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“excellent… clearly explains concepts in chemical thermodynamics using 
a molecular approach.”

—Enrique Peacock-Lopez, Williams College
 

“The author’s examples are clear, his intuitive arguments are convincing, 
the math is always kept simple… [and] the language is flawless.”

—Stephen C. Harvey, University of Pennsylvania

Thermodynamics Kept Simple – A Molecular Approach: What is the Driving 
Force in the World of Molecules? offers a truly unique way of teaching and 
thinking about basic thermodynamics that helps students overcome common 
conceptual problems. 

For example, the book explains the concept of entropy from the perspective of 
probabilities of various molecular processes. Temperature is then addressed and 
related to probabilities for heat transfer between different systems. This approach 
gives the second law of thermodynamics a natural and intuitive background.

The book delivers a concise and brilliantly conceived introduction to thermo-
dynamics by focusing at the molecular level in a manner that is easy to follow 
and illustrated by engaging, concrete examples. By providing a guided tour of 
the world of molecules, the book gives insights into essential principles of ther-
modynamics with minimal use of mathematics. It takes as a unifying theme an 
application of simple but appropriate reasoning that leads to the correct math-
ematical relationships. 

Many well-chosen examples are employed to clearly illustrate the core laws and 
to supply valuable insight into the molecular events underlying the thermodynamic 
macroscopic description, such as how spreading of energy and spreading of 
particles can sometimes oppose each other and at other times work together. 
Thereby, insight into the world experienced in everyday life also is gained.
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Preface

The contents of this book is the result of a long process that started
at the end of the 1960s when I was an undergraduate student at the
Royal Institute of Technology in Stockholm, Sweden, andmet thermo-
dynamics for the first time. The excellent teaching in physical chem-
istry left behind, after all, a troubling void within me: What was ther-
modynamics really about? The other parts of physical chemistry were
focused on molecular properties and processes, while thermodynam-
ics essentially had a macroscopic perspective. A purpose of the use of
thermodynamics in chemistry is to be able to make statements and
predictions about properties, processes, and equilibria for molecular
systems, but where had the molecules gone in the conceptual world
of thermodynamics? They were, of course, present in some ways, but
they were still pretty peripheral in the treatment of the subject. (This
is typical of traditional teaching of thermodynamics and it depends
on the nature of classical thermodynamics, which is independent of
molecular descriptions.)

I got answers to some of my questions when I was studying sta-
tistical thermodynamics in the more advanced courses, but I was
still not happy with how the link between microcosm and macro-
cosm was treated. Most textbooks in statistical thermodynamics have
a treatment that is “piggybacking” on the concepts of thermodynam-
ics and its laws instead of giving a concrete explanation of them from
a molecular perspective. Surely it should be possible to give a consis-
tently molecular description of thermodynamics in the teaching!

When I started to do research in statistical mechanics, these
thoughts about teaching gradually matured and gave rise to ideas on
how teaching in molecular thermodynamics could be implemented
in practice. During my years in the 1980s as a researcher at the Aus-
tralian National University in Canberra, Australia, I had the oppor-
tunity to test my ideas in practice in a short course for honors stu-
dents in chemistry. Encouraged by the positive response from the stu-
dents, I used these ideas to create an advanced course in statistical

ix
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thermodynamics in 1991 at the University of Gothenburg, Sweden,
with successful results.

My feeling was, however, that it should be possible to use the very
essence of these ideas to teach thermodynamics at the first-year uni-
versity level. In 1996, I therefore wrote a small booklet on entropy in-
tended to be used as a supplement to the textbook in our basic course
in general chemistry. The response from the students was very posi-
tive and we continued to use the booklet in this course. To my delight,
it was also used in several other universities and colleges in Sweden.
Encouraged by this response I wrote in 2002 a book in Swedish,1

where I showed how thermodynamics could be introduced from a
molecular perspective. With the help of this book, I could fully im-
plement my ideas about the teaching of thermodynamics in our basic
course. The students’ response was a very satisfying experience for me
and it made me feel strongly that I had made a correct choice. Their
response led to me being awarded the university’s individual Peda-
gogical Prize 2004 for showing a completely new way of thinking in
the teaching of basic thermodynamics.2 The book was also very well
received in the rest of Sweden and this led eventually to the publi-
cation of a second edition in 2011.3 The present book is essentially
a translation of this second edition of the Swedish book. Some parts
have been reworked and some new contents have been added.

An example of my considerations on thermodynamics teaching
is the following insight. The reason why many people have con-
ceptual difficulties with entropy is that the concept of temperature
and its properties are taken for granted. Naturally, everyone has an

1Roland Kjellander, Vad är drivkraften i molekylernas värld? En molekylär introduk-
tion till termodynamik (“What is the driving force in the world of the molecules? A
molecular introduction to thermodynamics”), Studentlitteratur, Lund, Sweden, 2002.

2The university’s justification for this prize was, in translation: “Kjellander intro-
duces the concept of entropy early in the teaching, and when seen from a molecular
perspective, thermodynamics is perceived as being easy and accessible rather than
abstract and elusive, which it does appear in traditional teaching. Kjellander acts as
a subject didactics pioneer in this field. He takes the contents of a subject area, starts
from the thinking of the students and establishes via his teaching a meeting between
students and content. Kjellander emphasizes the students’ understanding instead of
merely correct answers of the mathematical models.”

3The title and publisher are the same as for the first edition, see footnote 1. The
text of Appendix A in this second edition of the book was with permission from the
Swedish Research Council taken from the author’s chapter Vad är temperatur? (“What
is temperature?”) in the Research Council’s 2003 thematic book Hett om kalla fakta
(“Hot about cold facts”), Vetenskapsrådet, Stockholm, Sweden, 2003.
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everyday experience of temperature, but since this concept is used to
introduce entropy (via the second law of thermodynamics), the lat-
ter becomes rather mysterious and difficult to comprehend. In fact,
entropy is simpler than temperature and is more directly related to
molecular properties. In the book I turn it all around. The concept of
entropy is introduced first and is connected to probabilities of various
molecular processes. Temperature is then introduced and is given an
interpretation related to probabilities for heat transfer between differ-
ent systems. This approach gives the second law of thermodynamics
a natural and intuitive background.

An essential part of the philosophy behind the presentation of
thermodynamics in the book is to use simple but well-chosen ex-
amples to provide insights into the molecular events underlying the
thermodynamic macroscopic description. Thereby, insights are also
gained regarding the world that we experience ourselves in our every-
day life. In the work with the book I have been driven by the following
conviction: With the help of our imagination, the world of molecules
can also become our own world!

I am deeply grateful to many people during the different phases in
the writing of the various versions of the book. Let me first thank the
many students and other readers for their constructive and encourag-
ing comments throughout the years. For the Swedish version of the
book I want in particular to thank Kjell Johansson, Sture Nordholm,
Björn Forsberg, and Kai Lüder for reading the first manuscript and
providing constructive comments. Kjell, thank you for your careful
review of the text and your positive support. Sture, your unwavering
support and encouragement is a great asset for me both professionally
and personally. Björn and Kai, your efforts were important to me es-
pecially since you at the time had fresh experiences of being students.
A huge thanks to Gunnar Numeus for everything you give me when
I need it the most and always otherwise too. With your support, it is
easy to write a book like this. Last but by no means the least, I want
to thank Kim Nygård for carefully reading the English version of the
manuscript and for giving constructive input to the text. To have you
as a collaborator in scientific research and as a colleague in teaching
has given my professional life an extra inspiration.





To the reader

Thermodynamics has an important place in physics, chemistry, and
many engineering disciplines. The topic does, however, often give rise
to conceptual difficulties partly because of its abstract nature. In par-
ticular, the concepts of entropy and free energy have always proved
to be difficult to grasp and understand for almost all students. One
reason is that these entities are usually introduced in a rather math-
ematical and abstract manner, which causes this kind of difficulty.
Traditional approaches to thermodynamics have these problems al-
most universally. This book shows that one possible way to provide
an understanding of thermodynamics is to give a guided tour of the
world of molecules. Thereby, many of the difficulties can be avoided
provided the essential principles of thermodynamics are introduced
and illustrated from a molecular perspective. Furthermore, it is not
necessary to use a lot of mathematics to achieve an intuitive under-
standing of these matters. An effort has therefore been made in the
book to avoid mathematics as much as possible. Instead the focus is
on understanding via concrete examples and simple, but appropriate,
reasoning. The reader will thereby also acquire an understanding of
important phenomena and processes in the macroscopic world.

The book is suitable to use during the first year and upwards
for university studies in science subjects. It can be read as a stand-
alone book or as a complement to conventional textbooks. The reader
should, after having read the book, be equipped with the knowledge
and understanding that are needed to fully benefit from more tradi-
tional approaches to thermodynamics as dealt with in other literature.

The pedagogical approach and material of the book has been suc-
cessfully used in first-year chemistry teaching at the University of
Gothenburg, Sweden, for many years. The author has also used the
material with very successful results in higher level courses for stu-
dents who have only encountered the traditional treatment of ther-
modynamics.

Itemsmarkedwith an asterisk (*) contain optional specialized top-
ics that are not needed for reading the rest of the book. There is a large
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amount of footnotes that provide in-depth explanations and in many
cases more advanced outlooks and comments, including mathemati-
cal arguments. At the end of the book there is a list of most symbols
used in the book.



To teachers

This book contains a presentation of fundamental concepts and re-
lationships of thermodynamics, including the thermodynamic laws,
heat, work, internal energy, enthalpy, entropy, free energy, tempera-
ture, pressure, reversible and irreversible processes, the ideal gas law,
kinetic theory of gases, heat capacity, standard states, phase transi-
tions, the law of mass action, and the relationship between equilib-
rium constants and free energy (∆G0). In addition, some simple con-
cepts from statistical thermodynamics are introduced and used. The
starting points and perspectives are always molecular. Several illus-
trative and concrete examples are embedded in the presentation.

The book can be used as a complement to existing textbooks or as
a stand-alone textbook. Particularly Chapters 2 and 3, which mainly
deal with entropy, temperature, and to some extent free energy, are
suitable as a complement to the conventional presentation of these
concepts given in most textbooks (and that students in general find
especially difficult to understand). This part, in particular, is based
on pictures and simple reasoning that lead to the correct mathemat-
ical relations. The introduction of the concept of entropy is based on
a consistently molecular approach and is done before the notion of
temperature is treated. This leads to a natural and intuitive back-
ground for the second law of thermodynamics. Through numerous
concrete examples the reader is prepared for the concept of free en-
ergy (Helmholtz energy), which acquires a natural role.

Chapter 4 deals with other parts of the basis of thermodynam-
ics. Traditional teaching in thermodynamics often starts with gas laws
(usually as based on empirical findings) and then goes over to energy
transfer (heat and work) followed by the concept of enthalpy. Only
thereafter entropy and free energy are introduced.4 The presentation

4If one wants to pass through the topics in a traditional order one reads about
molecular motions, interactions, and internal energy in Section 2.1 followed by work,
heat, and the first law of thermodynamics in Sections 4.1 and 4.2, the ideal gas law in
Section 4.4 after the shaded box that finishes with Equation (4.13), and heat capacity
and enthalpy in Sections 4.5 and 4.6. Then it is time for entropy and the second law
of thermodynamics, whereby one continues to read the book from Section 2.2.

xv
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in this book takes advantage of the fact that entropy and temperature
are already treated when properties of gases are examined, which has
several advantages.5 Thereafter, enthalpy, Gibbs energy and several
other quantities and concepts are introduced. The principles of chem-
ical equilibrium in the gas phase are treated in some detail in Chap-
ter 5. In Chapter 6 it is examined what happens when the tempera-
ture changes, such as passages of phase transitions (boiling and freez-
ing) and shifts in chemical equilibria. The temperature dependence
of entropy is investigated in detail and that of other thermodynamic
quantities, treated elsewhere in the book, is summarized. Finally, in
Chapter 7 the most important principles discussed in the book are
summarized and placed in perspective.

Chapters 4 to 6 contain some reasoning of more mathematical
character than in Chapters 2 and 3 and include by necessity some
simple derivations, which are clearly marked as such. The structure
and focus share, however, the same spirit as the first chapters, and the
molecular perspective is identical. Also Chapters 4 to 6 can be used
as a supplement to existing textbooks.

The book is written especially for first-year students of science
subjects at the university level, but it can be used also at higher lev-
els and as an extracurricular book for particularly interested pre-
university students. The presentation is so designed that it gradually
gives the reader insight into the conceptual framework of thermody-
namics and to some extent its mathematical treatment in the simplest
form.

5For example, the ideal gas law can be derived in a quite simple manner that shows
that the thermodynamic absolute temperature (associated with entropy) is the same
as the temperature in this law.
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chapter 1

Introduction

What drives chemical reactions forward? What are the conditions for
a reaction to be possible? Why is the temperature equalized in an ob-
ject when a part of it has been heated? What, exactly, is temperature?
What is heat? Why does a gas become hot when we compress it? What
happens when we dissolve a substance in a liquid? Why does fog ap-
pear when moist air cools in the evening?

These are some of the issues addressed in this book, which also
poses the general question “What is the driving force in the world of
molecules?” In many cases there are simple explanations, provided
that one is able to use the imagination to understand what happens
to the molecules – to “take part” in the molecular world. The idea is
to introduce the reader into this way of looking at these issues and
to provide intuitive understanding of the individual examples. The
principles that are illustrated are, however, universal and can be ap-
plied to more complex cases.

The purpose is to explain thermodynamic concepts in a simple,
yet correct, way and to place them in a molecular context. Some of
these concepts have always proved to be difficult to understand for
almost all students. This is well illustrated by the following quote by
Arnold Sommerfeld,1 a famous German physicist:

Thermodynamics is a funny subject. The first time you go
through it, you don’t understand it at all. The second time you
go through it, you think you understand it, except for one or
two small points. The third time you go through it, you know
you don’t understand it, but by that time you are so used to it,
so it doesn’t bother you any more.

Thermodynamics is usually presented in a rather mathematical
and abstract manner, which gives rise to this kind of difficulty. Sta-
tistical thermodynamics, which provides the molecular background
and explanation, can be considered as even more mathematically dif-
ficult to access. This is probably the most important reason why the

1Arnold J. W. Sommerfeld (1868–1951) was a German theoretical physicist who
made important scientific discoveries in atomic and quantum physics.

1



2 Thermodynamics Kept Simple – A Molecular Approach

molecular background of thermodynamics is often avoided in basic
teaching. This book shows that a lot of mathematics is not always re-
quired to obtain an intuitive, molecular understanding of the essen-
tial principles of thermodynamics. Instead, the presentation is largely
based on pictures and fairly simple reasoning that leads to the correct
mathematical relationships. This makes the book unique in many re-
spects. Ordinary textbooks treat thermodynamics in a way that is un-
necessarily abstract and complicated, at least for students who for the
first time are studying the subject. This is unfortunate because the
molecular events that underlie thermodynamics are fascinating and,
in addition, they are vital for modern chemistry and physics. Ther-
modynamic principles govern so much of what happens in nature, so
an intuitive understanding of the molecular background is very desir-
able for all science students and professionals.

We will introduce and explain thermodynamic principles by using
a number of concrete examples. For instance, we shall treat:

• Expansion and compression of gases

• Mixing of gases with each other

• The spreading of energy in a body

• Equilibrium between a solution and the solid phase for sparingly
soluble substances

• Evaporation of a liquid droplet and the appearance of equilibrium
with saturated vapor

• Some chemical reactions that take place under release or absorp-
tion of energy

• Appearance of equilibrium for chemical reactions

• Interactions between charged bodies in an electrolyte solution

• The principles of a refrigerator from a molecular perspective

• The molecular basis of pressure of gases and other gas properties

• Melting of solid phases and freezing of liquids

• Boiling of liquids and condensation of vapor



Introduction 3

A major theme is to examine what is the driving force in microcosm,
that is, what is really going on molecularly that makes spontaneous
processes go forward. We ask ourselves, for example, the following
questions:

• What makes two gases spontaneously mix with each other when
they are brought into the same container and why don’t they sep-
arate again spontaneously?

• Why does energy in an object spread after heating, so that the ob-
ject becomes equally warm everywhere after a while?

• Why is at least a small amount of a substance always soluble in an-
other substance?What has happenedwhen equilibration has taken
place between a solution and the solid phase of a sparingly soluble
substance?

• Why does a drop of liquid evaporate until the vapor becomes sat-
urated and what has happened then?

• What drives the process forward when we burn a candle and when
magnesium burns in fireworks?

• How is it possible that there are spontaneous chemical reactions
that take up energy, i.e., it becomes cold when they occur?

