice and Bob was |β11〉 = 1√

2
[|10〉 − |01〉].
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9.3 Quantum Cryptography

The most spectacular successes of quantum information processing tech-
niques have been in the field of cryptography, the science of secret message
exchange.1 The reason why Shor’s algorithm shot into prominence and major
players started funding quantum computing research was the challenge it of-
fered to currently trusted schemes of data encryption, particularly the RSA
scheme that is the basis of almost all current public encryption systems, your
online banking transactions or purchases for instance!

Encrypt
Decrypt

FIGURE 9.4: Communication scenario for cryptography.

In this section we will provide a quick birds-eye view of major crypto-
graphic paradigms and where quantum information processing steps in to
make things better. For a delightful survey of the history and current trends
in cryptography I urge you to read the book by Simon Singh [66]. The progress
in quantum cryptography is comprehensively dealt with in the review article
by Gisin et. al. [38].

1The word “cryptography” is derived from the Greek language: crypto=“secret,” gra-
phy=“writing.” It is actually one part of the science of “cryptology,” the second part being
“cryptanalysis,” which is the art of decoding an encryption. These two go hand-in-hand: to
test the success of any cryptographic scheme a thorough cryptanalysis is important.
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9.3.1 Basic cryptographic paradigms

Almost ever since mankind used language for communication, need was
felt for secrecy in that communication, as a protection of personal or national
interests. The basic scheme (Figure 9.4) is the conversion of a natural lan-
guage into a secret form, i.e., encryption, before transmission, and this needs
to be tested against different eavesdropping techniques. Several interesting
cryptographic schemes have evolved as our mathematical and logical prowess
increased. For instance, many of us may have played as children by exchanging
secret notes in which the text was encoded by replacing each letter by another
shifted down the alphabet by a few letters. This in fact was an ancient cipher
system attributed to Julius Caesar! The receiver then decodes the message by
shifting the letters back by the same amount.

Example 9.3.1. The Caesar Cipher: suppose you decide to encode by shifting
each alphabet by 5 letters:

Plain: A B C D E F G H I J . . . Y Z

Cipher: F G H I J K L M N O . . . D E

then the message “THIS IS A SECRET” would be encoded as “YMNX NX
FJHWT.” The sender and receiver both agree as to what scheme of encoding
they’ll use. The danger in such messaging is that if the message is intercepted,
then a clever cryptanalyst can figure out the scheme used and easily translate
any further messages sent by the same scheme. One can try to devise more
complicated translation schemes, but as long as they are one-to-one, statistical
methods such as the average frequency of letters in the English language may
be used to break the code.

The basic paradigm for any secret communication has two requisites:

1. An eavesdropper should not be able to decrypt the message

2. The sender should not be impersonated.

The process of encryption is basically a mathematical transformation E on
the input message m, which converts the plain text into a coded ciphertext c.
The set of symbols used for the cypher is known as the alphabet. The physical
analog is placing the message in a box that is then locked. The locked box
is then transported to Bob, who opens the box, i.e., decodes the message,
and obtains the plain text again. In this raw form of the protocol, security
is minimal since the message can always be intercepted by an eavesdropper
(Eve), who can then try to break the code (or recreate the key). The only
way this threat can be met is that each time Alice wishes to send a message,
she uses a new box (or a new algorithm for encryption) and that is wasteful.
Instead, what she opts for is to change the lock and therefore the key KA used
for locking the box. Bob then unlocks using his key KB , which has to be the
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correct one for the lock Alice used. The problem of keeping the message secret
now reduces to keeping the keys secure.

FIGURE 9.5: Private key cryptography.

Mathematically, we represent the process of cryptography by

m → E(m,KA) = c (encryption) (9.3)

c → D(c,KB) = m (decryption). (9.4)

The functions E and D need to be inverses of each other in this sense:

D(E) = 1. (9.5)

The encrypting function can be kept simple, so as to be computationally
efficient, and can be publicly known. This is the modern principle of cryptog-
raphy, sometimes known as Kerckhoff’s principle. The weak point of an
encryption system should be easily changed if it falls into the enemy’s hands.
The choice then is for the key system, whether the encoding key is kept secret
or not. This results in two sets of schemes:

1. Symmetric or private key cryptography: Alice and Bob share the same
key K (Figure 9.5). This is like the box with a lock, whose key is shared
by both parties. The sharing must be done in an efficient and secret
way. The catch is in this step. If A and B are far separated, how can
one transmit the key to the other in a secure way? This is the problem
of secure key distribution.

2. Public key cryptography: here the same key is not used by both parties.
The sender uses a public or insecure key KA to encrypt the message
(Figure 9.6). The decryption process is achieved by a private, secure
keyKB . This process is like a ballot box that is locked and given to the
sender, who posts the message in it. The receiver alone can unlock it
with his secret key. Here the E and D processes are asymmetric, and
the problem of distribution of keys doesn’t arise. The security of the
protocol lies in the difficulty of operating D without the knowledge of
KB .



186 Introduction to Quantum Physics and Information Processing

FIGURE 9.6: Public key cryptography

Due to the difficulty in sharing truly secure keys, especially when a large
number of parties are involved, modern cryptographic schemes are usually
of the second kind. One of the most widely used protocols for public-key
encryption is a two-step process due to Diffie and Hellman [28], and by Merkle
[47]. Known as the D–H protocol, Alice and Bob each have a private key
denoted L and a public key denoted K.

Encryption (Alice): c1 = E(m,LA); c = E(c1,KB)

Decryption (Bob): m1 = D(c, LB); m = D(m1,KA). (9.6)

Exercise 9.2. Show that in the two-way public key cryptosystem of Equation 9.6,
E and D are indeed inverses of each other.

Example 9.3.2. Private key cryptography: the Vernam cipher or one-time pad.
A and B agree on a common encryption system and share a common

secret key K. One example of such an encryption is encoding the message
in N symbols and performing a bitwise addition mod N with the key. The
inverse is performed using the same key.

c = m+ k mod N, m = c−K mod N.

• The key is a one-time use only. This is because it can be easily recon-
structed from the cipher if it is intercepted.

• The advantage of this technique is that the process is computationally
simple.

• C. Shannon has proved that this system is truly unbreakable as long as
the key is secret and is of the same length as the message.
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Example 9.3.3. The popular RSA encryption scheme [59], invented in 1978
by Rivest, Shamir, and Adleman at MIT, is a public key system based on
the prime factorization of a large number N . While the system is not truly
unbreakable, its strength lies in the fact that the private key is computationally
hard to generate though the generation of the public key is easy.

The steps B follows to generate his public and private keys are as follows:

1. Randomly selects two large primes p, q.

2. Computes N = pq.

3. Randomly selects a small odd a coprime to (p− 1)(q − 1) = r.

4. Picks b such that ab mod r = 1.

5. Public key: N and a
Private key: N and b.

Encryption: E : c = ma mod N

Decryption: D : m = cb mod N.

How are E and D inverses of each other? A little number theory comes into
play here:

D : mab mod N.

Now ab = 1 + kr = 1 + k(p− 1)(q− 1) for some integer k. If m doesn’t divide
q, (which is true since q is prime,) then

mab = m · (mq−1)k(p−1) mod q.

By Fermat’s little theorem, m(q−1) mod q = 1. So

mab = m · 1k(p−1) mod q = m mod q.

By similar reasoning, we also have

mab = m mod p.

A result known as the Chinese remainder theorem guarantees that if this is
so then

mab = m mod pq = m mod N.

While public key cryptosystems are more practicable, they are not truly
unbreakable. It is this vulnerability that has been shown up by Shor’s fac-
torization algorithm. Thus the emphasis is now on more efficient and secure
private key systems. Here a private key needs be generated in advance of
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sending the message. It is at least as long as the number of characters in the
message, and a new key needs to be generated for each use. The keys need
to be distributed over large distances in a secure fashion and this is what
quantum cryptography has been primarily about.

9.3.2 Security of cryptosystems: possible attacks

The vulnerability of any cryptosystem needs to be subjected to stringent
tests before it can be implemented. In fact the very growth of new and efficient
cryptographic schemes depends a lot on the input of cryptanalysts, who make
a thorough study of possible loopholes and susceptibility to attacks. A study
of possible methods that endanger a system would require a book of its own.
Possible attacks on a cryptosystem are

1. Decoding: the most obvious of all — an eavesdropper intercepts the
message and solves for the decoding keys

2. Eavesdropping (the message is intercepted and decoded) if detected,
means that the channel is insecure and needs protection or needs to be
dropped altogether

3. Man-in-the-middle or impersonation: an eavesdropper having access to
the channel impersonates the sender and thus gets information about
the decoding scheme, or else foils the communication. This is especially
true when there is no means of authenticating the sender

4. Denial of service: the eavesdropper is able to clog the communication
channel or even cut it off physically and prevent the transmission of
messages.

5. Other attacks specific to the hardware and protocols being used.

9.4 Quantum Key Distribution

Quantum key distribution is potentially secure because of the fundamental
properties of the quantum states used. The first schemes of quantum key
distribution relied on the indistinguishability of non-orthogonal states and the
no-cloning principle. Another reason why quantum key distribution has been
such a resounding success is that the protocols are feasible and immediately
implementable using available optical technology. Quanta of light, photons,
are used to carry qubits. The two basis states are implemented by the two
orthogonal states of polarization of the light. Various bases can be used to
represent the polarization. Linearly polarized light in different basis states
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can be easily produced by passing light through a polarizer with pass axis
oriented along different directions.

1-basis:
|0〉 : horizontally polarized : |↔〉 (9.7a)

|1〉 : vertically polarized : |l〉. (9.7b)

H-basis:
|+〉 = H|0〉 : polarized at + 45◦ : | l 〉 (9.8a)

|−〉 = H|1〉 : polarized at − 45◦ : | l 〉. (9.8b)

The circular polarization basis is also sometimes used as it is easily produced
by using quarter-wave plates in conjunction with polarizers.

Y -basis:
|i〉 = S|0〉 : right circular polarized : |�〉 (9.9a)

|−i〉 = S|1〉 : left circular polarized : |	〉. (9.9b)

These states are indicated on the Bloch sphere in Figure 9.7.

FIGURE 9.7: Different photon polarization states indicated on the Bloch
sphere.

If a bit is encoded in a photon prepared randomly in one of the states of
Equations 9.7 and 9.8, can you find out which bit I have, without knowing my
preparation basis? The answer is, not with certainty. The best you can do is
to measure the photon in one of the 4 bases, chosen at random. What are the
chances that you pick the right one?

Say I prepared a |+〉, which is the bit 1 encoded in the H basis. The
probability of your choosing the right basis for measuring is 1/2. If you chose
the wrong basis, then the probability of your measuring a 1 is 1/4. If I have a
whole string of n bits encoded in this fashion, the probability that you guess
right will be (1/4)n which becomes exponentially tinier as n increases!