We will find that there is a common denominator in all these differ-
ent examples, a quantity the discovery of which was one of the great
triumphs of thermodynamics. This quantity is called entropy and its
behavior determines whether a process can occur spontaneously or
not. Entropy is actually a rather abstract entity, which can appear puz-
zling, but we shall see that its existence and properties are very natu-
ral. A prerequisite to see this is that wementally “visualize” the course
of events that the molecules are involved in; that we with the help of
our imagination and thoughts “participate” together with them in a
world of which we do not have an everyday experience. So ... Welcome
to the world of molecules!

Goal

• An understanding of spontaneity, entropy, free energy, tempera-
ture, and other thermodynamic concepts from a molecular per-
spective.





chapter 2

Energy and entropy

2.1 In the world of molecules
Movements, interactions, and energy

Most of what we see and feel in our world, the macroscopic world, is
the result of what happens in the microscopic world – the world of
molecules. The molecules are so small that we cannot observe them
directly with our senses and what we perceive depends on the course
of events with many molecules simultaneously involved. For exam-
ple, when the wind blows, the force that one experiences on the body
originates frommolecules that collide against the body surface.1 Dur-
ing a gale, the force may be so great that one cannot stand still. When
there is no wind, equal forces act on either sides of the body due to
the air pressure,2 so the net force is zero and one is not aware of it.
The force on each side is, however, very large. At atmospheric pres-
sure, molecular collisions give rise to a force of 10 Ncm−2, meaning
that on each square centimeter there acts a force that corresponds to
the weight of about 1 kg. On the whole body surface of an adult, the
force corresponds to a weight of more than ten thousand kilograms!
Because the forces are so large, just a relatively small difference in the
collision intensity on either sides of the body is needed in order to
give a net force that is considerable, as in a gale. But why are we not
strongly compressed by the gas pressure when the forces on the body
are so great? The reason is that our tissues have an internal pressure
which precisely counteracts the external pressure.

Molecular collisions thus give rise to the gas pressure acting on
a surface. Every single collision gives a very small contribution to
the force on the surface, but because there is an enormous number

1A collision of a molecule with the body surface gives rise to a force that acts on
the body. It is like being hit by a ball, but on a much smaller scale. The force from
eachmolecular collision is tiny since molecules have very small masses.

2The pressure on the body surface is equal to the force per unit area due to col-
lisions by air molecules. The concept of pressure is treated in more detail in Section
4.1.

5
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of molecules that collide with the surface at about the same time,3 the
total force that the gas molecules inflict on the surface is very large.
The very fact that the molecules are so numerous also means that the
total force in practice does not vary noticeably over time, but is con-
stant at equilibrium – one cannot distinguish individual molecular
collisions and what is perceived is the average of the total force.

From a macroscopic perspective one does not perceive the move-
ments of the molecules in a gas at equilibrium. A nitrogen molecule
moves at room temperature with an average speed4 of about 500 me-
ters per second. However, it does not move 500m away from the start-
ing point during a second because it collides with other gas molecules
on the way. It moves in a tortuous zigzag path; at atmospheric pres-
sure, it moves on average less than 0.1micrometers in a straight line (a
few hundreds of molecular diameters) before it collides with another
molecule and changes direction. For similar reasons, we can under-
stand that when someone opens a bottle with a fragrant substance, it
takes time for the molecules to spread a few meters so one can smell
it from a distance. The time it takes depends on how the paths of the
scent molecules are affected by the molecules in the air. Furthermore,
the speed of the molecules depends on their mass. A heavy molecule
moves on average slower than a lighter one at a given temperature.

That a molecule moves forward at a certain speed (so-called trans-
lational motion) is only one kind of motion it might have. In addition
it rotates and vibrates, so-called rotational and vibrational motions.
On average, the molecules have faster motions when the temperature
is increased; that is, they move forward faster and rotate and vibrate
more violently. These movements are often called thermal motions.
The faster the motion, the higher the kinetic energy (the energy of
motion).

When two molecules are close together they affect each other
by forces that may be attractive or repulsive. In other words, the
molecules interact with each other. These forces may be due to elec-
trical charges on the molecules, so-called electrostatic interactions,
or be due to some other reasons. The fact that molecules have size,
i.e., they repel each other strongly at contact, is also due to a kind of

3At each square centimeter there are about 3 ·1023 collisions per second (for air at
25◦C and atmospheric pressure).

4In this book we distinguish between the concepts of speed and velocity. The ve-
locity has a direction while speed is the magnitude of the velocity (the length of the
velocity vector).
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interaction. In a liquid, where the molecules are close together, each
molecule interacts with many molecules simultaneously, while in a
gas at atmospheric pressure one can ignore the interactions for each
molecule, except at the moment it collides with another molecule.

The molecules collide and exchange energy with each other by in-
teractions all the time. Thereby the motion of each molecule is chang-
ing again and again in rapid succession. Normally both the speed and
direction of motion changes for the colliding molecules. The speed
of one molecule is thereby reduced while the speed of the other is
increased. The total energy of the molecules is, however, the same be-
fore, during, and after the energy exchange. This is in accordance with
an important law of nature that says that the sum of all the energy is
constant. This law is called the first law of thermodynamics, and it
means that energy can neither be destroyed nor created, but only con-
verted between different forms of energy. Apart from kinetic energy,
the molecules also have potential energy. The latter form of energy
has to do with the interactions between the molecules and between
the particles that constitute them (electrons and nuclei). If, for exam-
ple, the distance is increased between two particles that attract each
other, their potential energy will increase, just as gravity makes the
potential energy of a weight increase when one lifts the weight from
the surface of Earth. Likewise, the energy is increased when the dis-
tance is decreased between two repelling particles.

Energy is transformed continuously between the various forms
since molecules move and interact with each other.5 For example, if
the kinetic energy of the molecules is changed, their interaction en-
ergy will also be changed on average; moreover the energy of electrons
in the molecules changes in general. Therefore, both the kinetic and
potential energies of matter increase on average when one adds en-
ergy. Hence it is not only thermal motions that increase with increased
temperature but also, for example, the energy “inside” the molecules.

At each instant of time the molecules have different speeds and
different energies. For example, the nitrogen molecules in air have
different speeds: some move slowly, many have a higher speed, and
relatively few move very quickly. Most molecules have a speed fairly

5If, for example, two molecules move towards each other, an attraction between
them will cause an acceleration towards each other and, correspondingly, a repul-
sion will cause a reduction in speed. The strength of the attraction/repulsion is si-
multaneously changed because the interaction depends on the distance between the
molecules.



8 Thermodynamics Kept Simple – A Molecular Approach

Speed

R
el

at
iv

e 
fr

ac
ti

o
n

 o
f 

m
o
le

cu
le

s

Low temperature

Medium high temperature

High temperature

Figure 2.1 The distribution of molecular speeds at various temperatures for
molecules of the same mass. The curves show the proportion of molecules
that have a certain speed.

close to the average speed, which depends on the temperature and
on the mass of the molecules. Some typical distributions of speed of
the molecules at various temperatures are shown in Figure 2.1.6 We
see that at high temperatures there are many molecules that move
much faster than most molecules do at lower temperatures. Yet, at all
temperatures there are always some molecules that move slowly and
few that move very quickly, even if the number in the last category
is vanishingly small at low temperatures. When the temperature is
increased the distribution becomes wider, that is, the difference be-
comes greater between the low and high speeds that occur for many
molecules.

This distribution of molecular speed implies, of course, that the
kinetic energy of translational motion for the molecules is distributed
in a similar manner (this energy is proportional to the square of
the speed).7 Other forms of energy are also distributed among the
molecules so that some have low energy, many have higher energy,
and relatively few have a really high energy. The higher the tempera-
ture, the greater the fraction of molecules with high energy, but there

6This distribution of speeds of molecules is described in more detail in Appendix
B, which contains optional specialized material.

7The translational energy is εtr = mv2/2, where m is the mass and v the speed of
the molecule.
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are always some with relatively low energy. Most have an energy fairly
close to the average energy per molecule.

The fact that there are always a few molecules that have higher
energy than most of the others has important consequences. For ex-
ample, this makes it possible to dry laundry at low temperatures and
makes water dry up on the ground after rain. High temperature is,
in fact, not needed for molecules in a liquid to be released from the
surface of a liquid and hence vaporize. A liquid is “held together”
by attractive forces between the molecules and energy is therefore re-
quired to release a molecule from the attraction to the others. Since
somemolecules have higher energy than others, there are always a few
that have enough energy to break away from the attraction and turn
into gas. If the humidity is not too high, the evaporation will continue
in this manner and the laundry and street will eventually become dry.
The energy required is taken mainly from the surroundings that will
be somewhat colder. One can even dry laundry at freezing conditions
when the water in the wet laundry is frozen. Even in ice there are
some molecules that have sufficient energy to vaporize. One says that
the ice sublimates when it is vaporized. However, it will take consid-
erable time because there are very few molecules that vaporize at any
instant in time, but the laundry nevertheless becomes dry in the end.

Other examples of the importance of molecules with higher en-
ergy than the majority can be found among most chemical reactions.
There is usually an energy barrier that separates the reactants (the
starting substances) and the products; that is, there is an intermedi-
ate stage that must be crossed during the reaction and that has higher
energy than the reactants and products. When a collision takes place
between an energetic molecule and another molecule, the former can
supply the energy needed for the barrier to be crossed and a reaction
to occur. A reaction can thus occur even if most molecules have too
low energies to be able to pass the barrier. Sometimes the barrier is,
however, so high that it is very unlikely that there are molecules with
high enough energy to pass it. Then one may need to bring energy
from “outside” to give somemolecules sufficient energy, such as when
one ignites the gas from a Bunsen burner with a match. Once the gas
is burning, the energy needed to ignite more gas is supplied by the
gas flame that already exists and no energy is needed to be supplied
from outside.

Before concluding this section, we will introduce some useful
definitions. Henceforth, we will use the concept of a system. A system
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is simply the part of the universe that we are interested in; for exam-
ple a gas enclosed in a box, a reaction mixture in a flask, a biological
cell, or a bay of a lake.8 The total energy of a system is denoted U
and it is the sum of all kinetic energy (translational, vibrational, and
rotational energy) and potential energy (interactional energy) of the
molecules in the system. Since U is the energy content of the system
itself, it is known as the internal energy. The internal energy can be
changed by transferring energy to the system, whereby U increases,
or from the system, whereby U decreases. When energy is transferred
between two systems, one system gains equal energy as the other one
loses or vice versa, since energy can neither be destroyed nor created.
For an isolated system, energy and particles cannot pass the system
boundary. Therefore the internal energy of the system is constant, and
if no chemical reactions occur, the numbers of particles of various
species are also constant. For a closed system no particles can pass
the boundary, but energy can.

Matter exists in various states of aggregation: the most important
are the gas, liquid, and solid states. One speaks about various phases
of a substance; a phase is a form of matter that is uniform throughout
space in its physical state and chemical composition. In a solid phase
the molecules are immobile relative to each other – in a crystalline
solid the atoms/molecules are sitting on definite places in space rela-
tive to each other in a pattern that is repeated in a periodic manner (a
crystal lattice). The atoms/molecules can, however, vibrate while sit-
ting on these places. In a liquid phase the molecules are free to move
relative to each other, but they are held densely together by attractive
intermolecular interactions. Both a liquid and a solid assume a certain
finite volume. For a gas phase the molecules are not held together so
the gas fills the entire space that is available for it. For a thin gas the
interactions between the molecules are negligible except when they
collide with each other. This is the case for a gas at normal pressures
and temperatures (about one atmosphere and room temperature).

Key points

• The internal energy U of a system is the sum of potential and ki-
netic energy of the atoms and molecules in the system.

8The macroscopic systems we consider in this book are always at rest as a whole;
only parts of each system may move.
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• The energy of individual molecules is continuously transformed
among the different forms of kinetic and potential energies when
the molecules move, collide, and interact with each other.

• At any instant of time the molecules have different energies. Some
have low energy, many have higher energy, and relatively few have
very high energy. Most have an energy fairly close to the average
value per molecule of each species.

• Energy can neither be destroyed nor created. When energy is
transferred between two systems, one system gains equally as
much energy as the other one loses.

2.2 Self-evident matters?
Spreading and spontaneity

Take a box with a removable partition that separates a smaller part of
the volume from the rest. Let us enclose a gas inside this part, while
the rest of the box is empty as in Figure 2.2.

Figure 2.2 A box with a partition that prevents the particles in the left part
from reaching the right part, which is empty.

The gas molecules, which we for simplicity will call “particles,”
move freely within the smaller volume. Each particle is moving
straight forward until it collides with something – a wall or another
particle – which causes it to change direction, after which it again
moves in a straight line. All particles remain in the smaller volume,
since the collisions with the partition prevent them from reaching the
other part of the box.

If we now remove the partition, the particles will spread out in the
entire volume. Particles that move to the right are no longer hindered
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Figure 2.3 All particles are located in the left part of the box immediately
after the removal of the partition, but then they spread evenly throughout
the whole volume.

by the partition, so they will move into the other part of the volume.
After a while, the particles will be evenly distributed throughout the
entire volume (see Figure 2.3).

This is an example of a spontaneous process. To start with, just
after the removal of the partition, all particles are in the smaller vol-
ume. Without influence from us or anything else outside of the box,
they will spontaneously spread out in the entire volume. The initial
state is a gas with a high density in the left part of the box (and den-
sity zero in the right part) and the final state is a gas with a lower but
uniform density throughout the entire box.

We would be quite surprised if the opposite were to happen: if the
gas particles initially were evenly distributed throughout the volume
and all particles spontaneously gathered in the left part. Intuitively,
it is pretty obvious that such a course of events is very unlikely –
although in principle it is possible that it could happen. The more
particles we have in the box, the more unlikely it is that they would
spontaneously gather in the left part. If we had only two particles in
the box, we realize easily that it would actually be quite probable that
both would be in the left part at the same time. For three particles,
it would be less likely that all three would be so and when we in-
crease the particle number, it quickly becomes very unlikely that all
of them simultaneously would be there. We are normally interested in
systems with many particles and for such systems the probability is
vanishingly small that it would happen – in fact, it will never happen.

The reasoning is typical for a spontaneous process. The probabil-
ity that the process goes in one direction is much greater than that it
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a

b

Figure 2.4 (a) A box with one kind of particles at one side of a partition and
particles of another kind at the other side. The partition prevents the parti-
cles from reaching the opposite part of the box. (b) The two kinds of particles
are found in the respective part of the box immediately after the partition has
been removed, but then they spread evenly throughout the volume.

would go in the other direction. What are the odds for the process to
go one way or the other? This we shall see soon.

A similar example is when a partition initially delimits two differ-
ent kinds of particles, black on the left and white on the right. Parti-
cles of either kind move freely within each volume but are hampered
by the partition from reaching the other part of the volume as shown
in Figure 2.4a. If we remove the partition, white particles will move
into the left part and black into the right part. After a while, both
kinds of particles are distributed evenly throughout the entire vol-
ume (Figure 2.4b).

The end result is therefore that the two kinds of particles are
evenly mixed. In this case, the initial state is that the two gases are
separated and the final state is that they are completely mixed. The
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process is spontaneous. The probability for the reverse process to hap-
pen – that the white particles would spontaneously gather in the right
and the black of the left half – is vanishingly small. Note that the
mechanism behind the process is the same as in the previous exam-
ple: each gas fills the available volume, since nothing prevents it from
doing so.

2.3 Particle locations
Macroscopic and microscopic states

How then shall we be able to quantify the above? How do we ex-
press that it is more likely that all particles are uniformly distributed
throughout the volume rather than located within a limited area? Let
us take note of the places where the particles are at a given moment.
In the example with one kind of particles it may be as in Figure 2.5.

Figure 2.5 A snapshot picture of the particles in a box. We can observe on
which places the various particles are, i.e., what configuration they have.

We say that the particles have a particular configuration, i.e., that
they among themselves and relative to the walls are at certain loca-
tions. If we move one or more particles, we obtain a different configu-
ration. When time passes, the particles move and their configuration
changes; they go from one configuration to the next and then to the
next et cetera.

Let us for simplicity assume that it is an ideal gas, that is, a gas in
which the particles do not interact with each other. This means that
they do not feel each other’s presence no matter how close together
they are. They thereby behave as if they do not have any size, so-
called point particles. In a real gas the particles collide occasionally
with each other, but if the gas density is low enough, one can ignore
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Figure 2.6 A particle configuration is determined by taking note of in
which cells the particles are located. The position of the respective particle
within each cell does not matter.

this and as an approximation treat the gas as ideal. Thus we ignore
collisions and other interactions between the particles.9

We will now consider the various particle configurations that can
occur. If we have a configuration and a particle is moved a very small
distance, say an arbitrarily small fraction of an Ångström,10 should
we count this as a new configuration? In that case, the number of pos-
sible configurations would be infinitely many. The answer is, fortu-
nately, no. Quantum mechanics sets limits on whether it is mean-
ingful to distinguish between two different positions of a particle.
At a given temperature, the particles have a certain average speed,
and the Heisenberg uncertainty principle11 says that one cannot si-
multaneously determine the position and the velocity of a particle
with arbitrarily high accuracy. This means that it is not meaningful
to distinguish between particle positions that are very close to one
another.

9In an ideal gas it is nevertheless assumed that the molecules can exchange en-
ergy with each other, at least if sufficient time elapses. This really means that the
molecules, after all, have to collide now and then, but for an ideal gas one disregards
any other effect of the collisions.
101 Ångström (Å) = 10−10 m. This length unit was introduced by the Swedish physi-

cist Anders Jonas Ångström (1814–1874).
11The Heisenberg uncertainty principle is a result of quantum mechanics. It im-

plies that if the velocity of a particle in, say, the x direction is determined with an
accuracy ∆vx and its location simultaneously determined with a precision ∆x, then
the following holds: ∆vx ×∆x ≥ α > 0 , where α is a number of the order h/m, where h
is Planck’s constant and m is the mass of the particle. Both ∆x and ∆vx can hence not
be zero simultaneously, and if one is zero the other is infinitely large (the latter quan-
tity is then completely indeterminate). This means that one cannot exactly determine
both the position and the velocity of a particle.
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Let us therefore divide our volume in small imagined cells as in
Figure 2.6 and count all positions of a given particle inside a cell as
equivalent, that is, if we move a particle within a cell, this does not
count as a new configuration.

A closer analysis shows how large the cells should be,12 but the
precise value of the cell size is rather unimportant. As we shall see, the
main results are independent of this value. Note that the cells are not
real – the particles are unaware of the cell boundaries. Their purpose
is solely to help us to decide which configuration the particles have
at every moment. In Figure 2.7, we see some examples of different
configurations for our system.

An important fact is that every possible particle configuration
for an ideal gas is equally probable. This means that if we have 1000
possible configurations, the probability of observing each of them is
1/1000. By determining the number of configurations, we can there-
fore determine the probabilities that we need in the discussion about
distribution of particles that we began earlier.

How many configurations are there? Well, basically one just has
to draw them and then count how many there are. We demonstrate
this with a simple example with only six cells and start with a system
with only one particle (see Figure 2.8). The number of configurations
is denoted by Ω.

There are six different ways to place a particle in six cells and thus
there are six configurations of the system, Ω = 6. For two particles
there will be more configurations. If one particle is in the first cell,
the other particle can be in any of the six cells (see first row in Figure
2.9). The same applies if the first particle is in the second cell (see
second row of Figure 2.9), and so on. We allow two particles to be
in the same cell because they are point particles. Overall, we have
6× 6 = 36 possible configurations, that is, Ω = 62.

For three particles we have the following: If one particle is in the
first cell, the other two can assume 62 configurations, i.e., the con-
figurations we obtained for two particles (see Figure 2.10). The same
applies if the first particle is in the second cell, and so on. Overall, we
have 6× 62 = 216 possible configurations, Ω = 63.

We see that the number of configurations grows rapidly with the
number of particles, and it becomes impractical to draw them all.

12The cell size depends only on the particle mass and the temperature. At room
temperature, each side of a cell is a fraction of an Ångström.
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Figure 2.7 Some possible particle configurations. Each of these is equally
likely for an ideal gas.

Figure 2.8 A system with one particle and six cells has six possible config-
urations, Ω = 6.
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Figure 2.9 A system with two particles and six cells has 36 possible config-
urations, Ω = 62.

However, we can already see the pattern. Each new particle pro-
vides a factor of 6, so the number of configurations for N particles
is 6N .

If each cell has a volume ν (determined by the particle mass and
the temperature), the total volume V = 6ν in this case. In the general
case for a system with volume V , the number of cells is equal to V /ν.
If we have one particle there are therefore V /ν configurations, for two
particles (V /ν)2, and for N particles we have

Ω =
[
V

ν

]N

=
VN

νN
. (2.1)

This means that if we are interested in how the number of configura-
tions depends on the volume of the system, we can use the formula

Ω =KVN , (2.2)
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Figure 2.10 A system with three particles and six cells has 216 possible
configurations,Ω = 63.
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Figure 2.11 Sixty particles are trapped in the left part of a box. The parti-
tion prevents them from entering the right part, which is empty.

where K = 1/νN is a constant13 that is independent of the volume
V . A doubling of the volume would therefore lead to Ω increasing
from KVN to K(2V )N . Since K(2V )N = 2N ×KVN , we see that Ω has
increased by a factor of 2N .

In the same manner, we see that when we change the volume from
Vbefore to Vafter the number of configurations Ω will increase from
K(Vbefore)N to K(Vafter)N , and therefore we have

Ωafter

Ωbefore
=
K(Vafter)N

K(Vbefore)N
,

which we can write as

Ωafter =

[

Vafter

Vbefore

]N

Ωbefore. (2.3)

Thus, Ω increases by a factor [Vafter/Vbefore]N . Note that this factor is
independent of the volume ν of the cells. The conclusion is that when
the volume increases by a factor F = Vafter/Vbefore, then Ω increases
by a factor F N .

Now, we have learned enough to be able to make a calculation for
our first example. Let us examine the box with a partition that has

13This result applies if the particles are distinguishable, for example if one is black,
one is white, and so on. If the particles are indistinguishable from each other (which
applies to molecules of the same kind) the constant K becomes slightly different, but
it is still independent of the volume provided V is so large that the number of cells
greatly exceeds the number of particles. Apart from the value of K the formula is still
valid. It is also valid as an excellent approximation for particles with size (i.e., that
are not point particles as assumed earlier) provided that the volume V is so large that
the probability is small for two particles to be near each other.
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Figure 2.12 The particles spread throughout the volume when the partition
is removed, i.e., the gas expands spontaneously.

particles only on one side as shown in Figure 2.2. We first divide the
system into cells (see Figure 2.11). When we remove the partition, we
increase the available volume for the particles by a factor of 4.4 in this
example. Since we have 60 particles, the number of possible particle
configurations for the system will increase by a factor

4.4N = 4.460 ≈ 4 · 1038

= 400000000000000000000000000000000000000 (!).

Already for as few particles as this, Ω increases by a very large
number.14 If we had 1 mole of particles in our system and the vol-
ume increased by a factor of 4.4, Ω would increase by a factor of
(4.4)6·10

23 ≈ 104·10
23
, that is, one followed by 4 · 1023 zeros, which is

an overwhelmingly huge number.
Thus, the system received a very large number of new possible

configurations when we increased the volume. The initial configura-
tions, that is, when all particles are located in the left portion of the
volume, are still available, and each of them is as likely as any other
configuration. However, they are very few compared to all the others,
so the chance that the particles would return to any of the original
configurations in our example is 1 in 4 · 1038 – in other words ex-
tremely small. For one mole of particles the probability is in practice
absolutely nonexistent.

14This number is about a billion times larger than the estimated age of the universe
measured in picoseconds (10−12 s). During a picosecond two small molecules like N2
would just have had time to pass each other in their motions at room temperature.
Hence, an extremely tiny fraction of all new possibilities after the volume change will
have had time to be explored during this age.
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If we watched the system after we had removed the partition, we
would see that the particles eventually become spread throughout the
volume, and we would thus see a sequence of particle configurations
that more and more fill the volume uniformly as in Figure 2.12. The
reason for this is that there are enormously many more configura-
tions where the particles are spread out evenly, than there are con-
figurations where many of them are gathered in a small region. It is
therefore very likely that the particles are spread evenly throughout
the volume. When this has occurred, deviations from uniform distri-
bution are unlikely.

For a macroscopic system, the number of configurations with par-
ticles spread evenly is tremendously larger than those with particles
unevenly distributed. When the particles fill the entire volume, even
small deviations from a uniform distribution are very unlikely.

What we perceive as a spontaneous process – that the particles
at the beginning are gathered in one part and then spread out into
the entire volume – is thus a natural consequence of the fact that it
is vastly more likely that the particles are evenly distributed. We go
from an initial state with relatively few configurations Ωbefore (before
we remove the partition) to a state with many more configurations
Ωafter. The spontaneous process and the increase of Ω accordingly
accompany each other. WhenΩ for the final state is larger than for the
initial state, the process goes spontaneously in this direction. We can
express this as the statement: Ω increases for a spontaneous process.15

This is a very important observation to which we shall return.
Let us consider the same process from the perspective of an in-

dividual particle. Since the particle does not interact with the other
particles, it is completely “unaware” of their existence. It behaves as
if it were all alone in the box and moves forward in a straight line until
it collides with a wall, where it changes direction.16 For the particle,
it does not matter at all if it is in a region with many particles or just
a few. It just moves forward, “following its nose,” until it hits a wall,
completely unconcerned about the environment in general. Thus, it
is not so that the individual particles try to avoid being in areas with

15Thermodynamics in its classic form is concerned only with equilibrium states
and not really with the transition processes between them. Both the initial and final
states that we are dealing with here are equilibrium states and the increase ofΩ for a
spontaneous process in this context means that Ω for the macroscopic state after the
process is greater than for the initial macroscopic state.
16In a real gas, the particles also collide with each other (see also footnote 9).
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many particles, but the end result is still that they spread out evenly
in the whole volume for reasons of probability. The spontaneous pro-
cess where particles spread andΩ is increased, is thus a property of the
system as a whole and not of the individual particles, i.e., an example
of how the whole can be more than the sum of its parts.

The end result – that the particle density (the number of particles
per unit volume) is the same throughout the volume – is the macro-
scopic equilibrium state of the system. At equilibrium the macroscopic
properties of the system do not change anymore. The individual par-
ticles of course continue to move, so the particle configuration of the
system changes all the time. Although the system goes from one mi-
croscopic state (configuration) to another and then to another and so
on in an uninterrupted sequence, it seems to us as if nothing changes
macroscopically. This is because the overwhelming majority of these
microscopic states are virtually identical from amacroscopic perspec-
tive, they are macroscopically indistinguishable. At the macroscopic
level, we do not see the individual particles, but we perceive only
the average of the microscopic quantities. For example, the particle
density is macroscopically constant throughout the box, while at the
microscopic level, at every moment of time the density is zero every-
where except where a particle is currently located – a highly discon-
tinuous function.

A macroscopic (thermodynamic) equilibrium thus corresponds to
a huge number of microscopic states (“microstates”), and most ther-
modynamic properties (such as particle density, number of particles,
energy, pressure) are averages of microscopic quantities. This applies
in general.

Key points

• Each macroscopic (thermodynamic) state corresponds to a huge
number of microstates (in this case the particle configurations)
that the system is continually switching between.

• The equilibrium state is the most probable macroscopic state and
corresponds to by far the largest number of microstates.

• A spontaneous process from one macroscopic state to another oc-
curs when the number of available microstates, Ω, of the latter
state is greater than of the former, that is, Ω increases for a sponta-
neous process.
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• When the volume of an ideal gas is increased from Vbefore to
Vafter, the number of particle configurations increases by a factor
[Vafter/Vbefore]N , where N is the number of particles.

2.4 Two independent systems
The concept of entropy

We have seen that the number of particle configurations plays a very
significant role when we consider the expansion of a gas. The number
of configurations is the number of different arrangements of particle
positions within a given volume, that is, the number of different pos-
sibilities that the system has access to at the microscopic level. Gener-
ally, we let Ω denote the number of different microscopic alternatives
(microstates) that are available for the system under the prevailing
conditions. Various particle configurations are just one kind of possi-
ble alternatives (more to come later).

System A System B

 Microstates: 1, 2, 3, 4  Microstates: 1, 2, 3

ΩA = 4 ΩB = 3

Figure 2.13 Two systems A and B.

Let us consider two systems A and B. Say that system A has four
microstates available (ΩA = 4) and B has three such states available
(ΩB = 3) (see Figure 2.13). Let us now consider the two systems A and
B together as a system AB; we thus combine the systems into a single
system without modifying either A or B (see Figure 2.14).

Howmany microstates does the combined system AB have? If sys-
tem A is in state 1, system B can be in either state 1, 2, or 3 (see first
line in Figure 2.15). Similarly, if system A is in state 2, system B can
be in state 1, 2, or 3, and so on. In total, therefore, the system AB has
4× 3 = 12 available states:

ΩAB =ΩA ×ΩB. (2.4)
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Figure 2.14 The combined system AB.
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Figure 2.15 The combined system AB has ΩAB = 4× 3 states.

We can easily realize that this relationship applies generally: the num-
ber of microstates of a combined system is the product of the number
of microstates of the constituent subsystems.17

The energy of the combined system AB is, of course, the sum18 of
the energy for A and for B:

UAB =UA +UB (2.5)

Here we see a difference. The energy U is additive, while Ω is mul-
tiplicative. As we have seen, Ω plays an important role for instance
during a spontaneous process, and it is, in fact, quite impractical to

17This is strictly true provided the subsystems are unchanged when being com-
bined.
18This is strictly true provided the total energy is unchanged when the systems are

combined, such as in this case when each subsystem is unchanged.
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have a quantity that is multiplicative. But there is a simple solution to
this. If we follow Boltzmann19 and define entropy S as20

S = kB lnΩ (2.6)

where kB is a constant, we obtain a quantity that is additive

SAB = kB lnΩAB = kB ln[ΩAΩB]

= kB lnΩA + kB lnΩB = SA + SB,

that is,

SAB = SA + SB. (2.7)

Thereby, the entropy of the combined system AB is the sum of the
entropy of A and B. Note that this does not really change anything
of substance. If we know how Ω behaves, we also know how lnΩ
behaves. If Ω increases during a spontaneous process, lnΩ increases
too. And the same is true if we multiply lnΩ with a positive constant
kB: the entropy kB lnΩ also increases. It is simply more convenient to
work with S than with Ω.

The constant kB is called Boltzmann’s constant and, for historical
reasons, its value is 1.38 · 10–23 JK−1 (where J stands for Joule and K
for Kelvin). This is related to what temperature scale one wants to use,
and because in science one has chosen the Kelvin scale, which in turn
is related to the Celsius (centigrade) scale,21,22 one can show that the
constant has this value. The unit of entropy is the same as the unit for
kB since lnΩ is a dimensionless number.

19Ludwig Boltzmann, an Austrian scientist who lived 1844–1906, made major sci-
entific contributions concerning, among other things, the molecular interpretation of
thermodynamics. He found the relationship between the thermodynamic concept of
entropy and the number of microstates, S = kB lnΩ.
20The concept of entropy was introduced in classical thermodynamics much earlier

than Boltzmann’s expression for it. For all practical purposes, Boltzmann’s entropy for
a macroscopic system agrees with the classical entropy. In Section 4.3 we will discuss
some aspects of entropy in classical thermodynamics.
21The temperature scales are related such that if Θ is the temperature in ◦C and T

is the temperature in Kelvin (K), T /K =Θ/◦C+273.15.
22The Celsius scale was introduced by Anders Celsius (1701–1744), a Swedish

astronomer who also worked with geographical and meteorological measurements.
Originally his thermometer scale had 0 at the boiling point for water and 100 at the
freezing point. The scale was later reversed to its present form.
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We saw earlier that Ω for an ideal gas depends on the volume V
according to Equation (2.3) when we change the volume from Vbefore
to Vafter. From this we can obtain an expression for the change in en-
tropy during a volume change. If we take the logarithm of both sides
of Equation (2.3) we obtain

lnΩafter = ln

[

Vafter

Vbefore

]N

+ lnΩbefore = N ln
Vafter

Vbefore
+ lnΩbefore,

where we have used the logarithm rule lnab = b lna. Since the entropy
change ∆S is given by

∆S = Safter − Sbefore = kB lnΩafter − kB lnΩbefore

we finally obtain the result23

∆S = NkB ln
Vafter

Vbefore
= nR ln

Vafter

Vbefore
, (2.8)

where n = N/NAv is the number of moles, NAv is the Avogadro con-
stant and R = NAvkB is called the universal gas constant.24 Notice
how much nicer it is to have a factor of N in the expression for ∆S
than having the exponent N in the expression (2.3) for Ω. If we dou-
ble the number of particles ∆S = Safter − Sbefore will be doubled, while
Ωafter/Ωbefore would be raised to the second power. Certainly it is
more convenient to deal with additive functions than with multiplica-
tive ones!