Protocols for secure sharing of a random bit string between two parties
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rely on this property of encoding. We will review a few of them here to show
you how it works.

9.4.1 BB84 protocol

Due to C. Bennett and G. Brassard in 1984 [9], this protocol seeks to
generate a perfectly random bit string that is shared by Alice and Bob. The
beauty of the method is that the bit string does not exist until Bob measures
the qubits Alice has transmitted to him. Thus the security of the shared string
is guaranteed. The bits are randomly encoded either in the computational
basis (1) or in the H basis. The steps followed are:

1. Alice produces a random bit string sA (for instance, by making quantum
measurements on an unpolarized stream of qubits) of length l.

2. She uses another random bit sequence mA to choose which polarization
state to encode each bit in: 1 if (mA)i = 0 and the H basis if (mA)i = 1.

3. This encoded stream of photons is transmitted to Bob across a quantum
channel. We label the state of the ith photon by |φi〉.

4. Bob now uses a random bit string mB to choose a basis for measuring
each photon in this stream as it comes to him. He then has a string of
measurement outcomes sB .

5. After the measurements have been made, Alice announces her string mA

over a public (insecure) channel.

6. Bob discusses with her and they discard those bits of sA and sB for
which the measuring bases do not match, i.e., those bit positions in
mA that do not match with mB .

7. The remaining bits, corresponding to the matching places, form a pos-
sible shared key. On an average, there will be half the original number
of bits in this set. a

The probability of Bob choosing the same basis as Alice is one half, so they
must start out with a string at least twice as long as the intended key. The
security of this method hinges on the inability to unambiguously distinguish
bits encoded in non-orthogonal bases.

Example 9.4.1. An example of the BB84 protocol is shown below, with the
shared key bits highlighted. Where the measurement bases are not the same,
the state measured by Bob is left blank, as it could randomly be |0〉 or |1〉.
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Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sA 1 0 0 0 1 1 1 0 1 0 0 0 1 1

mA 0 1 1 0 1 1 1 0 1 1 0 0 0 1

|φi〉 ↔ l l l l l l l l ↔ l l l l
mB 0 0 0 1 1 0 1 0 1 0 0 0 1 1

sB 1 0 1 0 1 1 1 0 1 1 0 0 1 1

Candidate key k = 11101001

What if there is an eavesdropper on the channel? Suppose Eve gains access
to the qubits in the quantum channel. She cannot copy the qubits and then
send them on their way to Bob, since the no-cloning theorem ensures she will
not have faithful copies. She can, however, measure the qubits in her own
choice of bases and then send them onward. In this situation, she has a 50%
chance of choosing the same basis as Alice. When Bob measures the qubits
again, he has a 50% chance of having chosen the same basis as Eve, so that
on the whole he has only a 25% chance of agreeing with Alice’s choice! But
how does he discover that the channel security has been compromised?

Alice and Bob decide to test this, by agreeing to compare a fraction of
their shared bit string. They can do this over a public channel, and if they
discover up to 25% mismatch then they know that the channel is suspect, and
they will not use it for their communication.

The protocol can be divided into three phases: first, the sending of the bit-
stream encoded in a quantum channel and the measurements made by Bob;
second, the public discussion of the data they obtain and third, the sifting,
testing and authentication of their data. We will discuss the last two a little
later.

9.4.2 BB92 protocol

The BB84 protocol was further refined in 1992 to use just two different
encoding states instead of four. The only two states Alice uses are |l〉 and
| l 〉. This is sufficient, since they are not orthogonal and cannot be reliably
distinguished by the eavesdropped. The key steps are as follows:

1. Alice creates a random bit string sA,

2. She encodes a string 0’s in photons polarized randomly in the 1 or H
basis according to the bits in sA.

3. Bob chooses a random string sB according to the bits in which he chooses
the basis 1 or H to measure the photons. The measurement results form
a string mB .
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4. Now Bob creates a string k ∈ sB keeping only those the bits positions
where mB = 1.

5. Bob publicly declares those bit positions, so that Alice can select those
bits from sA.

6. Since Alice encoded only 0, Bob can measure a 1 only when their bases
were not the same. Therefore, if Bob’s bit is ki then Alice’s bit in the
same position will be 1 − ki. Thus after Alice takes the complement of
her bits, both have a shared key k.

The reason this works is as follows: Alice sending a |l〉 means a 0 and a | l 〉
means a 1. Now Bob randomly decides to use the 1 or H basis. But notice
that when he has used the computational basis, and if Alice had sent a |l〉
then he would always gets a 0, and if she’d sent | l 〉 he can get 0 or 1 with
probability 1/2. Thus the only places where Bob gets a 1 will be when Alice
and Bob have complementary bits in their random string s.

Example 9.4.2. An example of the BB92 protocol is shown below.

Index 1 2 3 4 5 6 7 8 9 10 11 12

sA 1 1 0 1 0 0 0 1 1 1 0 1

|ψi〉 l l l l l l l l l l l l
sB 1 1 1 0 1 0 1 0 0 0 1 0

mB 0 0 0 1 1 0 0 1 1 0 1 1

KA 1 0 1 1 0 1

KB 0 1 0 0 1 0

Shared key is k = 010010.

In this protocol too, the effect of the presence of an eavesdropper in the
channel is the same as for the BB84. Alice and Bob will again have to sacrifice
a few of their shared bits to verify the security of the channel.

9.4.3 E91: QKD using entangled states

Here is another variant of the QKD protocol, due to Ekert [32], which
makes use of correlated quantum pairs as a resource shared between Alice
and Bob. For each key, Bob generates entangled photons and sends one to
Alice.2 Locally each performs a measurement randomly, according to random
bit strings mA and mB respectively, in the 1 or the H basis. These bit strings

2It doesn’t matter who generates the pair. It could also be generated by a third party
and sent to both of them. The quantum channel is used for this purpose.
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are shared over a public channel, and Alice and Bob compare them to see
which bits match. The measured values of those bit positions are retained as
the shared key.

The point is that when mA and mB match, the measurement results,
though random, are perfectly correlated, while when they don’t match, Alice
and Bob get the same result only 50% of the time.

The drawback of this scheme is that Alice and Bob would have to verify
that their photons retained their entanglement when the key was being gen-
erated. To do this, they would have to perform an additional exercise of, say
making sure Bell’s inequality was violated. (For instance, each of them could
measure their photons in three different bases and share the values.)

Example 9.4.3. An example of the entangled QKD scheme: suppose Alice
and Bob share a huge supply of qubits in the state |β00〉.

Index 1 2 3 4 5 6 7 8 9 10 11 12

mA 0 1 0 1 0 0 0 1 1 1 0 0

mB 1 1 1 0 1 0 1 0 0 0 1 0

K 0 0 1

The presence of an eavesdropper Eve is detected the same way as for the
BB84 scheme. The list of possible secure key-distribution schemes is quite
long, and you are invited to contribute to it!

9.5 Information Reconciliation and Privacy Amplifica-
tion

The sifting procedure in QKD protocols is to ensure the degree of security
of the channel. The presence of an eavesdropper is detected by errors above
a certain tolerance margin, say 20%. However, natural errors in the channel
could also cause discrepancies in the shared key. To remove these, and to
ensure further security on the shared key, two classical procedures known as
information reconciliation (a form of error correction) and privacy amplifica-
tion are carried out.

The basic idea of information reconciliation is to perform a parity check on
a subset of the key, compare, and correct. At the two-bit level, parity is just
an XOR. So Alice could randomly select two bits out of kA, announce their
positions and XOR to Bob. He then compares the parity of the same bits in
kB . If they do not match these bits are discarded. If they do then they decide
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to discard the second bit. This ensures that Eve does not learn anything more
about their key from their discussion.

The more sophisticated version generalizes this process, as first described
in 1992 by Bennett et al. [8]. They proceed in several iterations of essentially
the same process, but first dividing their keys into predetermined blocks and
checking the parity of the block. If the parity doesn’t match then they re-
cursively bisect their blocks to detect the location of the error and discard
it. To ensure that Eve doesn’t learn anything more from their parity discus-
sions (which happen in public), they discard the last bit of each block whose
parity is disclosed. This process is repeated many times with increasing block
sizes, until eventually the two keys are ensured to be reconciled with a large
probability.

At the end of information reconciliation, Alice and Bob have identical
keys but whose privacy has been compromised by all the public discussions.
To undo this effect, they resort to privacy amplification. To do this they select
something called a universal hash function to encode their strings. There are
many such functions that provide various bounds for the amount of informa-
tion Eve can gain. One such is to select random subsets of their strings and
to retain their parity bits for a new key.

In any case, both these steps amount to classical error correction and
coding, and will not be dealt with at greater depth in this book.

It is clear from this discussion that depending on the degree of privacy
they choose to have, the initial string length must be fairly large, of the order
of 4 times the length of the desired key.

Problems

9.1. How would the teleportation protocol change if the entangled state shared
by Alice and Bob was any of the other Bell states: |β01〉, |β10〉, or |β11〉?

9.2. Consider the teleportation protocol, and suppose that the unknown qubit
with Alice is entangled with another qubit in the possession of a third party,
Charlie. Show how the protocol teleports the entanglement as well, i.e., at
the end of the protocol, Bob’s qubit is entangled with Charlie’s.

9.3. Formulate the matrix equivalent of the dense coding protocol and show that
it is unitary.

9.4. Analyzing the BB84 more thoroughly, consider that Eve measures every
photon sent by Alice, in the 1 or H basis according to a random string me.
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Suppose Alice and Bob now announce m bits out of their shared set. What
is the probability that no error will be found? What fraction of Eve’s bits
would match with Alice’s and Bob’s? Would the public discussion between
Alice and Bob help Eve at all?

9.5. At one point in history, it was suggested that Eve might benefit by measuring
in a basis intermediate between the 1 and H:

|0e〉 = cos
π

8
|0〉+ sin

π

8
|1〉 (9.10)

|1e〉 = sin
π

8
|0〉 − cos

π

8
|1〉 (9.11)

What is the probability that any one measurement by Eve gives the correct
result? If she prepares and then transmits photons in this basis to Bob, what
is the probability that Bob’s string has an error?

9.6. Suppose Alice prepares two qubits in the entangled state 1√
2

[|01〉 − |10〉]
and sends one qubit to Bob. Suppose that Eve intercepts and measures
that qubit, and then based on the outcome, prepares and sends a photon
to Bob. What can you say about the correlation between the qubits with
Alice and Bob?