The relation (2.8) between entropy and volume changes of an ideal
gas is an example of a relationship that has major implications for
chemistry and physics. Similar relationships also exist for other kinds
of systems. Equation (2.8) gives the change in configurational en-
tropy, Sconf, for an ideal gas, that is, the entropy that depends on
the number of configurations available for the particles. We therefore
write

∆Sconf =NkB ln
Vafter

Vbefore
. (2.9)

23We here assume that only the volume is changed. If, for example, the energy is
also changed, there are additional contributions to ∆S as will be explained later.
24The gas constant R, which can be defined in this way, also occurs in the ideal gas

law which we shall deal with later.
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Key points

• Entropy, S , is defined from the number of available microstates,
Ω, by S = kB lnΩ, where kB is Boltzmann’s constant.

• WhileΩ is multiplicative,ΩAB =ΩA×ΩB, the entropy S is additive
SAB = SA + SB.

• When the volume of an ideal gas is increased from Vbefore to Vafter,
the configurational entropy increases by the amount

∆Sconf =NkB ln(Vafter/Vbefore) = nR ln(Vafter/Vbefore),

where N is the number of particles, n the number of moles and R
is the universal gas constant (R =NAvkB).

2.5 Gas diffusion
Mixing gases

Let us now return to our example where two gases are mixed. We di-
vide the system into cells (see Figure 2.16). There are 32 black and 32
white particles on either side of the partition. If the white particles
haveΩwhite configurations and the black ones haveΩblack, this means
there are a total of Ωwhite ×Ωblack configurations for the entire sys-
tem. When we remove the wall, the available volume is doubled for
both the black and the white particles, Vafter/Vbefore = 2. This means
that the number of configurations for the whites increases by a fac-
tor of 232 and for the blacks also by a factor of 232. The number of
configurations for the entire system therefore increases by a factor of
232 × 232 ≈ 2 · 1019.

Figure 2.16 The system in Figure 2.4a is divided into imagined cells. The
partition divides the box into two equal halves.
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a

c

b

Figure 2.17 The two particle types spread throughout the entire volume in
Figure (a)→ (c).

We will see a process where the particles are spread over the en-
tire volume (Figure 2.17a,b), and finally the particles are evenly dis-
tributed (Figure 2.17c). The probability that the system would then
be found in any configuration among the original ones is 1 out of
2 · 1019, so it is very unlikely that the system returns to its origi-
nal particle distribution. The number of configurations with particles
evenly distributed throughout the volume constitutes an overwhelm-
ing majority.

Once again we see that the mere fact that Ω has radically in-
creased, means that the process is spontaneous. Of course, the entropy
S = kB lnΩ then also has increased. We have

∆S = kB ln(2 · 1019) ≈ 44kB,

so ∆S/kB is a rather small number (we here have a small system with
only 64 particles). Note that while Ω increases by a huge amount, S
increases moderately, which is a consequence of the fact that a log-
arithm, ln(x), is a very slowly increasing function of x for large x.
The logarithm in Equation (2.6) implies that S is of a convenient
magnitude.
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Alternatively, we can obtain the result 44kB by using Equa-
tion (2.8). The entropy increase for each kind of particle is ∆S =
NkB ln[Vafter/Vbefore] = 32kB ln2 ≈ 22kB. The total entropy increase is
the sum of the contributions for both kinds, that is, 44kB.

Like in the gas expansion, each individual particle of the ideal gas
behaves as if it were alone in the box. It has absolutely no “desire”
to mix with particles of the other kind, so that the system becomes
homogeneous. Each particle simplymoves straight ahead in an utterly
selfish manner, without caring the least about the other particles. The
particles move “independently” of each other.

It is often said that the system becomes mixed because of the gain
in “entropy of mixing,” that is, the entropy is higher for the final
state when the two particle types are mixed compared to the initial
state when they were separated. Note, however, that the increase in
entropy is not the reasonwhy the system becomesmixed. This increase
is merely the result of the fact thatΩ increases when the available vol-
ume for the different particle types is increased and that the system
thereby goes to a more probable macroscopic state where the gases
have been mixed. The reason why the system becomes mixed is that
the particles can move over the entire volume. They do not care what
happens to the entropy of the system – in fact they do not even know
of it because each particle of the ideal gas perceives it as if it were
alone in the box, while entropy describes the entire collection of par-
ticles.

The increase in entropy during mixing is an example of what
is usually called entropy production – that entropy is “generated”
within the system. Note the relationship between the direction of the
process and the production of entropy: The process simply goes in
the direction that is most probable, and this fact is expressed as an
entropy increase.

Key points

• Mixing of two ideal gases occurs because the macroscopic state
with mixed gases is much more probable (has tremendously more
microstates) than the state with separated gases. The increase in
entropy (entropy production) can be seen as a result of this fact.
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2.6 Dispersion of energy
Energy distribution and entropy

We have seen how particles spread over the available volume,
whereby the system in principle utilizes all possible particle config-
urations, that is, all possible microstates of the system. Each macro-
scopic state corresponds to a large number of microstates, which are
all practically equal when viewed from the macroscopic perspective
(but different from the microscopic perspective). The thermodynamic
equilibrium state is the macroscopic state that corresponds to the
overwhelmingly largest number of microstates. It is most likely that
the system “goes to” and “stays with” them, because they are so many
compared to all other microstates. The spontaneous process towards
equilibrium is a manifestation of the fact that the system does not stay
very long in macroscopic states that are improbable (unless prevented
from leaving them), but sooner or later instead goes to the most prob-
able state, that is, the equilibrium state.

To describe the state of the system at the microscopic level, the
microstate, it is not sufficient to specify the particle positions (the
configuration), but one must, among other things, also specify their
energies and, in classical physics, their velocities. The microstate of
a system generally constitutes a description of the system that is as
complete as possible on the microscopic level.

We shall now study how the energy of a system can be spread
out (dispersed) among the various molecules and we will see that
the principles that apply in this case are similar to the principles of
spreading of particle positions. As we know from theory of atoms and
molecules/quantum physics, the energy of an atom or a molecule is
quantized, that is, the energy can only assume a set of discrete values.
This applies to any system that is enclosed in a finite volume, such
as “the particle in a box” (a particle enclosed in a box), or otherwise
has some spatial limitation, such as particles in a potential well (a re-
gion of low potential energy) like electrons moving around an atomic
nucleus.25 The various states of a molecule are called quantum states.

The quantum state with the lowest energy is called the ground
state, the next quantum state of higher energy is referred to as the first
excited state et cetera. (To excite a particle means to raise its energy
to a higher level.) We represent each quantum state of a particle with

25A further important example is a rotating molecule whose atoms move around
on closed surfaces (spherical surfaces surrounding the center of rotation).



32 Thermodynamics Kept Simple – A Molecular Approach

gr
e

n
E

y

a b

Figure 2.18 (a) Particle in its ground state (the lowest possible energy). (b)
Particle in its second excited quantum state, which has a higher energy.

a horizontal bar and mark the present state of the particle as a thick
line (Figure 2.18). To begin with, we assume for simplicity that there is
only one quantum state at each energy level and that the gap between
two consecutive levels is equally large everywhere.

When one has a system with many particles, it is of interest to see
how the energy can be distributed between them. The different mi-
crostates of the system have different distributions of energy among
the particles. In this case, when the gap between the levels are equal,
one can find all possible distributions in a simple manner. One can
then imagine that one has access to energy quantities of a certain
amount, “energy packets,” which can be transferred between the par-
ticles. This amount is equal to the energy difference between adjacent
levels, that is, the size of the gap. The energy contents of a molecule
can then be thought of as the number of energy packets that it holds,
so a content of zero packets represents the ground state, one packet
the first excited quantum state, two packets the second excited state,
et cetera.

This makes it pretty easy to determine the ways in which energy
can be distributed between the molecules and how many different
ways there are. Basically it is just a matter of drawing all possible ways
to distribute packets between particles and then to count them, just
as we did when we were studying how particles could be distributed
among the cells in Figures 2.8 to 2.10. However, all energy packets are
exactly the same so the only thing that counts is how many packets a
particle holds (that is, how much energy the particle has) – not which
particular packets it has.26

26The problem of distributing particles of the same kind between the imaginary
cells that we studied in Section 2.3, is actually of a similar nature since particles of
the same kind in a gas cannot be distinguished from each other (see footnote 13).
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6 0 0 0

Figure 2.19 The initial state for the system with four particles.

Let us study a system of four particles that are placed next to each
other.27 We assume that they are isolated from the outside world. The
first particle is initially in its sixth excited quantum state (that is,
it holds “six energy packets”), while the others are in their ground
state (Figure 2.19). The particles interact with each other so they will
exchange energy28 and they will continue doing this again and again
as time passes. Thus particle number two can receive all the energy
(all packets) from particle number one, which thereby goes down to
its ground state, or it may be particle three or four that receives all of
the energy, as illustrated in Figure 2.20. These four possibilities (the
initial state and the other three) are four different microstates of the
whole system and they are equally probable.

0 6 0 0 0 0 6 0 0 0 0 6

Figure 2.20 It is equally likely that any of the particles is in its sixth excited
quantum state.

In addition to these four, there are many more possibilities. Each
particle can exchange a portion of its energy with another particle, for
instance that the energy of a particle is lowered two levels (it releases
two packets) while another particle increases the energy by two levels
(receiving two packets) while the remaining particles remain in their

27Thereby, we assume that they are distinguishable from each other.
28However, we assume for simplicity that the particles interact so weakly that they

do not affect each other’s energy spectrum (that is, the locations of the quantum states
along the energy axis). The exchange of energy solely changes which quantum state
that is occupied for each particle.



34 Thermodynamics Kept Simple – A Molecular Approach

4 2 0 0 2 0 4 0

Figure 2.21 Some of the possible energy distributions where a particle is in
its fourth and another in its second excited quantum state.

ground state. The first particle is thereby changed from its sixth to
fourth excited quantum state, while the other goes from its ground
state to its second excited state. Two of these possibilities are shown
in Figure 2.21 and there are 10 more possibilities of the same kind.
(Exercise: Draw them on a piece of paper.)

The only limitation that exists here is that the total energy U for
all four particles must be the same all the time (because the system
is isolated from and cannot exchange energy with the outside world).
In our example, we imagine that there are six packets to distribute.
Thus, for example, a particle can be in its third excited state (having
three packets), another in its second (having two packets), a third one
in its first (having one packet), and fourth being in its ground state.
All of these possible microstates of the whole system are depicted in
Figure 2.22.

If one examines all possible energy distributions for the four parti-
cles, then one finds that there are a total of 84 different combinations,
that is, 84 microstates for the entire system which have the same to-
tal energy as the initial state. We thus have Ω = 84. All of these mi-
crostates are equally probable.29 In only four of these microstates one
of the particles has all the energy, while many more microstates have
energy distributed over more particles. The most numerous are those
distributions where the energy is about evenly distributed over all
particles.

While time passes, the system will pass from one microstate to the
next and the next, and so on. Therefore, the system will leave the ini-
tial state (where all the energy is contained in particle number one)
and the energy will be distributed over all molecules. The microstates
where the energy is about evenly distributed over all particles are

29This follows from a fundamental postulate of statistical mechanics.
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3 2 1 0 3 2 0 1 3 1 2 0 3 0 2 1

Figure 2.22 All microstates of a system where one particle is in the third,
one in the second, one in the first excited quantum state, and one is in the
ground state. The numbers at the top refer to the states depicted in the first
line.

most numerous, so it is most likely to find the system with the en-
ergy evenly dispersed.

It is easy to see that the number of possible microstates increases
rapidly with the number of particles, since more particles means a lot
more ways to distribute the energy (provided that there is enough en-
ergy to distribute). For a system with many particles, the microstates
with evenly distributed energy are considerably more numerous than
the states where a significant portion of the energy is concentrated to
one or a few particles. For a macroscopic system, the number of mi-
crostates with uniformly distributed energy is enormously large com-
pared to the other microstates.

To make it easier for the reader to understand the consequences
of these circumstances, a popular-science analogy is presented in Ap-
pendix A. The main purpose of this analogy is to illustrate sponta-
neous dispersion of energy and to prepare for the discussion of the
concept of temperature as treated in the next section. The metaphor
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used in the appendix is that one has coins (corresponding to our en-
ergy packets) that are spread among humans (corresponding to par-
ticles) through their exchange of money between themselves (corre-
sponding to the energy exchange upon interaction). The reader is rec-
ommended to study Appendix A, in particular parts A.1 and A.2, at
this point.

For a molecular system where we have excited (raised) one or a
few molecules to higher quantum states, for instance by heating one
end of a solid body, then eventually the added energy will spread to
all molecules. Since the number of microstates with uniformly dis-
tributed energy are immensely more numerous than the states where
the energy is contained in a few molecules, it is very unlikely that
the system will return to the initial condition. Thus we will observe a
spontaneous process, where the system goes from an initial condition
with small value ofΩ to a final macroscopic state with a large value of
Ω, which means that S = kB lnΩ will increase. The added energy will
spread from the heated end and will become uniformly distributed
over the entire system. This is an example of heat conduction.

Note the similarity to the distribution of particle positions over the
available volume, which we discussed earlier. Themost likely scenario
was that the particle positions became evenly distributed, since such
configurations (microstates) are by far the most numerous ones. The
common denominator for particle spreading and energy dispersion is
that we will observe that the system is changing in the direction that is
most probable, that is, in the direction of increasing Ω and therefore
increasing S . Although the physical processes are quite different – the
distribution of particles over volume and distribution of energy over
particles – the entropy plays exactly the same role. Entropy is thus
an important concept, which in a handy manner summarizes what is
common for the two types of processes.

In our simple system of four particles, we had 84 different mi-
crostates and we noted that the number of states increases rapidly
with the number of particles (provided there is sufficient energy to
distribute). Furthermore, the number of possible states is significantly
greater if we have more than one quantum state at each energy level,
which is the normal situation (for example we have three p orbitals
with the same energy in the hydrogen atom – or six if we also con-
sider the electron spin). We can realize this from Figure 2.23, where
we show examples of some microstates for a system with four parti-
cles.We have chosen to show four of the microstates which differ since
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Figure 2.23 A more realistic example in which each particle has several
quantum states at each energy level. Each particle can be in any of its quan-
tum states in an energy level, which are considered as distinct possibilities
that all count. Here we show just four of the possibilities – they have the
first particle in different quantum states at the fourth energy level above the
ground state.

particle number one is in different quantum states with the same en-
ergy (in the fourth energy level above the ground state). Moreover,
molecule two can be in any of its quantum states on the second energy
level, and so on. All these microstates correspond to a single state in
our previous case, where each molecule had only one quantum state
per energy level. One can see that the number of combinations in-
creases a lot compared to the previous case.

Another difference between our example and actual molecules is
that the gap between adjacent energy levels of the molecules is not
equal everywhere, but instead the gap varies from energy level to en-
ergy level.30 This means that the amount of energy that is available for

30Our example has nevertheless physical relevance since it corresponds to the
energy levels of a so-called harmonic oscillator, such as a particle oscillating in a
parabolic potential well or the vibration of two covalently bonded atoms at low ener-
gies (near the bottom of its potential well, which to a good approximation is parabolic
there).
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the molecules to exchange no longer can be illustrated by a number
of equal “energy packets,” but the exchanged energy will rather come
in a variety of sizes. This makes it more complicated to figure out the
number of different distributions of energy between the molecules,
but the principles are the same and the consequences as well. In this
book, therefore, we will not worry about these details.31

It is easy to see that the number of microstates becomes larger if
we increase the energy of the system by exciting it to higher energy
levels – it is simply so that the number of possibilities to distribute
the energy becomes larger if we have more to distribute. Thus, Ω in-
creases when U increases,

dΩ

dU
> 0 (2.10)

and therefore S = kB lnΩ increases, that is, we have32

dS

dU
> 0. (2.11)

As we saw earlier, energy can be added to or removed from one part
of a system to another by heat conduction. This means that one part
of the system is excited to higher energy levels, while the other part
is de-excited (decreased) to lower ones. If the total entropy then in-
creases, this is a spontaneous process. The same applies to energy
transfer by conduction between two different systems. To add energy
to a system by exciting it to higher energy levels (without changing
anything else) is an example of what is called addition of “heat.” The
amount of energy transferred to a system then is called heat. As will
be discussed in the next section, one can add energy in the form of
heat by bringing the system into contact with a warmer body, such as
a hotplate. Similarly, one can transfer heat from a system by bringing
it in contact with a colder object. In Chapter 4 of the book, we shall see
that there are ways to change the energy of a system without transfer
of heat, for example by doing work that is performed by compressing
or expanding the system (a reduction or an increase of its volume).33

31The case of a monatomic ideal gas is, however, treated in detail in Appendix E.
32The volume and the number of particles are here assumed to be constant, so in a

mathematical sense we actually have (∂S/∂U )V ,N > 0, where the subscript indicates
which variables are held constant during the partial differentiation.
33When the volume of the system is changed the energy levels are changed, which

does not happen during pure heat transfer when only excitations and de-excitations
occur.
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We will return to heat and work in Section 4.2, where we give the
complete definitions of these concepts.

Key points

• Dispersion of energy (added as heat) in a body happens because
there exist tremendously many more ways to distribute energy
over the quantum states of the molecules when the energy is
evenly spread over all molecules compared to when the energy
is unevenly distributed over the molecules (that is, there are many
more microstates of the entire system in the former case compared
to the latter). The spread of energy accordingly occurs in the di-
rection that is most probable and that corresponds to an increase
in entropy.

• The number of ways to distribute the energy (number of mi-
crostates Ω) increases rapidly as the energy of a system increases.
We accordingly have dΩ/dU > 0 and hence dS/dU > 0.

2.7 Hotter and colder
The concept of temperature; the second and third laws of

thermodynamics

We saw earlier that energy which is supplied to a part of a system, is
spread over all molecules in the entire system. It is very unlikely that
the energy would remain in the part of the systemwhere it was added.
The spread of energy over all molecules is much more probable. As
we have seen, the reason for this is that the number of microstates
with uniformly distributed energy over all molecules is much larger
than the number of microstates with unevenly distributed energy.
In the macroscopic (thermodynamic) equilibrium state, which is the
most likely macroscopic state with an overwhelming majority of mi-
crostates, the energy is thus evenly distributed.

In our discussion, we assumed (without saying it) that all
molecules were of the same kind. The question now is what happens if
we have molecules of different kinds, for example if we have a body A
and a body B of different materials and we bring them together, so that
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energy can be transferred as heat between them.34 Will the energy be
evenly distributed over all molecules of A and B at equilibrium? The
answer is generally no. What then is it that characterizes equilibrium?
From our everyday experience we know that the temperature of A and
B are equalized, so that both bodies have the same temperature at
equilibrium (thermal equilibrium). The energy per molecule in A is,
however, generally different than in B; for example, molecules of a
gas do not have the same energy as the molecules in a solid body even
if the temperature is the same. But, then, what is temperature? And
what are its properties?

If we, when we bring systems A and B together, get a spontaneous
heat transfer from A to B, we say that A has a higher temperature than
B, while A has a lower temperature than B if the reverse occurs. If we
do not get any spontaneous transfer of heat, we say that the bodies
have the same temperature (note that we are talking about a net trans-
fer of heat; at equilibrium the heat flow from B to A is as large as from
A to B). Without specifying what temperature really is, we can use
these considerations as a definition of what we mean by higher, lower,
and equal temperatures.

Our reasoning still applies, namely that the entire system (AB) at
equilibrium has a macroscopic energy distribution that corresponds
to by far the greatest number of microstates. Such an energy dis-
tribution is obviously the most likely, which means that a system
develops in the direction of an increased Ω and thus increased en-
tropy,35 S = kB lnΩ. Equilibrium in the combined system AB thus
corresponds to the macroscopic energy distribution that provides the
greatest number of microstates ΩAB and hence maximum entropy
SAB. (We assume that system AB is isolated from the rest of the world,

34For both A and B it is assumed that the volume and the number of particles are
constant during the energy transfer.
35The number of microstates for the macroscopic energy distribution correspond-

ing to equilibrium is enormously greater than that of all other energy distributions.
Although Ω is actually the total number of microstates for all possible energy dis-
tributions, one can therefore entirely disregard all macroscopic distributions except
the equilibriumdistribution in the calculation of S = kB lnΩ for the final macroscopic
state of the system. Furthermore, note that the initial macroscopic energy distribution
between A and B (that is, the distribution before we bring A and B in contact) is still
possible when we allow heat transfer between A and B – it is one of the possibilities
for AB. However, the number of microstates belonging to this initial distribution is so
small compared to the final equilibrium one, that the probability for this possibility
is entirely negligible.
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Figure 2.24 Spontaneous heat transfer between two systems A and B. The
system that delivers heat to the other has the highest temperature by defini-
tion.

so that energy exchange only occurs between A and B.) We shall now
examine what this leads to. The reader is advised to read the whole of
Appendix A including part A.3 as a preparation.

Let us assume that body A is colder than body B so that heat trans-
fer occurs spontaneously from B to A when the bodies are brought
together (Figure 2.24). We let the bodies be in contact for a short time
only, so that the net amount of heat, q, transferred to A from B is small.
Body A takes up energy q and B gives away the same amount. Thus,
the energy change for A is positive, ∆UA > 0, while the change for B
is negative, ∆UB < 0.36 Since Ω increases as U increases (dΩ/dU > 0
according to Equation (2.10)),ΩA will increase. For B the energy is re-
duced and therefore ΩB will decrease. In other words, the number of
ways to distribute energy microscopically increases/decreases as the
amount of energy to distribute increases/decreases.

Since the heat transfer from B to A is a spontaneous process, the
entropy of the entire system, SAB, must increase. When energy goes
from B to A we have seen that ΩB decreases while ΩA increases and
hence SB decreases and SA increases. We have SAB = SA + SB and
because SAB increases it follows that SA must increase by a larger
amount than what SB decreases, that is, |∆SA| > |∆SB|.37

This is illustrated in Figure 2.25, which shows the entropy for sys-
tems A and B as a function of energy, S = S(U). In the figure, ① is the
initial state and ② is the final state (note the placement of these sym-
bols in Figure 2.25 for systems A and B, respectively). The arrow for
∆SA is pointing upward (increased entropy), and for ∆SB downward

36If A receives the heat q from B, we have ∆UA = q and ∆UB = −q.
37When ∆SA is a positive number, the entropy change of the entire system ∆SAB =

∆SA + ∆SB is positive provided the negative number ∆SB has a smaller magnitude
than ∆SA.
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SA

UAq

∆SA

SB

UBq

∆SB

Figure 2.25 The entropy as a function of energy of the systems A and B
depicted in Figure 2.24. The figure shows the change in the macroscopic state
of the systems when heat is transferred spontaneously from system B to A.
System A receives the amount of heat q and B gives away the same amount.
System A goes from its state ① to state ②, whereby its energy increases by the
amount q and its entropy increases by ∆SA. At the same time B goes from its
state ① to ② whereby its energy is reduced by the amount q and its entropy
changes by ∆SB, which is negative.

(decreased entropy). As shown in the figure, the entropy increase for
A is larger than the decrease for B. Since |q| is the same for A and B,
we see that the slope of the curve S = S(U) is greater for A than for B,
that is, the derivative dS/dU is greater for A than for B

dSA
dUA

>
dSB
dUB

. (2.12)

Thus we see that the subsystem with the lowest temperature has the
largest derivative dS/dU .

If we bring the systems together briefly once more and repeat this
again and again, energy (heat) is spontaneously transferred from B
to A as long as the total entropy increases, ∆SAB > 0, that is, as long
as |∆SA| > |∆SB|. This will take place until the entropy does not in-
crease any further, whereby we have ∆SAB = 0 and |∆SA| = |∆SB|. Then
no net energy is spontaneously transferred between the subsystems,
which means that the temperature of A and B have become equal.
Since |∆SA| = |∆SB| we have then come to a macroscopic state of the
system where the slope of the curve S = S(U) is equal for A and B,
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that is,

dSA
dUA

=
dSB
dUB

(2.13)

at equilibrium. Thus, the two systems with the same temperature have
the same value of the derivative dS/dU .

We see that the derivative dS/dU is closely associated with tem-
perature. If the derivative is equal for two systems, the temperature is
the same, and if the derivative is different, the temperature is different
– the system with the largest derivative has the lowest temperature.
We could, therefore, use the value of the derivative as a measure of tem-
perature. However, it is impractical to use dS/dU itself as the value of
the temperature, because we want a warm body to have a higher tem-
perature than a cold and dS/dU has a lower value for a warm body.
Instead, we can take

T =
1

dS/dU
(2.14)

as a value of the temperature (this relationship defines T ).38 A hot
body then has a higher value of T than a cold body and equal values
of T mean that the temperature is the same. From Equation (2.11)
we see that the derivative is positive, so we always have T > 0, which
means that negative values of T cannot be obtained (for a system at
equilibrium). The quantity T is called the absolute temperature.39 Its
unit is K (Kelvin).40

Conversely, we can say that the absolute temperature is a mea-
sure of how much the entropy increases in a system when we add a
certain amount of heat.41 Low temperature means that the entropy
changes a lot and high temperature means that it changes a little.
Therefore, heat flows spontaneously from high to low temperature;

38Since the volume and the number of particles are here assumed to be constant,
we have mathematically T = 1/(∂S/∂U )V ,N .
39We shall see later (in Section 4.4) that this is exactly the same quantity as the

absolute temperature of the ideal gas law.
40Since the unit for S is JK−1 and that of U is J, the derivative dS/dU has the unit

K−1 and hence the unit of T in Equation (2.14) is K. This relationship justifies the
choice of a unit for kB (and hence for S) that is given by energy/temperature.
41Expressed more accurately, 1/T (which is equal to dS/dU ) describes the rate at

which S is changed when one changes the energy.
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the body with low temperature gains more entropy than that with
high temperature loses, whereby the total entropy increases.42

Another important relationship can be obtained from our reason-
ing. For small values of q, the slope of the curve S = S(U) in Figure
2.25 is equal to ∆S/q , but this slope is also equal to dS/dU = 1/T .
Thus we have ∆S/q = 1/T , that is,

∆S =
q

T
. (2.15)

This is a special case of what is called the second law of thermo-
dynamics and it relates the heat transfer to a system and the entropy
increase for the latter (we assume here that q is so small that the tem-
perature does not change because of the heat input). When we take
heat from the system, q is negative and so is ∆S (the heat q is always
counted as that added to the system, so q is negative when heat is re-
moved).

However, we have seen that the entropy of a system can increase
even in the absence of heat transfer; Ω and hence S increase when a
spontaneous process occurs within the system, for example when the
two gases are mixed in it. If such a process occurs at the same time as
heat is added, the entropy increase will be greater than q/T . A more
complete statement about ∆S therefore reads

∆S ≥ q

T
, (2.16)

where the inequality is valid when some spontaneous process (in ad-
dition to heat transfer to or from the system) occurs in the system.

In the concrete examples we have discussed so far, we have ei-
ther had spreading of non-interacting molecules within a volume or
spreading of energy among weakly interacting molecules. In real sys-
tems, we often have molecules that interact strongly and that are
mobile. Then we need to simultaneously consider both the positions
of the molecules and their interactions (the strength of the inter-
actions between the molecules depend on their relative distances).
This complicates the treatment considerably. However, the same gen-
eral principles still apply, namely that the most likely macroscopic
distribution of energy and particles constitutes the thermodynamic
equilibrium state. For this distribution, there are tremendously many

42An alternative derivation of the relationship between entropy and temperature
can be found in the box at the end of Appendix A.
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more microstates than for other distributions and hence this macro-
scopic state has greater entropy.

A spontaneous process is always irreversible, meaning that it can-
not run backwards in such a manner that one returns to exactly the
same macroscopic state for both the system and its surroundings.
Since the total entropy has increased during the process, there is no
way to reduce it again – all processes that can happen are sponta-
neous and give increased total entropy. If we try to make the entropy
to decrease somewhere, it will increase by a greater amount elsewhere
so that the total entropy nevertheless increases. (Even if we ourselves
try to intervene and change the course of events, that will not help
because we too are driven by increased entropy.)

A reversible process is a process that in principle takes place in-
finitely slow and where the system is always at equilibrium. Such a
process does not give rise to an increase in the total entropy. It can be
run backwards and one then returns to exactly the same state as one
started from for both the system and the surroundings. This can never
be carried out in reality – every real process is irreversible. However,
one can perform processes that are almost reversible (one can in prin-
ciple come as close as one likes to a reversible process). Thereby one
runs the process very close to equilibrium, so that it gives rise to only a
small entropy increase. This increase can be made smaller by running
the process even slower and closer to equilibrium. In the limit when
the process runs infinitely slow and at equilibrium, the entropy in-
crease becomes zero. (This will be discussed in more detail in Section
4.3.)

Consider a system where irreversible processes occur at the same
time as heat transfer to the system. The entropy change due to the
latter is equal to q/T . Let ∆Sirrev denote the increase in entropy in
the system due to the irreversible processes (i.e., in addition to the
entropy change from the heat transfer). The total entropy change of
the system is thus equal to

∆S =
q

T
+∆Sirrev. (2.17)

Since one always has ∆Sirrev ≥ 0, we see that Equation (2.17) is an-
other way to express Equation (2.16). For reversible processes one has
∆Sirrev = 0 and we obtain Equation (2.15).

Note that we have assumed that q is small. To emphasize this, one
should use the notation dq instead of q and dS instead of ∆S (dq and
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dS represent small amounts: a small amount of heat added to the sys-
tem and small increment of S for the system)43 and we generally write

dS =
dq

T
+ dSirrev where dSirrev ≥ 0 (2.18)

or, equivalently,

dS ≥ dq

T
. (2.19)

In both cases the inequality holds for irreversible processes and the
equality for reversible processes. (Equations (2.15) to (2.17) are, how-
ever, applicable for heat transfers q and entropy changes ∆S that
are not small, provided the temperature T is unchanged during the
process.)

Equation (2.18) (or Equation (2.19)) is a complete form of the sec-
ond law of thermodynamics, which we shall return to in more detail
in Section 4.3. Expressed in words, it says that the entropy of a system
can be changed by heat added to/removed from the system or by any
irreversible (spontaneous) process that occurs in the system. The first
contribution to dS is given by dq/T and the last, dSirrev, is always pos-
itive (for irreversible processes) or zero (for reversible processes). The
amount of heat dq is positive when heat is added to the system and dq
is negative when it is removed. The same applies to dq/T since T > 0.

A postulate is an unproven assumption that is held as being true.
The first and second laws are two of the postulates that the whole of
classical thermodynamics is built up from by logical and mathemati-
cal reasoning. In our treatment, we get insights into what the second
law expresses and means from a molecular perspective, something
that classical thermodynamics is not concerned with (at least not in
its pure classical form).

We have seen examples of how entropy plays a crucial role in spon-
taneous processes of a system. A process is spontaneous provided the
total entropy increases. It is important to include all entropy changes,

43Generally, we use the symbol ∆f to denote the change in a quantity f (regardless
of the magnitude of the change) and the symbol df to designate a very small change
in f (in principle an infinitesimally small change, df → 0). Here f symbolizes any
property of a system like entropy S , energy U , and volume V . (The quantity df is
what is called the differential of f in mathematics.) The term dq refers similarly to a
very small amount of heat added to the system, while q is the added amount of heat
no matter how large it is.
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so that we really obtain the total entropy change. If our system inter-
acts with its surroundings, we must also include the change in the en-
tropy of the surroundings, Ssurr. It is the total entropy Stot = Ssystem +
Ssurr that increases during a spontaneous process. Ssystem may increase
or decrease depending on the circumstances.44 If we, for example,
have a warm system in contact with a cold environment, Ssystem spon-
taneously decreases as heat flows from the system to the surround-
ings. Ssurr, however, will increase more than Ssystem decreases, so the
total entropy increases. It is commonly said that the entropy of the
“whole universe” increases during spontaneous processes – which we,
however, should take with a grain of salt, because we hardly know
enough about the universe to say such a thing with certainty.

That entropy increases is often popularly described as a decrease
in order – a disordered macroscopic state would thus be more prob-
able than an ordered one. This is usually true but not always. There
are examples of systems that have higher entropy in an ordered state
than in a disordered one. Remember that high entropy corresponds to
many different possibilities for the system – many different particle
configurations and different energy distributions. An example from
everyday life is in order. If we fill a large box with books that we just
throw down in a helter-skelter manner, we find that the books lock
one another’s positions when the box is full. Their freedom to move
around is very limited when we shake the closed box slightly. If we in-
stead pack the box with the same books by neatly arranging the books
in the box, we find that there is a rather large empty space left. When
we shake the closed box in this case, the books have much more free-
dom to move. There are more arrangements available to them.45 If we
consider all possible arrangements of the books, including all possible
helter-skelter ones and those attained during the shaking, the ordered
arrangements are much more numerous. Thus, the entropy is higher
in the ordered state. If one wants to make an analogy between entropy
and some commonplace concept, freedom is better than disorder. A
high entropy thus corresponds to a high freedom.