Chapter 10

Quantum Error Correction

Bits as well as qubits are affected by noise in transmission, the process of
computation or even storage. We will refer to the error-prone area as a channel.
The error is introduced by unwanted but unavoidable interaction with the
rest of the world and needs to be corrected before the data can be reliable.
Classically this is important in communication systems and there is a whole
thriving field of study of classical error correction. In quantum systems, states
are intrinsically so fragile that unless they are impossibly isolated from the
rest of the world, errors or noise would make computation or communication
using them infeasible. Fortunately, it was discovered early in the history of
this subject that it is possible to encode qubits in special ways so as to make
the information resilient to errors. The qubits are decoded at the end of the
computation/communication (schematic of Figure 10.1).

Qubit in Encoder Computation Decoder Qubit out

Noise

Error 
Correction

FIGURE 10.1: Simplified model of error correction.

Classically, the only errors that can occur in a binary computer are bit
flips. The common way of protecting against these is to encode the information
using redundant bits, that is, using multiple copies of the bits involved in the
process. This way, corruption in the communication channel will affect some of
the bits but in the end, we can measure the bits, analyze them for errors, and
recover the encoded information by decoding. This is in a rough way analogous
to repeating the message many times to ensure that the other party gets it
right.

Now errors in a qubit are not just bit flips, which are merely one among
an infinity of possible transformations. A qubit could accidentally undergo a
change to any other point on the Bloch sphere. There is a whole continuum
of possible changes that a qubit could go through. Encoding by repetition
may seem inapplicable to qubits for two reasons. First, since measurement
destroys quantum information, we cannot measure the states in the end to

197
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discover which error has occurred. Second, the no-cloning theorem prevents
us from creating redundant quantum information by cloning a qubit. Also,
one cannot think of copying an output before measuring it.

Nevertheless, as we will see in this section, it is possible to correct qubits for
errors in an intrinsic manner without destroying the information they carry. It
also turns out that the whole continuum of possible errors can be represented
by a finite set of discrete errors. In short, quantum error correction is possible
and efficiently implementable. We will study the basic principles of how this
works in the somewhat artificial but simple context of single-qubit errors.

10.1 3-Qubit Repetition Code for Bit Flips

Classically, the repetition code is the simplest way of introducing redun-
dancy to protect information. Assume that noise in the channel is modelled
as a bit flip with probability p (and hence 1 − p for not flipping). This is
schematised in Figure 10.2. This is known as the binary symmetric channel.

0
1−p //

p

''

0

1
1−p

//
p

77

1

FIGURE 10.2: Binary symmetric channel for bit flips.

To protect against errors, each logical bit, indicated by the tilde, is encoded
using three identical physical bits.

0→ 0̃ = 000, 1→ 1̃ = 111. (10.1)

If p is sufficiently small, then the majority value decides what the original bit
was. The total probability of error is the sum of probability that 2 bits flipped
and that 3 bits flipped which is 3p(1− p) + p3 = 3p2 − 2p3. If p < 1/2, this is
much smaller than the probability of error without encoding, which is p.

Now suppose we have a quantum channel that was susceptible to only
qubit flips. We can model such a channel by X acting with probability p on
a state passing through the channel. The quantum equivalent of the 3-bit
repetition code represents each basis state by 3 identical qubits in the same
basis state:

|0〉 → |0̃〉 = |000〉; |1〉 → |1̃〉 = |111〉 (10.2)
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so that an arbitrary state is encoded as

|ψ〉 = α|0〉+ β|1〉 −→ |ψ̃〉 = α|000〉+ β|111〉. (10.3)

This encoding process is easily achieved by the circuit of Figure 10.3.

|ψ〉 • •

|0〉 |ψ̃〉

|0〉


FIGURE 10.3: Encoding circuit for the 3-qubit bit-flip code.

This does not make three copies of the original state, however, and neither
can we try to measure the state after it passes through the noise to check how
it has changed, as that would destroy the superposition. If we assume that
the channel is capable of flipping only one qubit, then the codeword state |ψ̃〉
could have changed into four possible output states:

S0 : |ψ̃〉 → |ψ0〉 = 1|ψ̃〉 = α|000〉+ β|111〉 (10.4a)

S1 : |ψ̃〉 → |ψ1〉 = X1|ψ̃〉 = α|001〉+ β|110〉 (10.4b)

S2 : |ψ̃〉 → |ψ2〉 = X2|ψ̃〉 = α|010〉+ β|101〉 (10.4c)

S3 : |ψ̃〉 → |ψ3〉 = X3|ψ̃〉 = α|100〉+ β|011〉 (10.4d)

These states are known as syndromes, since we can diagnose the affliction due
to noise by detecting which one occurred! But how do we detect the syndrome
without measuring or copying? The way out is to use ancillary qubits, with
controlled gates acting on them and to measure the ancillaries. We have to
ensure that we do not get any information about the original state by this
measurement, but still detect the syndrome. Note that the four syndrome
states are all mutually orthogonal. Therefore it is possible to distinguish them
by measuring a 2-qubit ancilla. Consider the circuit in Figure 10.4. Each qubit
of the input state is indicated by its label.

3 •

|ψ̄〉 2 • •

1 •

|0〉 x

|0〉 y



FIGURE 10.4: Syndrome measurement for the 3-qubit bit-flip code
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TABLE 10.1: Syndrome measurement: outcomes.

Syndrome xy

|ψ0〉 00

|ψ1〉 01

|ψ2〉 11

|ψ3〉 10

You can verify that the measured 2-bit number xy give you the syndrome
as in Table 10.1.

The information contained in the input state |ψ̃〉 is not revealed by the
measurements. It is easy to see that for each syndrome |ψi〉, the error can be
corrected by applying X on the ith qubit. This action can be linked to the xy
values, which control the action of X on the corresponding qubit: Xxȳ on the
first qubit, Xxy on the second, and X x̄y on the last qubit of the codeword.

The nice thing about expressing it as this controlled action is that the
process can be automated, bypassing the need for measurement, by applying
suitable controlled gates as in Figure 10.5.

3

SM

|ψ̄〉 2

1

|0〉 • •

|0〉 • •



FIGURE 10.5: Error detection and correction for 3-qubit bit-flip code. Here
SM is the syndrome measurement circuit.

10.1.1 Details: stabilizers

Why does this scheme work? It is possible to distinguish the syndromes,
which are orthogonal states, if we measure a suitable observable of which
they are eigenstates. It turns out that the bit-flip syndrome states |ψi〉 are
eigenstates of the operators Z1Z2 and Z2Z3 with distinct sets of eigenvalues.
In other words, for

ÔI = 1⊗ Z ⊗ Z and ÔII = Z ⊗ Z ⊗ 1,
Ô|ψi〉 = ±|ψi〉. (10.5)

You can easily check that each |ψi〉 has a different set of eigenvalues for ÔI
and ÔII (Table 10.2). These operators when acting on the full Hilbert space of
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3-qubit states, do not change the subspaces containing the syndrome states.
This subspace is said to be invariant under the action of these operators,
which are therefore known as stabilizers. It is possible to understand why the

TABLE 10.2: Eigenvalues of stabilizers.

Error Syndrome Z1Z2 Z2Z3

1 |ψ0〉 +1 +1

X1 |ψ1〉 +1 −1

X2 |ψ2〉 −1 −1

X3 |ψ3〉 −1 +1

Ôs of Equation 10.5 are the stabilizers and how they distinguish between the
syndromes for single qubit-flip errors. The uncorrupted codeword state is un-
changed by the action of Ô. Each corrupted state is obtained by |ψi〉 = Xi|ψ̃〉,
and the operators ZjZk either commute or anti-commute with Xi, depend-
ing on whether i = j or k or not. It is a well-known concept in quantum
mechanics that operators that commute or anti-commute with a transforma-
tion operator are symmetries of the system: the states are left unchanged by
them. Therefore, the corrupted states can be distinguished by measuring ÔI
and ÔII, without disturbing the states. Measuring ZiZj is like comparing the
values of the ith and jth qubits, giving +1 if they match and −1 if not. Recall

|u〉 O

|0〉 H • H

FIGURE 10.6: Circuit for measuring an operator Ô.

that measuring a unitary operator Ô having eigenvalues ±1 is achieved by the
circuit in Figure 10.6, with |u〉 an eigenstate of Ô.

Z • •
≡ ≡

H • H H Z H

FIGURE 10.7: Circuit equivalences for measuring Ẑ.

If we need to measure Z1Z2, since the C-Z gate is symmetric, we can
interchange the control and target qubits, and using X = HZH (see Fig-
ure 10.7) and H2 = 1, we can get the syndrome measurement circuit given
by Figute 10.8. Check for yourself that each measurement in this process is
identical to that in Figure 10.4.
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3 Z

2 Z Z

1 Z

|0〉 H • H x

|0〉 H • H y

FIGURE 10.8: Measuring Z1Z2 and Z2Z3.

For a channel allowing a single qubit to change, we can estimate the min-
imum number of qubits needed to encode for error correction to work. We
already noted that the corrupted states |ψi〉 are mutually orthogonal. Let’s vi-
sualize these states in the Hilbert space of three qubits, which is 8-dimensional.
Each of our corrupted states is a linear combination of two of the eight basis
vectors of H8, lying in a 2-d plane. Each of these planes would be mutually
orthogonal, since each of the component basis vectors is orthogonal to the
other. This is the fact that underlies the success of the scheme described in
the last section. If a codeword uses n qubits, there are n + 1 syndromes in-
cluding the uncorrupted state. Each syndrome is two-dimensional: we need
2(n+ 1) dimensions for the orthogonal subspaces of the 2n-d Hilbert space in
which the syndromes lie. Thus we need

2(n+ 1) ≤ 2n =⇒ n = 3 at least. (10.6)

Thus the 3-qubit encoding is the most basic possible scheme. Other
schemes exist that utilize more qubits, and are more efficient, as we shall
see.

10.1.2 Error analysis

Let us estimate the probability for the above technique to yield an uncor-
rupted state, considering a channel characterized by flipping of a qubit with
probability p < 1/2. We list in Table 10.3 the probability of occurrence of
various corrupted states in order of decreasing probability.

The probability that our procedure corrects errors is therefore

P(correct) = (1− p)3 + 3p(1− p)2 = 1− 3p2 + 2p3. (10.7)

and the probability that we have an erroneous state is

P(incorrect) = p2(1− p) + p3 = 3p2 − 2p3 < P(correct). (10.8)
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TABLE 10.3: Probability of occurrence of corrupted states in a bit-flip chan-
nel.