Important examples of ordered molecular systems with high en-
tropy are liquid crystals, which are found in many dials, calculators,

44In other parts of this book we use the notation S for Ssystem, the subscript “sys-
tem” is then implied and not written out.
45To avoid the complications due to the effects of gravity on the packing of heavy

books, it is better for argument’s sake that we replace books with, for instance,
lightweight styrofoam discs of the same size.
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Figure 2.26 A sketch of cigar-shaped molecules in a liquid crystal. The
figure shows a typical snapshot picture of the mutual orientations of the
molecules. They have their longitudinal axes approximately parallel and ex-
hibit a relatively orderly phase with higher entropy than the corresponding
disordered phase where the axes are more randomly oriented.

andmonitors. Themolecules of a liquid crystal are in most cases elon-
gated (“cigar-shaped”) and they spontaneously form ordered liquid
phases, where a snapshot picture of the structure may for example
look like Figure 2.26. This ordered phase has higher entropy than a
disordered phase where the longitudinal axes of the molecules are
no longer approximately parallel. The reason for this is basically the
same as in our example with the books.

We shall conclude this section by examining the entropy at low
temperatures. When we reduce the energy of a system, its tempera-
ture gradually decreases.46 Eventually, the system will approach its
quantum mechanical ground state. At the ground state the temper-
ature T = 0, the absolute zero. For most pure substances in crys-
talline form (perfect crystal), there is a single ground state, that is,
Ωground = 1 (one single way to distribute energy and particle positions
in the crystal). Entropy is according to Equation (2.6) at absolute zero

ST=0 = kB lnΩground.

When Ωground = 1, this implies that ST=0 = 0 since ln1 = 0.

46At phase transitions such as condensation (gas-liquid phase transition) and freez-
ing (liquid-solid phase transition), the temperature will, however, remain constant
until all of the substance has been transformed from one phase to the other. Such
transitions are discussed in Section 6.1.
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For pure substances we accordingly have that S ≥ 0 at absolute
zero, where the equal sign applies to substances in perfect crystalline
form. This statement is called the third law of thermodynamics and
it is a postulate in classical thermodynamics.

Key points

• The absolute temperature is a measure of how much the entropy
increases in the system when we add a certain amount of heat. 1/T
(which is dS/dU) indicates the rate of the entropy increase when
energy is increased.

• Heat is transferred spontaneously from a hot to a cold body since
the body with low temperature gains more entropy than the body
with high temperature loses.

• The second law of thermodynamics can be formulated

dS =
dq

T
+ dSirrev,

where dq is the added heat, T is absolute temperature and dSirrev ≥
0. If any irreversible (spontaneous) process occurs apart from heat
transfer, dSirrev > 0. Otherwise dSirrev = 0, that is, dS = dq/T .

• The most probable macroscopic distribution of energy and parti-
cles (for the system and its surroundings) is the thermodynamic
equilibrium state. For this distribution there are tremendously
many more microstates than for other distributions and hence this
macroscopic state has largest total entropy.

• The total entropy of a system and its surroundings, Stot = S +Ssurr,
increases in a spontaneous process.

• High entropy can be likened to high freedom. A disordered system
often has a higher entropy than an ordered one, but this is not
always true.

• The third law of thermodynamics states that for pure substances
S ≥ 0 at absolute zero, T = 0, whereby the equality sign applies to
substances in perfect crystalline form.
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2.8 Availability of energy*47

The Boltzmann factor

We have previously obtained the following important relationships
between entropy, energy, and absolute temperature (Equations (2.6)
and (2.14))

S(U) = kB lnΩ(U) and
dS

dU
=

1
T
. (2.20)

When we insert the first equation into the second, we obtain

d lnΩ(U)
dU

=
1

kBT
. (2.21)

According to the definition of a derivative of a function f (x), we
have

f (x)− f (x −∆x)
∆x

→ df (x)
dx

when ∆x→ 0.

Applied to the left-hand side of Equation (2.21) with f = lnΩ and
x =U this becomes

lnΩ(U)− lnΩ(U −∆U)
∆U

=
1

kBT
, (2.22)

which is applicable for small ∆U (in the limit ∆U → 0). We can also
apply this equation if ∆U is so small relative to U that the tempera-
ture T does not change when we change energy with the amount ∆U .

By multiplying both sides of Equation (2.22) with ∆U and rear-
ranging the terms we obtain

lnΩ(U −∆U) = lnΩ(U)− ∆U

kBT
, (2.23)

which we can write as

Ω(U −∆U) =Ω(U)e−
∆U
kBT . (2.24)

Here, Ω(U) is the number of microstates of a system with energy U
and Ω(U −∆U) is the number of such states after the system has lost
energy ∆U . We can thus conclude that the number of microstates for

47Items marked with an asterisk (*) are optional specialized topics.



Energy and entropy 51

Surroundings (system B)

System (A)

T = constant

Energy exchange (heat)

Figure 2.27 A system (A) that has a free heat exchange with its surround-
ings (B), which has temperature T . If B is much greater than A, the temper-
ature will not be appreciably affected by the exchange of heat and remains
constant. At thermal equilibrium A also has temperature T .

a system changes with a factor exp(−∆U/kBT ) when the system gives
off energy ∆U at constant temperature.48

Let us apply this to a very large system B, which is in thermal con-
tact with our system A (i.e., heat can be freely exchanged). The system
B may be the surroundings of our system and we assume that it has a
constant temperature, as depicted in Figure 2.27. We also assume that
A and B are in thermal equilibrium, i.e., they have the same tempera-
ture. This means that the temperature of A is constant too when heat
is exchanged.

When system B gives off energy ∆U to A, the number of avail-
able microstates ΩB will accordingly decrease, which is not favorable
for B. The larger ∆U , the smaller ΩB(U −∆U) according to Equation
(2.24). The exponential function is rapidly decreasing for a negative
argument, so the reduction of ΩB becomes more and more notice-
able when ∆U increases. This means that it is increasingly unlikely
that system B gives off an energy amount ∆U when this amount
becomes larger. Thus, it is unlikely that system A can obtain large
amounts of energy from B. We can express this in the following man-
ner: The factor exp(−∆U/kBT ), which is called the Boltzmann factor,
is a measure of the availability of energy ∆U from the surroundings
at temperature T .

48We use the notation ∆U here since we will apply these results to another system
that receives the amount ∆U .
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Energy contributions smaller than kBT are fairly easy to obtain
for a molecule from its environment, while contributions appreciably
greater than kBT are hardly accessible since exp(−∆U/kBT ) then is
very small. Since kBT is proportional to T , we see that larger energy
contributions are available at a higher temperature than at lower ones.

One can take this argument one step further and thereby obtain
an expression for the probability that system A is in a particular mi-
crostate with energy UA at constant T . This expression is an impor-
tant result in statistical mechanics, called Boltzmann’s distribution
law that is treated in Appendix B.49

Key points*

• The function exp(−∆U/kBT ) is a measure of the availability of en-
ergy contributions ∆U from the surroundings at temperature T .

• Energy contributions smaller than kBT are fairly easy to obtain for
a molecule from its environment, while contributions appreciably
greater than kBT are hardly available.

49The details including the derivation are given in Appendix B. Here it suffices to
mention that the probability for system A to be in a particular microstate with energy
UA is proportional to exp(−UA/kBT ) at temperature T (as shown in Equations B.1 and
B.3). The appendix also shows how this distribution law can be applied to give the
distribution of molecular speeds used in the construction of Figure 2.1.



chapter 3

Entropy and free energy

3.1 Poorly soluble substance
Particle locations and energy

Let us fill a beaker with solvent and add a spoonful of any poorly
soluble, crystalline substance, which settles in a pile on the bottom
(Figure 3.1). Irrespective of how poorly soluble the substance is, after
a while there will always be a number of molecules of the substance
in solution.1 Why? For a molecule on a crystal surface in contact with
the solvent, the probability is never zero that it will detach, so sooner
or later this will happen and the released molecule will “wander out”
into the solvent. As we have seen in Section 2.1 there are always a few
molecules with significantly higher energy than the others, and they
can therefore detach from the crystal.

Figure 3.1 A poorly soluble substance at the bottom of a beaker filled with
solvent. The white dots represent solute molecules that are tremendously
exaggerated in size.

Once out in the liquid, the molecule will move freely over the
entire volume, and will remain in solution until it eventually hap-
pens to come back to some crystal on the bottom where it can again

1If the volume is small and the substance is extremely poorly soluble, there will
be solute molecules in solution at least part of the time.

53
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attach. (We can in this case ignore the possibility that the molecule
encounters a number of other dissolved molecules and combines with
them to form a new crystal.)

It will of course on average take considerable time before the
molecule comes back and attaches to some surface2 and during this
time, a number of other molecules will have become detached from
the crystal surfaces. The number of molecules that come off from the
crystal surfaces during this time interval determines how high the
concentration becomes at equilibrium. If many detach, the concen-
tration becomes higher than if few do so. At equilibrium, there is an
equal number of molecules that come off per unit time as those that
come back and attach.

The reason why a released molecule wanders around in the liquid
is, of course, that nothing prevents it from doing so. Since the released
molecules can wander around, the system acquires many microstates
with various particle configurations. This means that the system ob-
tains a positive entropy contribution when molecules are released.
It is customary to express this as: the system gains entropy of mixing.
We must remember, however, that this only means that the dissolved
molecules wander around randomly in the available volume, like in
the mixture of two gases discussed earlier. The equilibrium concen-
tration is low – despite this gain in entropy – because for poorly solu-
ble substances the probability is small that molecules detach from the
crystals. What, then, is the reason for this low probability? Why are
some substances poorly soluble in certain solvents?

There are many reasons why various substances are poorly sol-
uble. Here we will examine one possible mechanism and for the
sake of it, we make a simple model of our system. We let the crys-
tals at the bottom be represented by a rectangular (prism-shaped)
body as shown in Figure 3.2, and we shall examine what can happen
when a solute molecule approaches the surface of the body (the solid
phase).

In the example that we will consider, the energy is much lower
when the molecules of the poorly soluble substance are in contact
with the solid phase (of the same substance) than when they are
surrounded by solvent molecules. This may be due to very strong

2Not all molecules that come back will attach immediately, but many of them do.
Some molecules will return into the solution and come back later to some crystal
surface.
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Figure 3.2 The upper figure shows a poorly soluble solid (white rectangle)
in contact with a solvent (gray region). The white circles are solute molecules.
The middle figure shows a magnified view of the framed area in the upper
figure. This figure is rotated 90 degrees relative to the upper. In this example
the energy is lower when themolecules of the substance are in the solid phase
than when they are surrounded by solvent molecules. This is represented by
the curve in the plot labeled “Energy.” The energy has a low value to the left
compared to the value at the place where the molecule is located in the figure
(marked with a cross on the energy curve). The region where the energy is
low is called a potential well.
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Figure 3.3 The molecule binds to the solid phase – it “goes down” into the
potential well – whereby energy is released.

binding between the molecules in the solid phase.3 When a dissolved
molecule comes in contact with the surface, energy is released when
the molecule becomes bound to the solid phase, as Figure 3.3 illus-
trates. This energy will be spread over the whole system (similar to
the heat dispersion we described earlier).

By the spreading of the released energy, a huge number of mi-
crostates with various energy distributions becomes available and a
positive entropy contribution is obtained. When the released energy
is large, as in this case, this entropy contribution will be large. The
choice for the system is thus between having many particle configu-
rations when molecules are in solution or having many energy dis-
tributions when the molecules are bound. Since the binding to the
solid is very strong (the potential well is deep), the highest number
of microstates is obtained in the latter case, i.e., when many particles
are bound and only a few are in solution. Therefore, this condition is
most probable and the equilibrium concentration is therefore low.

3In this example, the binding energy between one molecule of the poorly soluble
substance and other molecules of the same kind is much greater in magnitude than
the interaction energy between the molecule and the solvent molecules and between
the solventmolecules in the absence of the solute. Therefore the first-mentioned bind-
ing energy dominates in the total energy change upon binding to the solid phase.
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What happens when a molecule detaches from the crystal sur-
face? What is required for it to do so? A molecule must get out of the
potential well in order to be detached from the surface, and this re-
quires that energy is supplied. The probability for a molecule to come
off therefore depends on the availability of energy from its environ-
ment and on the depth of the potential well. The deeper the well, the
more energy is needed for the molecule to be released and one can
show that the availability of large amounts of energy is small from
the surroundings.4 Since the potential well is deep, there is only a
small probability for the molecule to detach, leading to the low solu-
bility. If the temperature is increased, large energy contributions be-
comemore accessible and the solubility of the substance will increase.
(At high temperatures there is a lot of energy to distribute between all
molecules, and therefore it is natural that even relatively large energy
contributions become more easily accessible.)

In this example we see how low energy (in the form of energy of
binding) and high entropy (in the form of entropy of mixing) are op-
posed. Here entropy and energy are weighed against each other and
the optimal condition consists of a compromise between these two
factors. This trade-off determines the equilibrium state, which is the
most probable macroscopic state of the system. Both factors can al-
ternatively be expressed as the condition that the total entropy (from
both particle configurations and energy distributions) for the system
and its surroundings is maximal at equilibrium. This will be further
explored in what follows.

3.2 Evaporation of a liquid drop
Balance between entropy and energy; vapor pressure

Let us put a drop of liquid at the bottom of a small closed box filled
with, for example, nitrogen gas (Figure 3.4). What will happen? A
number of liquid molecules will leave the drop and go out into the
gas phase. In other words, at least part of the liquid will evaporate
(vaporize). The gas in the box will be a mixture of nitrogen and liq-
uid vapor. The gas pressure that is initially equal to the nitrogen gas

4In Section 2.8 it was shown that the availability of an energy amount ∆U de-
creases rapidly with increased ∆U . Energy contributions smaller than kBT are fairly
easy to obtain for a molecule, while contributions appreciably greater than a few kBT
are much less available.
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Figure 3.4 A closed box with a drop of liquid on the bottom. The box is
filled with nitrogen gas that does not dissolve appreciably in the liquid.

pressure will then be given by the combined pressure of the nitro-
gen gas and the vapor. The contribution to the gas pressure from each
molecular species is called partial pressure5 whereby the total pres-
sure is the sum of the partial pressures of all molecular species present
in the gas.

What happens near the surface of the liquid during the evapora-
tion (Figure 3.5)? For a molecule to be able to leave the liquid phase it
is required that sufficient energy is available. Why? In the gas phase a
molecule interacts very weakly with other molecules, so the interac-
tion energy is near zero. A molecule in the liquid phase, on the other
hand, interacts quite strongly with the surrounding molecules – it is
in a kind of potential well. The interaction between our molecule and
the surrounding molecules is mainly attractive (see Figure 3.6), so the
potential energy is negative in the well. This is the reason why energy
must be supplied to the molecule; otherwise it is unable to leave its
potential well in the liquid and go out into the gas phase. This en-
ergy must be taken from the molecule’s environment and, as in our
previous example, the availability of energy is crucial.

The fact that few molecules have high energy, as discussed in Sec-
tion 2.1, has to do with the fact that large energy contributions are
available only to a small extent. The greater the energy contribution
that is required, the less likely it is that it is available.6 If the inter-
actions between the liquid molecules are strongly attractive, the po-
tential well for each molecule is deep and the probability is relatively
low that sufficient energy is available, so rather fewmolecules per unit
time will be able to leave the liquid phase. If the interaction between

5The concept of partial pressure is formally defined in Section 5.1.
6This is discussed in Section 2.8.
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Energy is required

Figure 3.5 For a molecule to be able to leave the liquid phase, energy is
required.

the molecules is not so large, less energy is required to enable them
to leave the liquid and the probability is greater that this amount of
energy is available. Therefore, more molecules will leave the liquid
per unit time.

When a molecule has gone out into the gas phase, it will move
freely throughout the available volume of gas and it will take some
time until it by chance returns to the liquid drop. During the time it
takes on average for a molecule to return to the liquid phase, a num-
ber of additional molecules will have left the liquid. The number of
molecules in the gas phase and hence the partial pressure of the va-
por will therefore increase at the beginning. The larger the amount
of molecules in gas phase, the more often some molecule will return

Figure 3.6 Attractive interactions between molecules in liquid. This attrac-
tion keeps the molecules together as a liquid.
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to liquid phase. The number of gas molecules continues to increase
until equilibrium is reached – equilibrium takes place when as many
molecules leave the liquid per unit time as come back (we assume that
the drop is large enough not to evaporate completely before equilib-
rium is attained). The value of the partial pressure of the vapor at
equilibrium is called the vapor pressure of the liquid.7

For a liquid with weak intermolecular attractions, the partial pres-
sure at equilibrium is high since the probability that molecules will
leave the liquid phase is high, while the partial pressure will be lower
if the attraction is strong. A concrete example of a liquid with weak
intermolecular interactions is common ether (diethyl ether) and one
with strong interactions is water. If we increase the temperature, the
availability of energy will be higher, which leads to an increased
probability that molecules will leave the liquid phase. Thus, the va-
por pressure increases with increasing temperature, more quickly for
ether than for water.

The systemwill get access to a larger number of particle configura-
tions when molecules go out into the gas phase, and thereby the con-
figurational entropy is increased. On the other hand, when molecules
leave the gas phase and re-enter the liquid phase, energy is released,
which can spread throughout the surroundings. More microstates
become available when the energy is released and distributed over
many molecules, i.e., there is a positive entropy contribution. The two
alternatives, both of which provide increased entropy, oppose each
other and the equilibrium state is a compromise between them, where
the total entropy is greatest. As in the previous example, we can al-
ternatively describe this as a compromise between low energy (inter-
molecular attractions in the liquid) and high configurational entropy
(number of available particle configurations).

If the volume is so great that the drop evaporates completely be-
fore equilibrium is reached, the partial pressure of the substance be-
comes lower than the vapor pressure of the liquid. For moist air, one
uses the concept of relative humidity. A relative humidity of x%
means that the partial pressure is x% of the vapor pressure at the tem-
perature in question. At 50% relative humidity the partial pressure of

7For a pure substance (one-component system) the vapor pressure is the pressure
of the gas phase in equilibrium with the liquid. In the presence of another substance,
in this case nitrogen gas, we assume that its presence does not affect the equilibrium.
This is close to the truth if the solubility of this other substance is low in the liquid
phase and the gas phase is approximately ideal.
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water is half of the vapor pressure of liquid water, and at 100% rel-
ative humidity the water vapor is in equilibrium with water drops.
If we increase the temperature of a gas with a constant partial pres-
sure of water vapor, the relative humidity of the gas will decrease since
the vapor pressure increases with increasing temperature (the partial
pressure becomes a smaller fraction of the vapor pressure since the
former is constant while the latter increases). Conversely, a mass of
air that has low relative humidity at a high temperature will have a
higher humidity at a low temperature. If the partial pressure of water
is higher than the vapor pressure, water will condense until the par-
tial pressure equals the vapor pressure. This is what happens when
fog (tiny water droplets) forms when moist air cools in the evening.
Thus the vapor pressure is the “saturation pressure,” i.e, the maximal
partial pressure of the vapor for a given temperature.

We can also understand this condensation phenomenon upon
cooling by the following reasoning. For liquid droplets to be formed
spontaneously in the cooled gas, the total entropy must increase. A
drop is formed because the molecules are attracted to each other when
they come sufficiently close together.8 The molecules “go down” into
potential wells because of this attraction and thereby they release en-
ergy that will disperse into the surroundings. This energy dispersion
leads to an increased entropy. If this entropy increase is greater than
the loss of configurational entropy when the molecules leave the gas
phase, condensation will occur spontaneously. Because dispersion of
a certain amount of energy leads to a larger entropy increase at low
temperatures than at higher temperatures (according to our findings
in Section 2.7),9 condensation will take place when the temperature
is low enough. (If the temperature is very low, ice [snow] is formed
instead of liquid.)

Key points

• A system gains in entropy when a particle becomes bound in a
potential well, because the released energy can be distributed in a
great variety of ways throughout the system and the surroundings.

8In practice, the initial formation of droplets during condensation usually occurs
when the vapor molecules come together on some small particles that happen to be
in the gas, like grains of dust.

9See Equation (2.15) applied to the surroundings with q being the energy that is
dispersed. For a given q, ∆S becomes larger when T is decreased.
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This makes it advantageous to bind many particles provided the
potential wells are sufficiently deep. At the same time the config-
urational entropy of the particles decreases.

• To lift a particle from a potential well, an energy contribution is
needed from its environment. The probability that a particle leaves
a deep well is smaller than it leaving a shallow well since large
energy contributions from the surroundings are considerably less
available than smaller ones.

• The availability of energy from the surroundings increases with
increasing temperature. Therefore, the probability for particles to
be lifted out of potential wells increases when temperature is in-
creased.

• When a particle leaves a potential well and becomes free, it takes
on average a certain amount of time before it binds again because
it can wander around randomly in the available free volume. The
average number of particles that become free during this time de-
termines the equilibrium concentration in the solution or the par-
tial pressure of the vapor phase, respectively.

• If the particles sit in deep potential wells, relatively few particles
per unit time will become free and the equilibrium concentration
or partial pressure becomes low.

3.3 Combustion of magnesium
Exothermic reaction with loss of Sconf

We have all seen burning magnesium in, for example, fireworks. Mag-
nesium burns with an intense white flame in air while forming mag-
nesium oxide

2 Mg(s) + O2(g) → 2 MgO(s),

where (s) and (g) stand for “solid” and “gas,” respectively. What is it
that drives this reaction forward? The reaction is highly exothermic
(“heat releasing”) – hence the intense flame. A considerable part of
the chemical energy stored in the reactants10 is released when the
product is formed (see Figure 3.7).

10The energy is “stored” as potential energy in the interaction between the particles
that the reactants consist of (electrons and atomic nuclei) and kinetic energy of these
particles.
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Figure 3.7 Schematic energy diagram for the reaction 2 Mg(s) + O2(g) →
2 MgO(s). Magnesium can combine with oxygen after ignition, whereby the
energy barrier is overcome, i.e., the energy maximum between the reactants
and the products. The resulting magnesium oxide has a lower energy; the
energy difference between the product and the reactants is ∆U , which is neg-
ative. The released energy is used partially to ignite further Mg whereby the
reaction proceeds.

Is it the energy reduction by the amount ∆U that drives the reac-
tion forward? Well, not in itself – the crucial matter is what happens
to the released energy. It will spread in the surroundings, whereby
many molecules will become excited to higher energy levels, in-
cluding higher translational, rotational, and vibrational levels – gas
molecules will move more rapidly and rotate faster, and all molecules
will vibrate more strongly (in short, the surroundings heat up). Even
some electronic states will be involved, and light is emitted. Energy
is distributed in all possible ways. The system and the surroundings
gain access to a large amount of microstates, which were not avail-
able when the energy was stored in the reactants. Thus, the entropy
increases overall. The probability that the dispersed energy will spon-
taneously gather again and make the reaction reverse is vanishingly
small. The similarity to our example with heat dispersion is evident.

In the reaction, gaseous oxygen is bound and the product is a
solid body (Figure 3.8). Consequently, the number of possible parti-
cle configurations is reduced substantially, so there is a negative en-
tropy contribution which is unfavorable. The released energy is, how-
ever, so large that the entropy increase due to its spreading dominates
strongly and the total entropy increases. We can say that it is this en-
tropy increase that drives the reaction forward. However, what really
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Mg (s)

O2

MgO (s)

Energy

Figure 3.8 During the combustion of magnesium, oxygen is bound and
magnesium oxide (MgO) is formed. Thereby the energy, that was stored in
the reactants before the reaction, is released.

matters is that it is much more likely for the energy to spread over the
entire system rather than coming back and making MgO decompose
into Mg and O2.

3.4 Burning candle
Exothermic reaction with gain in Sconf

Another example of an exothermic reaction is the combustion of a
candle made, for example, of stearin (here assumed to be pure stearic
acid,11 as in Figure 3.9). Stearic acid reacts with oxygen to form carbon
dioxide and water:

CH3(CH2)16COOH(s) + 26 O2(g)→ 18 CO2(g) + 18 H2O(g).

A large part of the chemical energy of the reactants (stored, inter alia,
in their chemical bonds) is released in the reaction. Also in this case
it is essential that the released energy is spread in the surroundings,
whereby the entropy is increased. However, there is another beneficial
contribution. From the reaction formula, we see that 26 molecules of
oxygen are consumedwhile 18 carbon dioxide and 18water molecules
are formed, i.e., an increase of 10 gas molecules. This means that for
each stearic acid molecule that is combusted (Figure 3.10), there arise
10 additional gas molecules that can move freely in the available vol-
ume. Therefore, the number of available particle configurations in-
creases, so the entropy increases for this reason too.

It is this spreading of energy and particles that drives the reaction
forward. It is extremely unlikely that the reverse would happen, i.e.,

11“Stearin” can denote stearic acid or a triglyceride of stearic acid (tristearin). In
commercial products other fatty acids may also be involved.
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Figure 3.9 A candle containing stearic acid.

Stearic acid (s)

Energy

O2 (g)

CO2 (g) + H2O (g)

Figure 3.10 During the combustion of stearic acid, energy is released that
initially was stored in the reactants. In the reaction, 26 oxygen molecules are
consumed per stearic acid molecule and 36 gas molecules are formed (half
of them are shown in the figure).

that carbon dioxide and water molecules would gather at the same
place (and in the correct orientation) and at the same time as sufficient
energy gathers there, so the reaction would have any semblance of a
chance to go the other way.

Key points

• The energy released from the reactants during an exothermic com-
bustion is distributed over all molecules in the system and the sur-
roundings. This drives the reaction forward and the entropy in-
creases. It is unlikely for energy to be concentrated spontaneously,
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which is one of several necessary conditions for the reaction to be
able to go backwards.

• An increase in the number of free particles during a reaction helps
to drive it forward, because the number of available particle con-
figurations thereby is increased.

3.5 It gets cold
Endothermic reaction

We have seen two examples of spontaneous exothermic reactions and
now we shall examine a spontaneous endothermic (“heat absorbing”)
reaction. It was believed a long time ago that it is the release of energy
that is the driving force for chemical reactions, and then the existence
of spontaneous endothermic reactions was a mystery. We have already
seen examples of spontaneous endothermic processes – one such is
the evaporation of a drop of liquid before the saturation pressure is
reached. There the driving force is the release of molecules into the
gas phase and the resulting increase in the number of possible particle
configurations. Here, we shall see what can be the driving force for a
spontaneous endothermic reaction.

Barium hydroxide and ammonium nitrate, both of which are
solids, react with each other and form solid barium nitrate, liquid wa-
ter and ammonia:

Ba(OH)2(s)+2 NH4NO3(s)→ Ba(NO3)2(s)+2 H2O(l)+2 NH3(solution),

where (l) stands for “liquid.” The ammonia formed becomes dissolved
in the water. The reactants have lower energy than the products so
energy is absorbed during the reaction (Figure 3.11). This energy is
taken from the surroundings which get colder. If one performs the
reaction in a vessel immersed in a small amount of water, the water
will freeze to ice.

Because the products absorb energy12 from the surroundings,
there is a reduction in the number of available microstates with differ-
ent energy distributions. This leads to a negative contribution to the
total entropy, which is unfavorable. Since the process is spontaneous,

12The energy is stored in the products as potential energy in the interaction be-
tween the electrons and the nuclei and as kinetic energy of these particles.
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Figure 3.11 Schematic energy diagram for the reaction between the solids
barium hydroxide and ammonium nitrate. The products are solid barium
nitrate and an aqueous solution of ammonia. The energy difference ∆U be-
tween the products and reactants is positive, so energy is taken from the
surroundings during the reaction.

there must be a positive contribution to the entropy that dominates
over this negative contribution. From what does it arise?

Both reactants are solid salts whose ions are located in crystal lat-
tices. The number of available particle configurations for them is low,
so these substances have a relatively low entropy. This also applies
to the product barium nitrate, which is also a solid salt. However, an
aqueous solution of ammonia is formed during the reaction and this
has a high entropy because its molecules are free to adopt a wide vari-
ety of particle configurations. The end result is that the total entropy
increases during the reaction.

Key points

• An endothermic reaction can occur spontaneously provided the
loss in entropy, which is a consequence of the absorption of energy
from the environment, is compensated by some larger gain in en-
tropy, for example by particles being released into solution or into
a gas phase during the reaction.
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3.6 Colloidal stability
Repulsion driven by entropy

A colloidal particle is a particle with a size on the order of 1 to 1000
nm.13 Such particles can often be dispersed in a liquid and remain
suspended in the liquid without falling to the bottom or floating up to
the surface. Examples of colloidal dispersions from everyday life are
milk, mayonnaise, and mud (like wet clay). If the colloidal particles
clumped together and formed large aggregates, the dispersion would
not be stable. When the aggregates became large enough, they would
fall to the bottom if their density was greater than that of the liquid or
float to the surface if their density was lower. This happens, for exam-
ple, when milk is curdled to make cheese. The colloidal particles of
milk, which consist mainly of fat and protein (casein), clump together
when one adds some curdling agent (usually rennet) and one obtains
large aggregates, which form curd. One can also make milk curdle by
for example adding an acid.

In order for a dispersion to be stable, there must be something
that prevents the colloidal particles from being lumped together – a
repulsive force between the particles that prevents them from form-
ing aggregates. A common reason for such a repulsive force between
the particles is that they become electrically charged when dispersed
in water, and we shall discuss a simple example of such a case.

The particles, which initially are electrically neutral, may become
charged when dispersed. This may happen because of ionization of
molecular groups on the surfaces of the particles. One example is
carboxylic acid groups that release their protons into the solution,
whereby the negatively charged carboxylate groups remain on the
particle, which hence becomes negatively charged. In other cases, ions
that were bound to the surface by ionic bonds can be dissolved by
the water, whereby the oppositely charged groups on the surface re-
main, like Figure 3.12. Yet another reason for a particle to become
charged can be that some ions from the aqueous phase become ad-
sorbed on the particle surface. If a larger number of negatively than
positively charged ions are adsorbed, the particle will obtain a nega-
tive net charge.

Let us assume that the particles have positive ions adsorbed at the
surfaces before they are dispersed in water and that negative molecu-
lar groups are firmly attached to the surfaces. For simplicity, we draw

131 nm = 10−9 m.
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Positive ion

Negative surface

Figure 3.12 Example of colloidal dispersion where the surfaces of the col-
loidal particles are negatively charged and where positive ions exist in the
surrounding aqueous solution.

in Figure 3.13 two adjacent particles as if their surfaces were flat and
parallel. The colloidal particles are electrically neutral in the dry state
(they have the same amount of positive and negative charges). The
electrostatic interactions between them are quite weak in this state
because the positive and the negative charges sit near each other on
each surface.

When the particles are dispersed in water, most ions become de-
tached from the surfaces (Figure 3.14). This is mainly due to the fact
that the water molecules hydrate (bind to) the ions and that the elec-
trostatic interaction between the charges is reduced significantly due
to the surrounding water (about 80 times weaker interaction in water
than in air).

The electrostatic energy would be minimized if all ions were sit-
ting at the surfaces, since the positive and negative charges would
then be as close together as possible. The entropy of mixing would, on
the other hand, be maximized if the ions would distribute themselves
evenly in the gap. The equilibrium state is a compromise between en-
ergy minimization and entropy maximization, whereby the distribu-
tion of ions becomes something in between these two extremes.14 The

14Just like before, energy minimization means that the released energy is spread
over the system and the surroundings (a gain in entropy). The equilibrium state cor-
responds to the maximal total entropy.
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Figure 3.13 Enlarged sketch of the gap between two neighboring particles
and parts of the surfaces. The positive ions are bound to the surfaces of the
particles when they are in dry condition.

Figure 3.14 The ions detach from the surfaces when the particles are dis-
persed in water.
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Figure 3.15 A sketch of the ion concentration in the gap between the sur-
faces of the particles.

released ions will move around in the gap between the particles, but
they will mostly be located in the vicinity of the negative surfaces
since they are attracted electrostatically to the latter and repelled
from each other. The ion concentration is therefore highest at the sur-
faces and lowest in the middle – a concentration profile is formed in
the gap at equilibrium, as shown in Figure 3.15. At each surface there
are accordingly a negative surface charge and a “cloud” of positive
ions just outside it. This is called a diffuse electrical double layer –
an important concept in surface and colloid chemistry.

What happens now if we increase the distance between the sur-
faces? The volume in the gap between the surfaces will increase,
whereby the ions will have a larger space to move within. This means
that the number of available particle configurations increases, leading
to a positive entropy contribution. In most cases of interest, this is the
most important effect of the increase in distance. Since the entropy in-
creases, this is advantageous for the system. Therefore, if the colloidal
particles are free to move, the distance between them increases spon-
taneously, that is, a repulsive force acts between the surfaces (Figure
3.16). This force, called an electric double layer force, is the reason
why many colloidal dispersions are stable. Note that it is this entropy
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RepulsionRepulsion

Figure 3.16 Upon an increase of the distance between the surfaces the con-
figurational entropy of the ions increases. This entropy increase manifests
itself as a repulsive force between the surfaces.

increase and not an electrostatic force between the colloidal particles
that causes the repulsion.15

Key points

• A repulsive force between like-charged surfaces in an electrolyte
solution arises because the entropy of the ions in the gap be-
tween the surfaces increases as the distance between the surfaces is
increased and the available volume for the ions thereby becomes
larger.