Number of flips states probability

0 |ψ0〉 (1− p)3

1

X1|ψ0〉
X2|ψ0〉
X3|ψ0〉

3p(1− p)2

2

X1X2|ψ0〉
X2X3|ψ0〉
X1X3|ψ0〉

3p2(1− p)

3 X1X2X3|ψ0〉 p3

Box 10.1: Error Correction and Fidelity
People in the error-correcting business are not satisfied with this, and try

to work out schemes that are better by comparing fidelities. We will see in
Section 11.3.2 that the fidelity of two states is defined by their degree of
overlap. If we start with a pure state |ψ〉, errors cause it to become a mixed
state with probability p of transforming by X. This is represented by the
density matrix

ρbf = pX|ψ〉〈ψ|X + (1− p)|ψ〉〈ψ|. (10.9)

The fidelity of state transmission without error correction is given by

F =
√
〈ψ|ρbf|ψ〉 (10.10)

=

√
p〈ψ|X|ψ〉2 + (1− p) (10.11)

This has a minimum value of
√

1− p, when the first term is zero. If we make
use of the above protocol for error correction then for the 3-qubit encoded
state,

ρcorrected =
[
(1− p)3 + 3p(1− p)2

]
|ψ〉〈ψ|

+ (ρ for 2 or more bit flips) , (10.12)

and the fidelity, using only the first two terms, is

F ≥
√

(1− p)3 + 3p(1− p)2,

the same as the above.
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10.2 Phase Flip Code

Bit flips alone are a very limited kind of error a qubit could undergo.
Consider phase flips, which have no classical equivalent. A phase-flip quantum
channel is defined as one that only allows single phase flips, that is, with
probability p, |1〉 → −|1〉. Under the action of this channel, a generic state
transforms as

|ψ〉 = α|0〉+ β|1〉 → α|0〉 − β|1〉. (10.13)

If we represent |ψ〉 in the X basis spanned by |±〉 = 1√
2

[|0〉 ± |1〉],

|ψ〉 = α′|+〉+ β′|−〉, (10.14)

then phase flip causes |+〉 → |−〉 and |−〉 → |+〉. Thus, the phase-flip case
is unitarily equivalent to the bit-flip case since we can change basis to the
X-basis by applying a H transform. Error correction can be followed just as
in the bit-flip case, except that we now transform everything to the X basis
by using the H gate at appropriate places. The 3-qubit encoding that will
correct phase flip errors should then be

|0〉 → |+ + +〉, |1〉 → |− −−〉, (10.15)

which is achieved by the circuit in Figure 10.9.

|ψ〉 • • H

|0〉 H |ψ̄〉 = α|+ + +〉+ β|− − −〉

|0〉 H


FIGURE 10.9: Encoding circuit for 3-qubit phase-flip code.

Syndrome measurement and recovery is now identical to the bit-flip case,
except that we work in the X basis by applying an H gate to each qubit. The
stabilizers are the operators

Ô′I = H⊗3Z1Z2H
⊗3 = X1X2, Ô′II = H⊗3Z2Z3H

⊗3 = X2X3. (10.16)

Measuring these operators distinguishes the syndromes. This is like com-
paring the signs of the corresponding qubit values. Finally, recovery is per-
formed by applying HXH = Z to the appropriate qubit.

Exercise 10.1. Construct the circuit for detecting phase flip syndromes and for
correcting them.
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10.3 9-Qubit Shor Code

Let’s now consider a channel that can produce both bit flips and phase
flips. A code that combines bit and phase flip coding should protect against
these errors. A simple way to do this is to first encode for phase flips:

|0〉 → |+ + +〉; |1〉 → |− −−〉

and then encode using the bit flip code:

|+〉 → 1√
2

(|000〉+ |111〉) ; |−〉 → 1√
2

(|000〉 − |111〉) ,

so that we have the final 9-qubit encoding

|0〉 → 1

2
√

2
(|000〉+ |111〉)⊗3

; |1〉 → 1

2
√

2
(|000〉 − |111〉)⊗3

. (10.17)

Such a code is called a concatenated code, and this particular 9-qubit code was
first proposed by Peter Shor. The circuit to achieve this encoding is obtained
by concatenating the circuits for the phase flip and the bit flip encoding, as
shown in Figure 10.10. The syndrome generators are easy to construct: bit-

α|0〉+ β|1〉 • • H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

FIGURE 10.10: Encoding circuit for the 9-qubit Shor code

flips in each block can be detected by measuring (Z1Z2, Z2Z3), (Z4Z5, Z5Z6)
and (Z7Z8, Z8Z9). Further, phase flips between blocks can be distinguished
by measuring X1X2X3X4X5X6 and X4X5X6X7X8X9.
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Exercise 10.2. Construct the circuit for error correction for this case.

Note that with eight stabilizers, we have a possibility of correcting for 28

different errors, but we have only tried to look at bit/phase flips of 9 qubits,
which is 3× 9 + 1 = 28! Thus this scheme is highly redundant. More efficient
schemes using fewer encoding qubits have been proposed, and Shor’s 9-qubit
code is of purely historical interest now. The reason it is important to study
this code is that it shows that it is possible to simultaneously correct for both
bit flips and phase flips. Now it turns out that this will actually correct for
arbitrary single-qubit errors, since, as we are about to show, any such error
can be thought of as a combination of just bit flips and phase flips.

10.4 Discretization of Quantum Errors

One of the main results of the theory of quantum error correction is that
any general quantum error can be composed only of discrete errors represented
by the Pauli operators X,Z, and Y = −iXZ. Errors are induced on our qubit
system due to effects of everything outside this system, which we will call
the environment. The environment interacts weakly with the system to cause
a change in the amplitudes of the basis states, a process called decoherence
of the initial state. Initially, let’s assume the system is created in a definite
state |ψ〉. The environment has been excluded experimentally, so that the
combined environment-qubit system is in a product state: |e〉|ψ〉. Subsequent
interaction between the two results in a change of this state. In order to
model this evolution, we represent the transformation of the computational
basis states by

|e〉|0〉 −→ |e1〉|0〉+ |e2〉|1〉; (10.18a)

|e〉|1〉 −→ |e3〉|0〉+ |e4〉|1〉. (10.18b)

Here the kets |ei〉 are (un-normalized) environment states that can be ex-
pressed as fractions of |e〉: |ei〉 = ai|e〉. For example, the bit-flip error can
be modelled with a1 = 0 = a4, a2 = 1 = a3 and the phase flip by
a2 = 0 = a3, a1 = 1 = −a4. Now we want to be able to recognize the ef-
fect of such an evolution on the superposition state |ψ〉 = α|0〉 + β|1〉, as an
operation on the qubit system alone. In order to separate the effects on |0〉
and |1〉 we’ll now write a general error in the terms of the projectors

P0 = |0〉〈0|, and P1 = |1〉〈1|. (10.19)

So we can write Equations 10.18 as

|e〉|0〉 −→
(
|e1〉P0 + |e2〉XP0

)
|0〉 (10.20a)
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|e〉|1〉 −→
(
|e3〉XP1 + |e4〉P1

)
|1〉. (10.20b)

The error acting on |ψ〉 can be written as

|e〉|ψ〉 −→
[(
|e1〉1+ |e2〉X

)
P0 +

(
|e3〉X + |e4〉1

)
P1

]
|ψ〉. (10.21)

Now the projection operators can be written in terms of the Pauli matrices:

Z = |0〉〈0| − |1〉〈1|; 1 = |0〉〈0|+ |1〉〈1|;

=⇒ P0 =
1+ Z

2
; P1 =

1− Z
2

. (10.22)

Also, using XZ = iY , we get

|e〉|ψ〉 −→
(
|E1〉1+ |E2〉X̂ + |E3〉Ŷ + |E4〉Ẑ

)
|ψ〉, (10.23)

where we have appropriately regrouped the environment states |ei〉 to obtain
the new environment states |Ei〉. (We do not care about the exact form of
these states since we are not going to observe them.) We thus see that the
generic error can be expressed as a linear combination of the discrete errors
corresponding to the action of the Pauli matrices.

If we encode using n qubits for error-correction, then a generic state would
become

|e〉|ψ̃〉n −→

(
|d〉1+

n∑
i=1

(|ai〉X̂i + |bi〉Ŷi + |ci〉Ẑi)

)
|ψ̃〉n. (10.24)

In order to diagnose the syndromes, the 2n-d Hilbert space must admit at
least 1 + 3n 2-d subspaces:

2n−1 ≥ 1 + 3n,

so n = 5, 7, 9...
Thus the minimum codeword size is 5 qubits. We can see now that the

9-qubit Shor code is not efficient; we can make do with fewer qubits.

10.5 The 5-Qubit Code

The number of syndromes in a 5-qubit scheme would be 5 × 3 + 1 = 16.
We’d thus need 4 stabilizer operators since 24 = 16. We’ll simply give the
operators (see Mermin [48] or Laflamme et al. [44]):

M0 = Z1X2X3Z4, M2 = Z3X4X0Z1,

M1 = Z2X3X4Z0, M3 = Z4X0X1Z2. (10.25)
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These operators satisfy

M0M1M2M3 = 1. (10.26)

We can see that each operator flips 2 qubits, and the encoding is more usefully
defined in terms of these:

|0̄〉 =
1

4
(1+M0)(1+M1)(1+M2)(1+M3)|00000〉, (10.27a)

|1̄〉 =
1

4
(1+M0)(1+M1)(1+M2)(1+M3)|11111〉. (10.27b)

One thing to notice is that |0̄〉 is composed of 16 basis states, each with an even
number of 1’s, while |1̄〉 is composed of states with an even number of 0’s, so
that the states are mutually orthogonal. Each Mi commutes or anti-commutes
with the Xi, Yi, and Zi error operators, so that the fifteen syndromes and the
uncorrupted state are distinguished by different sets of ±1 eigenvalues of the
M ’s. Measuring them would therefore diagnose the syndromes.

Exercise 10.3. Compute the 5-qubit codewords.

Exercise 10.4. Verify that the circuit of Figure 10.11 performs the 5-qubit en-
coding.

|ψ〉 ZHZ • H • • H • H

|0〉 H • • H

|0〉 H • |ψ̄〉

|0〉 H

|0〉


FIGURE 10.11: The encoding circuit for the 5-qubit code

As you are probably feeling, this code is harder to analyze and less trans-
parent than the Shor code. For practical purposes, the 7-qubit code due to
Steane is more popular.

10.6 The 7-Qubit Code

We again give the stabilizers, codewords for the logical bit states and the
encoding circuit, for completeness. You can refer to the text by Mermin [48]



Quantum Error Correction 209

for a full discussion on how the scheme works to correct errors. The 7-qubit
code is stabilized by 6 operators that distinguish the syndromes due to X,Y ,
or Z acting on any one qubit. These are the Steane operators:

N0 = X0X3X5X6; N3 = Z0Z3Z5Z6;

N1 = X1X3X5X6; N4 = Z1Z3Z5Z6;

N2 = X2X3X5X6; N5 = Z2Z3Z5Z6. (10.28)

Observe that they mutually commute, and N2
i = 1. The 7-qubit encoding is

defined by the operations

|0̄〉 =
1√
8

(1+N0)(1+N1)(1+N2)|0〉7 (10.29a)

|1̄〉 =
1√
8

(1+N0)(1+N1)(1+N2)|1〉7. (10.29b)

You can see that |0̄〉 is a state with an odd number of 0’s while |1̄〉 has an even
number. The usefulness of this code lies in the easy way in which many 1-qubit
operations generalize to operations on the 7-qubit codewords. For instance,
defining

X̄ = X⊗7, Z̄ = Z⊗7, H̄ = H⊗7, (10.30)

we find that

X̄|0̄〉 = |1̄〉; Z̄|0̄〉 = |0̄〉; H̄|0̄〉 =
1√
2

(|0̄〉+ |1̄〉); (10.31a)

X̄|1̄〉 = |0̄〉; Z̄|1̄〉 = −|1̄〉; H̄|1̄〉 =
1√
2

(|0̄〉 − |1̄〉). (10.31b)

This makes it a lot more convenient to use this encoding in various circuits.

|0〉

|0〉

|0〉

|ψ〉 • |ψ̄〉

|0〉 H •

|0〉 H •

|0〉 H •


FIGURE 10.12: Circuit for the 7-qubit encoding. The qubits are arranged
according to significance from highest to lowest, top to bottom.
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You can also show that the rather cute circuit of Figure 10.12, again due
to Mermin [48], performs this encoding.

Exercise 10.5. Draw a circuit to measure the syndromes for the 7-qubit code.

While we have discussed the basic reasons for the success of quantum error-
correcting codes, we have barely scratched the surface of this complex and
intriguing field. In general, errors need not be restricted to single-qubit errors.
Nor need they be unitary. The full theory of quantum error-correcting codes is
beyond the scope of this book. That theory examines how the system can be
embedded in a larger system with a number of entangled qubits. Measurement
of some of the ancilla qubits can lead to error diagnosis and correction. A very
readable account of this is given in the book by Reiffel and Polak [58].

Another important subject we are not dealing with is fault tolerant com-
putation. The assumption in all we have studied so far is that the gates and
circuits we employ are potentially error-free in themselves. This can hardly
be guaranteed in practice. However by special coding a circuit or a gate can
be made tolerant to errors.

Problems

10.1. Suppose that a channel introduces a linear combination of bit-flip errors on
a qubit encoded by the 3-qubit repetition code. This is modelled as αX̂1 +
βX̂2. Show that the syndrome measurement for the 3-bit code correctly
distinguishes the possible syndromes in this case as well.

10.2. Construct the matrix representation for the syndrome detection operation
(before the measurement of the ancillas).

10.3. Construct the unitary operator for error recovery using the 3-qubit phase
flip code.

10.4. Construct the table of eigenvalues of the stabilizers for the 9-qubit Shor
code, analogous to Table (10.2).



Chapter 11

Characterization of Quantum
Information

When we manipulate physical systems for various purposes, we are essentially
encoding and decoding the information content in those systems in precisely
defined terms tailored to our purpose. Conversationally speaking of informa-
tion, one thinks of the “new knowledge” gained when a particular physical
process is completed, such as watching television, reading an article, or mea-
suring the output voltage at the end of a circuit. When we get used to the idea
that information is not something abstract that is a result of cognition, but is
actually physically carried by the system that’s being observed or measured,
we are closer to a scientific understanding of information.

Classically, information theory gained respectability when Claude Shannon
[63] quantified the information content in a physical system or communica-
tion channel. He was working at Bell Labs at that time and was interested in
optimizing telephonic communication. He also realized the importance of in-
formation in the context of data compression and cryptography. We will start
with his theory, and see how it can be adapted to describing the information
content of a quantum system. For a more in-depth treatment of the subject,
you can refer to the excellent book by Barnett [4]. Matters regarding quantum
information are beautifully discussed in the work by Mark Wilde [73], and in
Chapter 5 of Preskill’s lecture notes [57].

11.1 Measures of Information

We would like to develop a measure for the rather abstract concept of
information, so that efficiencies of different protocols or physical systems of
communication can be compared, and more efficient systems designed.

We need to first have a model for the process we are describing, and Shan-
non’s proposed model has stuck (Figure 11.1). We start with a source of
information, which, like a talking person or a buzzing telephone receiver, gen-
erates messages using some predefined language consisting of symbols we
will call the alphabet. The alphabet could, for example, be the set of English
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FIGURE 11.1: Simplified model for communication

letters for communicating through a written message, or a set of “dit”s and
“da”s for a message in Morse code, or 0’s and 1’s for a computerized message.

Any message emitted by the source is then encoded for transmission using
the physical system involved. For a talking person, the message is encoded in
the vibration of the air molecules. For a telephonic message, the encoding is
in terms of analog electric pulses in the wire. For the now-obsolete telegraph,
encoding was done in binary dit’s and da’s represented as short or long electric
pulses which we have now refined into the 0s and 1s of the modern binary
computer. The encoded message is then transmitted across a channel. This is
obvious as the air carrying the spoken message, the wire carrying the telegraph
signal, or the optical cable transmitting long distance digital messages. In the
context of quantum information, the channel may well just be the environment
that the quantum system finds itself in between computational steps.

The importance of the channel in information theory lies in how much
it costs in terms of its usage, and how it may distort or reduce the quality
of the message being sent. We would need to quantify the compression of
the message in order to more efficiently utilize the resources, as well as the
capacity of the channel to carry information in the presence of noise. Noise
could be literal in the case of a talking person, random electrical signals in
a telephone or telegraph wire or the computer circuitry, or the change in the
state of a quantum system interacting inadvertently with its environment. At
the other end of the communication model is the decoder and finally the
receiver of the message, which is either the ear of the audience, the ear-piece
of the telephone, the printed output of the telegraph, or the monitor of the
computer.

We will now see how we can develop a measure for the information carried
by a message, or a symbol in the message. The appearance of a symbol at the
receiver’s end is an event, whose probability can be predicted if we have some
idea of the properties of the source. We will talk in the language of events and
their probabilities of occurrence.
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11.1.1 Classical picture: Shannon entropy

According to Shannon, information associated with events is related to
their probability of occurrence. Let’s take a simple example. Suppose a magi-
cian has hidden a ball in one of three boxes labeled 1, 2, and 3. Now he asks
you to choose the box in which is ball is hidden. How would you choose? It de-
pends on the information you have about the ball’s location. In the beginning,
you do not know which box it is in, so you think it is equally probable to be
in any of the three boxes. Thus each box carries 1/3 of the information about
which box the ball is in. You’d alternatively say that the ball is in each box
with equal probability. The situation is thus described by an initial probability
distribution Pin :

Pin(ball is in 1) = 1/3, Pin(ball is in 2) = 1/3, Pin(ball is in 3) = 1/3.

An event such as opening any one box now will give you further information
on where the ball is among the three. Suppose you open one box, say box 2, and
the ball is not in it. The probability distribution has now changed: conditioned
by the event of having opened box 2:

P2(ball is in 1) = 1/2, P2(ball is in 2) = 0, P2(ball is in 3) = 1/2.

Opening a box now gives information only about where the ball is in the two.
On the other hand, what about the information with the magician for the

same situation? He knows that he has put the ball in box1, so his distribution
is

Pm(ball is in 1) = 1, Pm(ball is in 2) = 0, Pm(ball is in 3) = 0.

In this case opening a box adds no information at all to the magician’s knowl-
edge!

This example teaches us a few things:
The information carried by an event is related inversely to its probability of

occurrence before it has occurred. (After the event, the probability is of course
1!) The more probable the occurrence, the less information the event carries.
The occurrence of an event removes doubts about the possibilities before it
occurs. The information it carries is thus the doubt it removes by occurring.
The information carried by an event is changed if a previous event carries
related information. If an event has happened, it carries no new information
as compared to an event that has not yet happened.

Let’s now try to quantify the information I carried by an event E . If we
are talking about messages encoded in symbols sent across a channel, then
the event is the reading of the symbol by the receiver. The occurrence of a
particular symbol x is the event E(x) with probability p(x),

∑
x p(x) = 1. Now

the mathematical formulation of information is concerned with the syntactic
form of the message rather than the semantic. This means that we are not
going to worry about the meaning conveyed by a message in a literal sense
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(which would depend on how the read symbol is translated by the receiver’s
brain), but rather by the form of the message itself, in terms of the symbols
it carries. In other words, information carried by a symbol does not depend
on which symbol it is, but only on our ignorance, or uncertainty, about its
occurrence, before it is read. Thus the information carried by the symbol x
on the occurrence of event E(x), must depend inversely on p(x).

There are some properties we expect the information function to have.
Suppose two events E1 and E2 both occur. The information carried by this
joint occurrence is I(E1 + E2). If the result of one event E1 is revealed, then
the information carried by the other event must be the difference: I(E2) =
I(E1 +E2)−I(E1). Thus, the information carried by the joint event is the sum
of the information carried by each. So if many events occur sequentially, then
the information also builds up in the same order.

Remember that if an event is certain to occur, then it carries no informa-
tion. A certainty is represented by probability 1, so that I(1) = 0. (That’s
like a computer that is switched off, so it reveals no information!)

Collecting all these properties together, we require our mathematical in-
formation I(Ei) to be a function that satisfies

1. inverse relation to probability: I(Ei) ∼
1

pi
,

2. monotonously increasing, continuous function of pi,

3. additivity: I(E1 + E2) = I(E1) + I(E2),

4. identity corresponding to information of certainty, I(1) = 0.

One function that satisfies all these properties is the logarithm. This led Shan-
non to define the self-information of an event Ei as

I(Ei) =
1

log pi
= − log pi. (11.1)

Here, the base of the logarithm denotes the units in which information is
measured. If we use the natural logarithm then the unit of information is
nats. If all events are binary in nature (yes-no answers), then the logarithm is
taken to the base 2 and the units of information is bits. Note that the difference
between different units for information is a multiplicative constant since

logb x = logb a loga x.

Example 11.1.1. Let’s calculate the information in bits carried by the drawing
of a card out of a playing deck of 64 cards. To rephrase the problem, suppose a
magician asks you to pull out a card at random, and then tries to guess which
card you drew. The logical way for the magician to remove his ignorance
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about the card would be to ask you questions about the card. (Of course
he cannot ask you which card it is!) Since we want the answer in bits, the
answers to these questions must be binary: “yes” or “no.” The problem then
translates to how many such binary-answer questions the magician must ask
for correctly guessing the number. The procedure he adopts is the “binary
search” algorithm of dividing the range of possible answers into two at each
step and asking if the card is in one of the two ranges. Your yes or no will allow
him to select one of the sections and further divide it. Consider the following
sample scenario:

Q 1. Is it between 1 and 32? Ans: No.

Q 2. ... between 33 and 49? Ans: Yes.

Q 3. ... 33 and 41? Ans: No.
...

Q n.

What is the total number n of such questions? It’s the number of times the
range [1 − 64] can be bifurcated, which, if you follow through the above se-
quence of questions, will be 6.

n = 6 = log2 64 = − log2

1

64
,

and 1/64 is the probability of choosing one particular card out of the deck.
Clearly this answer is independent of which card it is (the semantic meaning
of the event).

A message is the occurrence of a string of events: the appearance of each
symbol constituting the message. Thus the total information carried by a
message is the weighted average of all the symbols in the message. This is
given by

H(m) =
∑
i

piI(Ei) = −
∑
i

pi log pi. (11.2)

What if a particular symbol doesn’t occur in the message? In that case too,
p = 0. Even though log p is then undefined, the symbol cannot contribute
to the information carried by the message, and for our purposes, we define
0 log 0 ≡ 0.

From its similarity to the thermodynamic quantity of the same name, the
information functionH(m) has been called the entropy of the message. In sta-
tistical thermodynamics, we seek to relate the macroscopic properties system
to the microstates of its constituents. Notably, the energy of a gas is related
to the momenta of its constituent molecules. If the number of microstates
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compatible with a given macrostate is Ω then the Boltzmann entropy of the
system is defined to be

S = kB ln Ω,

where kB is Boltzmann’s proportionality constant.1 We think of the mi-
crostates as tiny imaginary cells dividing the total gas volume, for the gas
particles to occupy. If pi is the probability that the ith cell is occupied, the
Boltzmann entropy of the gas can be worked out to be

S = −kb
∑
i

pi ln pi. (11.3)

Example 11.1.2. Consider a set X of possible events {a, b, c, d} with the
following probabilities:

p(a) = 0.5; p(b) = 0.3; p(c) = 0.1; p(d) = 0.1

Then the entropy of this distribution is

H(X) = −0.5 log(0.5)− 0.3 log(0.3)− 2× 0.1 log(0.1) = 1.685 bits.

Exercise 11.1. What is the information carried by the toss of an unbiased coin?

Exercise 11.2. How does the above change if the coin is biased?

11.1.2 Mathematical characteristics of the entropy function

We will denote by an ensemble X the collection of events (represented by
a random variable) x occurring with probability p(x):

X ≡ {x, p(x)}. (11.4)

Definition 11.1. The entropy function for an ensemble X is given by

H(X) = −k
∑
x

p(x) log p(x). (11.5)

The number k is a constant which depends on the units in which H is mea-
sured.

The function H(X) satisfies the following properties.

1. H(X) is always positive, and is continuous as a function of p(x) that is
symmetric under exchange of any two events xi and xj .

1See footnote 1 on page 111.
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2. It has a minimum value of 0, when only one event occurs with probability
1 and all the rest have probability 0. This is obvious to see since H(p)
is a positive function and its minimum has to be zero.

3. It has a maximum value of k log n when each x occurs with equal prob-
ability 1/n. Here is a simple proof of this fact:

H(X)− k logn = k
∑
x

p(x) log
1

p(x)
− k

∑
x

p(x) logn

= k
∑

p(x) log
1

np(x)

≤ k
∑

p(x)

(
1

np(x)
− 1

)
.

This is because log x ≤ x − 1, with equality only if x = 1 (see Figure 11.2),
an important result often used in information theoretic proofs.

FIGURE 11.2: Graph of y = x− 1 compared with y = lnx.

So we have

H(X)− k log n ≤ k

(∑ 1

n
−
∑

p(x)

)
= 0,

∴ H(X) ≤ k log n. (11.6)

Box 11.1: Binary Entropy
A very useful concept is the entropy function of a probability distribution



218 Introduction to Quantum Physics and Information Processing

of a binary random variable, such as the result of the toss of a coin, not
necessarily unbiased. Here, one value occurs with probability p and the other
with 1− p. We then have

Hbin(p) = −p log p− (1− p) log(1− p). (11.7)

In this simple case all the listed properties of the mathematical entropy func-
tion are obvious.

1. Positive: Hbin(p) > 0 always;

2. Symmetric: Hbin(p) = Hbin(1− p);

3. Hbin(p) has a maximum of 1 when p = 1/2 as in a fair coin;

4. Hbin(p) has a minimum of 0 when p = 1 as in a two-headed coin.

FIGURE 11.3: The binary entropy function.

This function is a useful tool in deriving properties of entropy, especially when
different probability distributions are mixed together. An important property
of the entropy function is made evident in this simple case: that of concavity.
This property is used very often in concluding various results in classical as
well as quantum information theory. The graph in Figure 11.3 shows that the
function is literally concave. A mathematical statement of this property is
that the function lies above any line cutting the graph. Algebraically, for two
points x1, x2 < 1, we have

Hbin

(
px1 + (1− p)x2

)
≥ pHbin(x1) + (1− p)Hbin(x2). (11.8)
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11.1.3 Relations between entropies of two sets of events

From the way it is defined, Shannon entropy is closely related to probability
theory. In this book, we do not expect a thorough background in probability
theory, so I will simply draw your attention to some important results, so
that you may be piqued enough to look them up on your own. Consider two
ensembles X = {x, p(x)} and Y = {y, p(y)}. We will define various measures
to compare the probability distributions {p(x)} and {p(y)}.

1. Relative entropy of X and Y measures the difference between the two
probability distributions {p(x)} and {p(y)}:

H(X ‖ Y ) = −
∑
x,y

p(x) log p(y)−H(X)

=
∑
x,y

p(x) log
p(y)

p(x)
. (11.9)

Here again we use the convention that

−0 log 0 ≡ 0, − p(x) log 0 ≡ ∞, p(x) > 0. (11.10)

An important property of the relative entropy is that it is positive. The
relative entropy is also called the Kullback–Leibler distance. However,
it is not symmetric, and so is not a true distance measure, but it gives
us, for example, the error in assuming that a certain random variable
has probability distribution {p(y)} when the true distribution is {p(x)}.
Thus this definition is more useful when we have a set of events X with
two different probability distributions {p(x)} and {q(x)},

H(p ‖ q) =
∑
x

p(x) log
p(x)

q(x)
. (11.11)

2. Joint entropy of X and Y measures the combined information pre-
sented by both distributions. Classically, the joint probability of X and
Y , denoted by {p(x, y)}, is defined over a set X ⊗ Y . The joint entropy
is then

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y). (11.12)

If X and Y are independent events, then

H(X,Y ) = H(X) +H(Y ). (11.13)

3. Conditional entropy measures the information gained by the occur-
rence of X if Y has already occurred and we know the outcome. The
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FIGURE 11.4: Relationship between entropic quantities.

classical conditional probability of an event x given y is defined as
p(x|y) = p(x, y)/p(y), and we have

H(X|Y ) = −
∑
x,y

p(x|y) log p(x|y) (11.14)

= H(X,Y )−H(Y ). (11.15)

The second equation is an important relation: a chain rule for entropies:

H(X,Y ) = H(X) +H(Y |X). (11.16)

4. Mutual information measures the correlation between the distribu-
tions of X and Y . This is the difference between the information gained
by the occurrence of X, and the information gained by occurrence of X
if Y has already occurred. The mutual information is symmetric, so we
have

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (11.17)

= H(X) +H(Y )−H(X,Y ). (11.18)

The mutual information is a measure of how much the uncertainty about
X is reduced by a knowledge of Y . You can also see that it is the relative
entropy of the joint distribution p(x, y) and the product distribution
p(x)p(y):

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (11.19)

One way to picture the interrelationships between these entropic quantities
is the Venn diagram of Figure 11.4. Given these definitions, the Shannon
entropies satisfy the following properties that are easily proved:
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1. Relative entropy is non-negative:

H (p(x) ‖ q(x)) ≥ 0, (11.20)

with equality iff p(x) = q(x).

2. Mutual information is non-negative:

I(X;Y ) ≥ 0 (11.21)

with equality iff X and Y are independent.

3. Conditioning reduces entropy:

H(X|Y ) ≤ H(X), (11.22)

with equality iff X and Y are independent.

4. Subadditivity:

H(X,Y ) ≤ H(X) +H(Y ), (11.23)

with equality iff X and Y are independent.

Example 11.1.3. The ancient Indian game of dice used two cuboids marked 1
to 4 on the long faces. When the pair is rolled, the results are two independent
sets of events; let’s call them X and Y . Suppose a trickster uses loaded dice
with the following joint probabilities p(x, y):

p(x, y) 1 2 3 4 p(x)

1 1/16 1/16 1/8 1/4 1/2

2 1/32 1/32 1/16 1/8 1/4

3 1/32 1/32 1/32 1/32 1/8

4 1/8 0 0 0 1/8

p(y) 1/4 1/8 7/32 13/32 1

The individual probability distributions for X and Y are known as marginals
and are calculated as the sum of probabilities for one variable over all the
values of the other. The marginals for X and Y are indicated in the last row
and column of the table above.

1. Entropies of the two marginal distributions:
∑
pi log2 1/pi for each

marginal.
H(X) = 1.75 bits, H(Y ) = 1.88 bits.
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2. Joint entropy:
∑
pi log2 1/pi for all the 16 entries in the table.

H(X,Y ) =
1

4
log2 4 + 3

(
1

8
log2 8

)
+ 3

(
1

16
log2 16

)
+ 6

(
1

32
log2 32

)
= 3.31 bits.

Note that this is less than H(X) +H(Y ). The difference is the mutual
information: I(X;Y ) = 0.32.

3. Conditional entropy: for H(X|Y ) you need the entropies of the condi-

tional distributions, H(X|Y = y), p(x|y) = p(x,y)
p(y) .

H(X|Y ) =
∑
y

p(y)H(X|Y = y)

=
1

4
H

(
1

4
,

1

8
,

1

8
,

1

2

)
+

1

8
H

(
1

2
,

1

4
,

1

4
, 0

)
+

7

32
H

(
4

7
,

2

7
,

1

7
, 0

)
+

13

32
H

(
8

13
,

4

13
,

1

13
, 0

)
= 0.4375 + 0.1875 + 0.3016 + 0.5033 = 1.43 bits,

= H(X,Y )−H(Y ).

Similarly, H(Y |X) = 1.56 bits = H(X,Y )−H(X).

4. Mutual information

I(X;Y ) = H(Y )−H(Y |X) = 0.32 bits = H(X)−H(X|Y ).

Once these ideas were introduced, Shannon went ahead to define the limits
on compression of a given message source, and the capacity of a channel. We
will state these results for completeness, but will not prove them.

To optimize the use of channel resources, we often encode the messages
from a source so as to reduce their average lengths. This process is therefore
called compression. If we assume that the transmission is completely faithful,
that is, the message is not distorted in transmission, then we say that the
channel is noiseless. In this situation, how small can we make the encoded
message without losing the original information it carries?

Theorem 11.1. Shannon’s noiseless coding theorem: The maximum
compression that can be achieved for a given source is given by its entropy.

This theorem applies to the average length of a message from a source S
having entropy H(S):

L av ≥ H(S). (11.24)
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It should be understood in context: the actual entropy of the source of mes-
sages is seldom known: one only has access to the messages it produces. If we
could use some means to guess at the entropy of the source, then that number
is the maximum information the source is capable of, and we cannot compress
below it, for doing so would entail losing some information. In transmitting a
message across a channel, the entropy of the message is often also called the
entropy rate.

Shannon then considers the effect of noise on a channel: it can change the
information content of the message. He defines the channel capacity C of
a noisy channel as follows. Suppose Alice and Bob are communicating over
this channel and the messages Alice sends are denoted by the ensemble X.
The messages Y received by Bob are not necessarily the same as X since the
channel is noisy. The capacity of the channel is then the maximum mutual
information of X and Y :

C = max H(X : Y ). (11.25)

Theorem 11.2. Shannon’s channel coding theorem:
A channel with capacity C can be used to transmit (messages in some

appropriate coding) at any rate R < C with error that can be reduced to an
arbitrarily small amount.

If the rate is larger than C then the error cannot be reduced below some
limit.

These two theorems complement each other in the field of communications.
We try to optimize the use of resources, and while encoding to entropic limit
minimizes the size of a message, noisy channels force redundancy for error
correction and the second theorem provides a limit for that.

There is an excellent treatment of all these ideas in the book by Cover and
Thomas [21], especially the second chapter.

11.2 The von Neumann Entropy

The principles of entropy as applied to information were actually originally
formulated by John von-Neumann, in his famous mathematical book on the
foundations of quantum mechanics [70] (first published in German in 1932).
It was he who suggested that Shannon name his information measure as “en-
tropy.” The von Neumann entropy is a measure of the information carried by
quantum systems, and is expected to be related to the maximum compression
possible while encoding information in quantum states. If we are using pure
orthogonal quantum states to encode information, the entropy of the system
is the same as Shannon’s entropy. The main difference from classical informa-
tion arises due to the impossibility of reliably distinguishing non-orthogonal
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states. Thus if we have a mixed state ρ for representing information, the von
Neumann entropy S(ρ) is required to quantify the information content. As we
will see, the important concept of entanglement is also quantified by the von
Neumann entropy.

For a quantum state, the probabilities for measurement results are given
by the density operator described in Chapter 5. When ρ is expressed in the
orthonormal basis {|i〉} which diagonalizes it,

ρ =
∑
i

λi|i〉〈i|, (11.26)

λi represent the probability of the system being found in the state |i〉. The
entropy of the system is therefore

S(ρ) = −
∑
i

λi log λi, (11.27)

which also can be written as

S(ρ) = − Tr(ρ log ρ). (11.28)

Here we have used the definition of Equation 3.15 for the logarithm of a
matrix. Since the density matrix is positive, its logarithm always exists. This
is von Neumann’s definition of the entropy of a quantum system. Note that
the base of the logarithm in this case is the dimension of the Hilbert space of
the constituent systems. So we naturally use the log base 2 for qubits.

Example 11.2.1. Consider a mixed state consisting of |+〉 with probability
1/4 and |−〉 with probability 3/4. The density matrix is

ρ =
1

4
|+〉〈+|+ 3

4
|−〉〈−|

=
1

8

(
1 1

1 1

)
+

3

8

(
1 −1

−1 1

)

=
1

4

(
2 −1

−1 2

)
.

The eigenvalues of this matrix are 1
4 and 3

4 , so that the von Neumann entropy
is

S(ρ) =
1

4
log2 4 +

3

4
log2

4

3
= 0.81 qubits.

11.2.1 Properties of the von Neumann entropy

Some properties of the von Neumann entropy immediately follow from the
definition.
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1. The minimum value of S(ρ), zero, occurs for pure states.

S(ρ) ≥ 0. (11.29)

Thus even though a pure state embodies probabilities of measurement out-
comes, the information carried by it is zero since it represents a definite vector
in Hilbert space.
2. The maximum value of S(ρ) is log d, where d is the dimensionality of
the Hilbert space.

S(ρ) ≤ log d. (11.30)

This occurs for maximally mixed states with each ρi taking the value 1/d.
You will prove this in an exercise.
3. Invariance under unitary transformations:
Under unitary evolution U of the quantum system, the von Neumann entropy
remains unchanged.

S(UρU†) = S(ρ). (11.31)

4. Entropy of preparation:
We can think of entropy as a measure of mixedness of the system, or its
departure from purity. When constructing a state ρ out of an ensemble of
pure states |x〉 with probability p(x), in general we will find that

H(X) ≥ S(ρ). (11.32)

That is, the Shannon (classical) entropy is greater than the von Neumann
entropy. The equality (Equation 11.27) holds when the |x〉 are mutually or-
thogonal. The interpretation of this result is that when viewed in a basis in
which ρ is not diagonal, we are not in the same basis in which the system was
prepared. Measurement results in such a basis will have probabilities such that
the entropy is more than the von Neumann entropy. The latter is therefore
called the entropy of preparation of the system.

Example 11.2.2. For a state that is 25% |0〉 and 75% |+〉, the Shannon
entropy is

H(X) =
1

4
log 4 +

3

4
log

4

3
= 0.81 bits.

The density matrix is

ρ =
1

4

(
1 0

0 0

)
+

3

8

(
1 1

1 1

)
=

1

8

(
5 3

3 3

)

with eigenvalues 1/2± 1/4
√

5/2, so that the von Neumann entropy is

S(ρ) = 0.485 qubits.
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5. Entropy and measurement: When an observable Â is measured in a
state ρ, the outcomes a have a probability distribution

P(a) = 〈a|ρ|a〉, (11.33)

where |a〉 is the eigenstate of Â. We then find that the Shannon entropy of
the measurement outcomes is greater than the von Neumann entropy of the
state:

H(A) ≥ S(ρ), (11.34)

with equality when Â commutes with ρ. This means that measurement in-
creases the randomness in the system unless we measure a commuting observ-
able.

11.2.2 Entropy of composite systems

Some of the properties of the von Neumann entropy for composite systems
are similar to those of Shannon entropy, while some others are quite different.
We discuss a few here.
1. Concavity: S(ρ) is a concave function. That is, for a linear combination
of states ρ = c1ρ

A + c2ρ
B , the resulting entropy is usually greater than the

weighted sum of the individual entropies:

S(ρ) ≥ c1S
(
ρA
)

+ c2S
(
ρB
)
. (11.35)

The physical interpretation is that as when two systems are mixed, the re-
sultant is more uniform than each of the individual systems. To prove this,
you need to remember that the logarithm is not a linear function. It is, in
fact, a concave function (look at the graph of Figure 11.2). This also means
that the function x log x is concave. In the basis {|i〉} in which ρ is diagonal,
ρi = 〈i|ρ|i〉. Let’s introduce the notation ρAi = 〈i|ρA|i〉 etc.

Proof.

ρi log ρi ≥ c1ρ
A
i log ρAi + c2ρ

B
i log ρBi

=⇒ S(ρ) = −
∑
i

ρi log ρi

≥ −
∑
i

(c1ρ
A
i log ρAi + c2ρ

B
i log ρBi )

= c1S(ρA) + c2S(ρB).

2. Quantum relative entropy. Suppose that {|i〉} and {|m〉} are two sets
of orthogonal bases for the Hilbert space of the system. For density operators

ρ =
∑
i

pi|i〉〈i|; σ =
∑
m

qm|m〉〈m|,
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we can define the relative entropy as

S(ρ ‖ σ) = Tr
[
ρ(log ρ− log σ)

]
. (11.36)

In evaluating this quantity, we find that it is always non-negative: a result
sometimes known as Klein’s inequality.

Proof.

S(ρ ‖ σ) =
∑
i

〈i|ρ(log ρ− log σ)|i〉

=
∑
i

pi log pi − pi〈i| log σ|i〉. (11.37)

Here, 〈i| log σ|i〉 = 〈i|
∑
m

log qm|m〉〈m|i〉

=
∑
m

log qmPim (11.38)

where Pim ≡ 〈i|m〉〈m|i〉 (11.39)

≥ 0;
∑
i

Pim = 1 =
∑
m

Pim (11.40)

(Such a matrix is called doubly stochastic.)

So, S(ρ ‖ σ) =
∑
i

pi

[
log pi −

∑
m

Pim log qm

]
(11.41)

=
∑
i,m

piPim log
pi
qm

(since
∑
m

Pim = 1)

≥
∑
i,m

piPim

(
1− qm

pi

)
(since log x ≥ 1− 1

x
)

= 0, (using Eq 11.41)

=⇒ S(ρ ‖ σ) ≥ 0. (11.42)

3. Subadditivity. Given two systems A and B with joint state ρAB , and
reduced density matrices ρA and ρB, the joint entropy defined simply as

S(ρAB) ≡ −TrρAB log ρAB (11.43)

satisfies

S(ρAB) ≤ S(ρA) + S(ρB), (11.44)

with equality only when the two systems are uncorrelated. Thus entanglement
reduces the entropy, i.e., increases the information, of the system.



228 Introduction to Quantum Physics and Information Processing

Proof. The proof follows as an application of Klein’s inequality for ρ = ρAB

and σ = ρA ⊗ ρB. Suppose |i〉 and |m〉 are bases for the Hilbert spaces of A
and B, respectively. From Klein’s inequality,

S(ρAB) ≤ −TrρAB log(ρA ⊗ ρB)

= −TrρAB log ρA − TrρAB log ρB

Now the first term in this is

−〈i,m|ρAB log ρA|i,m〉 = −TrAρ
A log ρA = S(ρA).

Similarly for the other term. So we have

S(ρAB) ≤ S(ρA) + S(ρB) (11.45)

There is another result, the triangle inequality also known as the Araki–
Lieb inequality, that can be similarly proved:

S(ρAB) ≥ |S(ρA)− S(ρB)|. (11.46)

4. Conditional entropy.

S(A|B) ≡ S(ρAB)− S(ρB). (11.47)

While Shannon conditional entropy can never be negative, the von Neumann
entropy can, for systems that are entangled [16]. This can be proved to be a
criterion for entanglement.

There are many more inequalities and properties of the von Neumann
entropy that can be proved, for which we refer you to Nielsen and Chuang
[50], the book by Ohya and Petz [51] and the review article by Wehrl [71].

11.3 Distance Measures

An important consideration in information theory is the comparison of two
systems: probability distributions in the classical context and states (pure or
mixed) in the quantum. For such comparisons, various measures collectively
labeled distance measures have been proposed. We’ll consider some of them
here, to educate ourselves in the concepts involved.
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11.3.1 Kolmogorov or trace distance

A sort of distance between two probability distributions p(x) and q(x) for
the same random variable X can be defined as

D(p(x), q(x)) =
1

2

∑
x

|p(x)− q(x)|. (11.48)

This is similar to a “metric” for determining the distance between points in a
space.

One context in which such a measure is useful is in a dynamic process,
where information X is sent through a (noisy) channel and appears as Y .
We wish to compute the probability of error in the channel by comparing the
two distributions. To do this, we first make a copy of the input and call it
X ′, and then look at the probability distribution of the pairs (X ′, X) and
(X ′, Y ). Let’s compute the trace distance between these two distributions
p(x) = p(X ′ = x,X = x) and qy = p(X ′ = x, Y = y):

D(p, q) =
1

2

∑
x,y

|p(x)− q(y)|

=
1

2

∑
x6=y

p(x) +
1

2

∑
x

|p(x)− q(x)|

=
1

2
(p(X ′ 6= Y ) + 1− p(X ′ = Y ))

= p(X 6= Y )

For two quantum states ρ and σ, we can define the Kolmogorov distance
using the trace function

D(ρ, σ) =
1

2
Tr|ρ− σ|. (11.49)

How do we compute this? We will define the mod of a matrix A by

|A| =
√
A2 =

√
A†A,

where the last equality holds if A is Hermitian, which is true of density ma-
trices. We can easily see how this reduces to the classical distance, if we can
diagonalize ρ and σ in the same basis to write

ρ =
∑
x

p(x)|x〉〈x|, σ =
∑
x

q(x)|x〉〈x|.

Two matrices can be simultaneously diagonalized if and only if they commute.
Then we see that

D(ρ, σ) =
1

2
Tr

∣∣∣∣∣∑
x

(p(x)− q(x))|x〉〈x|

∣∣∣∣∣
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=
1

2

∑
x

|p(x)− q(x)| Tr|(|x〉〈x|)|

=
1

2

∑
x

|p(x)− q(x)|

= D(p(x), q(x)).

Example 11.3.1. It may be instructive to visualize the trace distance between
single qubits by a Bloch sphere picture. Let our states be represented by Bloch
vectors ~p and ~q:

ρ =
1

2
(1+ ~p · ~σ) , σ =

1

2
(1+ ~q · ~σ) .

The trace distance is then

D(ρ, σ) =
1

4
Tr|(~p− ~q) · ~σ|

The matrix (~p− ~q) · ~σ = ~a.~σ has eigenvalues ±a. So the eigenvalues of |~a.~σ|
are |a| and Tr|~σ| = 2|a|. So we have

D(ρ, σ) =
1

2
(|~p− ~q|)

which is half of the geometric distance between the points ~p and ~q in the
Bloch ball.

The trace distance can be interpreted as follows: if two quantum states
are close in trace distance, then when measurements are performed in those
states, the resulting probability distributions are close in the classical trace
distance.

11.3.2 Fidelity

Another important measure for comparing probability distributions is the
fidelity, which is easily extended to quantum states. This is variously defined
in different texts, but we will stick to a simple operational definition here:

F(p(x), q(x)) =
∑
x

√
p(x)q(x). (11.50)

The square root is used so that we have F(p(x), p(x)) = 1. This definition
is compatible with the inner product of two vectors with components {p(x)}
and {q(x)}.
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In the quantum case, the fidelity between a pure state |ψ〉 and a state |φ〉
is the inner product:

F(ψ, φ) = 〈φ|ψ〉 (11.51)

|F|2 can also be thought of as the probability of confusing the state |ψ〉 with
|φ〉 in an experimental situation. Another way of looking at it is that if the
state |ψ〉 is sent through a communication protocol, the probability that the
end state |φ〉 is the same as the input state is (the mod-square of) the fidelity
of the process. The fidelity is minimum, 0, if the two states are orthogonal, and
maximum, 1, if the two states are identical. Classically, these are the only two
situations that could possibly arise. But in the quantum world, there exists
a continuity of states connecting the two possibilities, and this distinguishes
quantum information from classical.

One can extend this definition to mixed states as well: for states ρ and σ,

F(ρ, σ) = Tr(
√
ρσ). (11.52)

Example 11.3.2. If we have a pure state |ψ〉 and a mixed state ρ, we can
calculate the fidelity as

F(|ψ〉, ρ) = Tr(
√
|ψ〉〈ψ|ρ)

= Tr(
√
〈ψ|ρ|ψ〉)

=
√
〈ψ|ρ|ψ〉 (11.53)

Example 11.3.3. If two density matrices ρ and σ commute then they can be
diagonalized in the same basis and the fidelity can be calculated as

F(ρ, σ) = Tr

√∑
x

(p(x)q(x))|x〉〈x|

= Tr
∑
x

√
p(x)q(x)|x〉〈x|

=
∑
x

√
p(x)q(x)|x〉〈x| = F(p(x), q(x)). (11.54)

Fidelity is not a distance, but can be used to define one between density
operators, the so-called Bures distance

DB =
√

2− 2F , (11.55)

which is a metric on the space of states.
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11.4 Entanglement Measures

Owing to the importance of entanglement as a resource in quantum in-
formation processing, it is necessary to construct measures of entanglement
between two component systems. We saw in Chapter 4 a condition for the
separability of 2-qubit states. For a generic higher dimensional density matrix
to be separable, a test known as the positive partial transpose (PPT) condi-
tion was proposed by Peres [55] and the Horodecki’s [42]. The density matrix
of the system can be expressed as

ρAB =
∑
i,j,l,m

pijlm|i〉〈j| ⊗ |l〉〈m|. (11.56)

where |i〉, |j〉 are basis states for system A, while |l〉, |m〉 are those of B. The
partial transpose with respect to system B is obtained by interchanging the
row and column indices of the second system:

ρTB ≡
∑
i,j,l,m

pijlm|i〉〈j| ⊗ |m〉〈l|. (11.57)

For separable states, this operator is positive, i.e., has non-negative eigenvalues
only. If this operator has a negative eigenvalue then the state represented by
ρAB is entangled.

Example 11.4.1. It is easy to see that the partial transpose of a separable
density operator has no negative eigenvalue:

ρAB =
∑
i

piρ
A
i ⊗ ρBi , (11.58)

Taking partial transpose with respect to B is just taking the transpose of the
reduced matrix ρBi . This action does not alter the eigenvalues of ρB and hence
those of ρAB , which were non-negative to start with.

Exercise 11.3. Show that the partial transposes of the density matrices for the
Bell states have a negative eigenvalue.

Entanglement has so far only been described qualitatively, and we know of
the two extremes of separable states and maximally entangled 2-qubit states.
We’d like to develop measures for entanglement that are more quantitative
and generic. We expect any entanglement measure E(ρ) to have the following
properties.

1. For an unentangled state, E(ρ) = 0.
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2. Local unitary transformations on the system should leave the entangle-
ment unchanged.

3. If non-unitary operations are included (for example measurement), then
the entanglement cannot increase.

Many different entanglement measures have been proposed, useful in dif-
ferent contexts.
1. Distance measures between the given state and the “nearest” unentan-
gled state can be directly used.
2. Entropy of entanglement: If the system at hand (A) is considered as a
component of a pure state ρAB , expressed in Schmidt form,

ρAB =
∑
i

λi|iA〉〈iA| ⊗ |iB〉〈iB |. (11.59)

the entropy of the reduced density matrix for A is a measure of its entangle-
ment with B:

E(A) = S( TrBρ
AB) = −

∑
i

|λi|2 log|λi|2, (11.60)

The entropy for the reduced density matrix of B is also the same. Clearly, if
the two states were unentangled, then they will be pure states themselves and
the entropy would be zero. This measure also satisfies the other two conditions
above. Thus, an entanglement measure for a pure composite state is the von
Neumann entropy of any of the reduced density matrices.

This measure is, however, not applicable for mixed states, since the von
Neumann entropy of a subsystem can be non-zero even if the states are not
entangled.
3. Entanglement of formation: Since entanglement is created when the
system are prepared, one common measure of entanglement is the entangle-
ment of formation of the entangled pair. Suppose one is to prepare an ensemble
of states in a given entangled state ρ. In one interpretation, the entanglement
of formation measures the number of Bell states required to construct this
state. If ρ is constructed out of a mixture of pure states {φi}, we have

ρ =
∑
i

pi|ψi〉〈ψi|.

Each state |ψi〉 has its own entropy of entanglement Ei. This decomposition
is not unique, and we have to choose the minimum out of all possible decom-
positions to define the entropy of formation of ρ:

E(ρ) = min

[∑
i

piEi(|ψi〉)

]
. (11.61)

4. Concurrence: This is a somewhat less intuitive measure of entanglement
but is widely used and is related to the entanglement of formation discussed
above. It was first proposed by Wootters in 1998 [75].
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We saw in Chapter 4 that a 2-qubit pure state

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (11.62)

is separable only if αδ = βγ (Equation 4.9). The difference |αδ − βγ| can be
taken to be a measure of entanglement. One way to obtain this is to consider

|ψ̃〉 = YA ⊗ YB |ψ∗〉, (11.63)

C(ψ) = |〈ψ|ψ̃〉| (11.64)

= 2|αδ − βγ| (11.65)

This can be extended for a mixed state with density matrix ρAB : define

ρ̃ = ŶA ⊗ ŶBρ∗ŶA ⊗ ŶB ,

then concurrence can be defined as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (11.66)

where the λi are the square roots of the eigenvalues of ρρ̃ in decreasing order.
For two-qubit systems, it turns out that the entanglement of formation is
related to the concurrence:

E(ρ) = h

(
1

2

(
1 +

√
1− C2

))
, (11.67)

where h(x) is the standard entropy of a binary probability distribution:

h(x) = −x log(x)− (1− x) log(1− x).

These measures have dealt only with bipartite entanglement: entanglement
between two subsystems. There are many more ideas dealing with entangle-
ment of mixed states that are not discussed here. Neither is the much more
complex scenario of multipartite entanglement.

Problems

11.1. What is the information carried by a throw of a die with 6 faces? What is
the information carried by n throws of the same die?

11.2. An experiment produces photons with a 60% probability of being right cir-
cularly polarized and 40% of being left circularly polarized. Find the entropy
(i) in an experiment to test for circular polarization; (ii) in an experiment
to test for linear polarization.
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11.3. Derive the mutual information relation of Equation 11.18 if the definition
is Equation 11.19.

11.4. Consider a preparation of photons that has 70% probability of producing
right circular polarization and 30% probability of producing vertical polar-
ization.

(a) Construct the density matrix for the prepared photon state and find
its eigenvalues.

(b) What is the physical meaning of the eigenvectors of this matrix?

(c) Find the entropy of this system.

11.5. Prove that for pure states, ρ2 = ρ =⇒ S(ρ) = 0.

11.6. Prove the Araki–Lieb inequality, Equation 11.46.

11.7. Prove using the Klein inequality that for a d dimensional system, S(ρ) ≤
log d.

11.8. Calculate the concurrence for the Bell state |β11〉.
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