3.7 What is the driving force?
Total entropy of the system and the surroundings

In several very different cases, we have seen that the same principle
recurs for the driving force of spontaneous processes. The principle
is usually expressed as an increase of the total entropy of our system
and the surroundings for all spontaneous processes.

However, we have seen in the various cases, how this is a manifes-
tation of the fact that the macroscopic equilibrium state is determined

15For planar, equally charged surfaces, each half of the system on either side of the
mid-plane is electroneutral (on average). There are as many positive charges (ions) as
there are negative charges (on the surfaces). One can show that fluctuations, that tem-
porarily make each half deviate from electroneutrality, lead to an attractive(!) electro-
static contribution to the force between the like-charged surfaces (even fluctuations
that maintain electrical neutrality of each half can provide attractive contributions).
Often (but not always) this attraction is, however, smaller than the repulsion, so the
net force is repulsive.
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by the most probable distributions of energy and particles, that is, the
microstates that are macroscopically indistinguishable and are over-
whelmingly more numerous compared to microstates with other dis-
tributions. Since entropy can be expressed in terms of the number of
microstates by the Boltzmann relation S = kB lnΩ, we obtain the link
between the microscopic course of events and the macroscopic quan-
tity entropy.

It must be strongly emphasized that the principle of increasing
entropy only applies to the total entropy, that is, the entropy of the
system and the surroundings. The entropy of the system itself may
increase or decrease depending on the circumstances. For an isolated
system, that is, a system that cannot exchange energy or particles with
the surroundings, the principle of increasing entropy applies to the
system itself (the entropy of the surroundings will not change due to
the process in this case).

Since we actually are mostly interested in our system, it would
be handy to avoid having to worry about the surroundings. We would
then be able to concentrate solely on the system itself. In several of our
examples, we saw how we can alternatively express the equilibrium
state as a compromise between low energy and high entropy of the
system, whereby we only consider energy and entropy changes for our
system. The correct way to handle this balance between energy and
entropy of a system is to introduce the concept of free energy. This is
what we shall do in the next section.

Ultimately, it is the increase in total entropy that is the main cri-
terion for spontaneous processes, but it is not the increase in entropy
itself that is the driving force. The entropy is a collective property
of the entire macroscopic system and the individual molecules “do
not know of” its existence. The molecules do everything that is possi-
ble for them to do under the circumstances: they move around freely
provided nothing prevents them from doing so, and they exchange
energy back and forth – all in a randommanner. The end result is that
the most likely happens most often. This is what the entropy increase
expresses.

What then is the actual driving force in the world of the
molecules? One could say that it is simply “blind” opportunism. The
molecules are free to do everything that is possible and they will do
so sooner or later! The final result that we observe is the outcome that
has an overwhelming probability to occur.
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Key points

• The general criterion for a process to be spontaneous is that the
total entropy of the system and the surroundings increases.

• For an isolated system, the criterion for spontaneous processes is
that the entropy of the system itself increases. In all other cases,
the entropy changes in the surroundings must also be included.

• The increase in entropy is a manifestation of the fact that the
macroscopic equilibrium state is determined by the microstates
that are macroscopically indistinguishable and are overwhelm-
ingly most numerous. This macrostate is therefore much more
probable than other macrostates and has largest total entropy.

• Spontaneous processes go in the direction that is most likely: the
most probable happens most often. This is what the entropy increase
expresses.

3.8 To indirectly keep track of the surroundings
The concept of free energy

If a system is isolated, the criterion for a process to occur sponta-
neously is, as we have seen, that the entropy of the system increases.
In most cases, however, one is in practice interested in systems that
are not isolated, such as systems that can exchange energy with the
surroundings. In such cases, one must use the general criterion of in-
crease in the total entropy, that is, the sum of the entropy of the system
and the surroundings becomes greater when a process occurs sponta-
neously.

An important case is a system that one holds at a constant temper-
ature by allowing it to exchange heat with a thermostat, that is, a dif-
ferent system with the property that it maintains its temperature T at
a fixed value. If an exothermic process takes place in our system, heat
must be removed (from the system to the thermostat) for the system
to remain at constant temperature. Correspondingly, if an endother-
mic process occurs, heat must instead be supplied by the thermostat.
By means of free heat transfer between our system and the thermo-
stat, the temperature of the former is automatically kept equal to that
of the latter (Figure 3.17). Usually the surroundings of the system are
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Figure 3.17 A system in contact with a thermostat obtains constant temper-
ature when heat is freely exchanged between the system and the thermostat.

considered to be a thermostat provided there is a constant temper-
ature. If the surroundings are large enough, the heat exchange with
the system does not affect the temperature appreciably, so T is there-
fore the same before and after the process. When the system is free
to exchange heat with the surroundings, the system’s initial and final
temperature is also T .

Let us assume that the entropy of the system changes by the
amount ∆S during the process and that an amount of heat q must
be supplied to the system in order to maintain its temperature T . If
the process is endothermic q > 0 and if it is exothermic q < 0 (re-
member that q is always counted as the heat added to the system, so
it is negative when heat is removed). For simplicity, we consider an
endothermic process in the following argument, but the end results
apply regardless of the sign of q.

When the process takes place in our system, the surroundings ac-
cordingly deliver the amount of heat q to the system. Since there re-
mains less energy to distribute over molecules in the surroundings, its
entropy has decreased. Specifically, the entropy of the surroundings is
reduced by the amount q/T ; we have ∆Ssurr = −q/T . This follows from
Equation (2.15) applied to the surroundings: ∆Ssurr = qsurr/T , where
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qsurr = −q is the amount of heat that the surroundings receive during
the process (a negative amount in our case). The total entropy is there-
fore changed by

∆Stot = ∆S +∆Ssurr = ∆S − q

T
. (3.1)

The process is spontaneous if ∆Stot > 0, that is, if

∆S − q

T
> 0 (for spontaneous process at constant T ). (3.2)

The entropy of the system then increases more than the entropy of the
surroundings is reduced (for an endothermic process). This happens,
for example, when a drop of water in a small closed box evaporates
at constant temperature (see the previous example in Section 3.2).
The increased configurational entropy when water molecules leave
the drop and vaporize provides a large positive contribution to ∆S ,
while the energy used to release molecules from the drop is taken
from the surroundings of the box whereby ∆Ssurr = −q/T < 0. The wa-
ter evaporates spontaneously when the reduction in the entropy of the
surroundings is less than the increase of the entropy in the box.

Equation (3.2) is also valid when q is negative and ∆Ssurr therefore
is positive, for example, an exothermic combustion process in a closed
box that can exchange heat with the surroundings. Themost favorable
case occurs when both ∆S and ∆Ssurr in Equation (3.1) are positive,
whereby the entropy changes in the system and the changes in the
surroundings work together and provide positive contributions to the
total entropy change. One such case is the combustion of stearic acid
in oxygen (as in Section 3.4 but performed in a box at constant T , i.e.,
with the same initial and final T ). In this case, the entropy increase
of the system acts together with the release of heat to the surround-
ings, which also gives an entropy increase. Both effects contribute to
making the process spontaneous.

The condition (3.2) can be satisfied even if the entropy of the sys-
tem decreases (∆S < 0), provided that the system releases such a large
amount of heat (q is strongly negative) that the entropy increasesmore
in the surroundings than it decreases in the system. In such cases, for
example, combustion of magnesium in oxygen (Section 3.3), it is the
release of heat to the surroundings that makes the process occur spon-
taneously. The decrease in entropy of the system is to a large part due
to the binding of oxygen molecules to magnesium, whereby the num-
ber of configurations is reduced.
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The great advantage of the condition (3.2) is that all variables in-
volved describe characteristics of the system itself: q is the amount
of heat that the system receives during the process, ∆S is its entropy
change and T is the initial and final temperature (which is equal to
the constant temperature of the surroundings). Equation (3.2) is ac-
cordingly a condition that does not involve the surroundings explic-
itly (except via the temperature), and despite this it is equivalent to
the increase in total entropy (the sum of the entropy of the system
and the surroundings). This fact can be made even clearer when, for
example, the system can exchange energy with the surroundings only
in form of heat.16 Under this condition, the quantity of heat q is equal
to the change in energy ∆U of the system during the process (as we
shall see later, this assumes that the system volume V is constant). By
inserting q = ∆U in Equation (3.2) we obtain

∆S− ∆U
T

> 0 (for spontaneous process at constant T and V ), (3.3)

a condition that only involves quantities for the process in our sys-
tem (∆U and ∆S) and the temperature T at which it takes place. This
condition implies that ∆S −∆U/T = ∆S+∆Ssurr = ∆Stot > 0 for a spon-
taneous process when T and V are constant.

We can bring these arguments one step further. Equation (3.1)
with q = ∆U can be written

∆Stot = ∆S − ∆U

T
=
T∆S −∆U

T
= −∆U −T∆S

T
, (3.4)

which means that the total entropy change can be expressed in terms
of the energy and entropy changes of the system. Since T is the same
before and after the process we have

∆U −T∆S = (Uafter −Ubefore)−T (Safter − Sbefore)
= Uafter −Ubefore −TSafter +TSbefore

= (Uafter −TSafter)− (Ubefore −TSbefore)
= (U −TS)after − (U −TS)before

and we can write Equation (3.4) as

∆Stot = −
(U −TS)after − (U −TS)before

T
, (3.5)

16Another example is given in Section 4.7, where the corresponding discussion is
given for constant pressure – a more common case.
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at constant T and V . This equation says that the total entropy change
is proportional to the change in the value of U −TS , that is, the num-
ber one obtains when subtracting the product of the system’s temper-
ature and entropy from its energy. If the value of U − TS decreases
during the process, ∆Stot is positive, and if U − TS increases ∆Stot
is negative. We can therefore determine whether a process can occur
spontaneously or not by examining the change in U − TS . This com-
bination of variables has accordingly an important role to play and it
is therefore convenient to introduce a separate symbol A for it,

A =U −TS, (3.6)

and give it a name: “free energy” (more specifically, the Helmholtz
free energy or simply the Helmholtz energy).17 Thus we have from
Equation (3.5)

∆A = −T∆Stot (at constant T and V ). (3.7)

As we have seen, the crucial factor that determines whether a pro-
cess in the system is spontaneous or not, is the balance between the
entropy change ∆S and the effect of the energy change ∆U of the sys-
tem (the latter in terms of change of the entropy of the surroundings).
The free energy A is so constructed that it “automatically” handles
this balance for us,

∆A = ∆U −T∆S = −T∆Stot (at constant T and V ), (3.8)

so if ∆A < 0 the process can take place spontaneously (∆Stot > 0), and
if ∆A > 0 the process cannot take place spontaneously (∆Stot < 0). In
the latter case, the reverse process can instead occur spontaneously
since it has the opposite sign of ∆Stot.

The principle behind Equation (3.8) is so important that it is
worth repeating. The change in free energy ∆A constitutes a quan-
tity that correctly balances the changes in energy ∆U and entropy ∆S
of the system. Thereby the contribution ∆U describes the effect of the
change in the entropy of the surroundings, ∆U = −T∆Ssurr. Accord-
ingly, ∆A = ∆U − T∆S = −T∆Ssurr − T∆Ssystem = −T∆Stot. Hence, the

17The modern, recommended name is the Helmholtz energy, but Helmholtz free
energy, which has long been the common name, is such an established concept that
it is not eradicated easily. Furthermore, it is convenient to speak of “free energy” to
distinguish from “energy” which does not take entropy into account.
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Stot

A  T and V constant

dStot = 0

A decreases

dA = 0

A decreases

Stot increases Stot increases

process

Figure 3.18 A process at constant temperature and volume can occur spon-
taneously in the direction of decreasing free energy A (Helmholtz energy).
Thereby, the total entropy Stot of the system and the surroundings increases.
Equilibrium is reachedwhenA has reached its minimal value and at the same
time Stot is as large as possible under the given circumstances. At the mini-
mum and the maximum point, respectively, the derivative is zero (horizontal
line) and dA = 0 and dStot = 0, respectively.

Helmholtz energy keeps track of the entropy changes of both the sys-
tem and the surroundings when T and V are constant.

If we let the process take place in small steps, it will occur spon-
taneously as long as the total entropy increases; that is, as long as the
free energy decreases (see Equation (3.7)). Because the change occurs
in small steps, we denote the change in the total entropy by dStot and
the free energy by dA (small changes, called differentials). Thus, we
have dA = −TdStot, where dStot > 0 and dA < 0.

Eventually, the process will halt. This occurs when the total en-
tropy has become as large as possible. It has reached its maximum.



80 Thermodynamics Kept Simple – A Molecular Approach

Simultaneously, the free energy of the system has decreased as much
as possible; it has reached its minimum, as illustrated in Figure 3.18.

The system has thus attained themost likelymacroscopic distribu-
tion of energy and particles under the prevailing circumstances (cir-
cumstances = “the system is in a closed box and has constant volume
and temperature”). For this distribution, there are tremendously more
microstates of the system and the surroundings than for all other dis-
tributions, and hence this macroscopic state has maximal total en-
tropy under the given circumstances. From the preceding discussion
it follows that the system simultaneously has attained its minimum
free energy. The state that is reached is the macroscopic equilibrium
state of the system.

Assume now that the system is initially in its equilibrium state. If
the process were to go in any direction, Stot would decrease because
the point of departure is at the maximum value. Simultaneously, A
would increase from its minimum value. Such a change cannot oc-
cur spontaneously because spontaneous processes require that Stot in-
creases (A decreases). The only way for us to make the system leave
the equilibrium state is by forcing a change by taking action from the
outside and altering, for example, the amount of molecules of some
kind.18 This change cannot occur spontaneously when the system is
left alone.

If, instead, we try to make the process take a tiny fraction of a step
from the equilibrium state, the total entropy and the free energy will
not change significantly, dA = 0 and dStot = 0. This is characteristic
for the equilibrium state and we take

dA = 0 (equilibrium at constant T and V ) (3.9)

as a condition of equilibrium (this corresponds to the horizontal tan-
gent in Figure 3.18). Tiny deviations from the equilibrium state (such
as small spontaneous fluctuations) are thus allowed and happen in
reality. Typically, they are incredibly small for a macroscopic system.

The concept of free energy is one of the most important ones in
thermodynamics and we shall return to it later. The Helmholtz en-
ergy A, which we have discussed here, has a central role in deter-
mining the direction of spontaneous processes and in specifying the

18In the example of magnesium this can be done for instance by decomposing MgO
into O2 molecules and Mg, which requires that energy is actively supplied from the
outside.
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condition for equilibrium of systems at constant temperature and vol-
ume. However, it is not often that one is interested in systems with
constant volume. More common are processes that are carried out,
for example, at constant pressure whereby the volume is allowed to
vary. It is therefore of interest to examine what happens when one
changes the volume of a system. We shall do this in the next chap-
ter. This is particularly important when we have a gas phase present
because the volume of gases changes a lot when the number of gas
molecules is changed, such as when a chemical reaction occurs that
involves gaseous substances.

Key points

• Free energy is a system property which is designed so that it keeps
track of the entropy changes in both the system and the surround-
ings (provided that certain parameters, such as temperature, are
kept constant).

• The free energy Helmholtz energy, A, is defined as

A =U −TS.

• When T and V are constant we have ∆A = −T∆Stot.

• The criterion for a process to be spontaneous at constant T and V
is that A decreases, ∆A < 0.

• Equilibrium at constant T and V occurs when A has reached its
minimal value. Then Stot is as large as possible. At the minimum
point for A we have dA = 0.





chapter 4

More on gases and the basics of
thermodynamics

4.1 Bike pumps and fridges
Gas compression, pressure, and work

Anyone who has pumped up a bicycle tire by hand knows that the
bike pump becomes hot. Part of the increase in temperature is due
to friction, but there is also another reason for the increase. In fact,
a gas heats up when it is compressed. By depressing the bike pump
handle and thereby pushing the piston inwards, one compresses the
gas in the pump and the gas pressure increases. When the pressure
becomes sufficiently large, the gas enters through the valve on the
bike tube and the pressure in the tube increases – which is the purpose
for pumping. The temperature increase is a side effect that one does
not really want. However, it is an interesting phenomenon which has
been put to use in other everyday contexts. One example is a diesel
engine, where air that has been drawn into a cylinder is compressed
strongly when the piston moves inwards. Thereby the temperature of
the air increases so much that when oil is injected into the cylinder,
it ignites spontaneously. The resulting combustion gases pushes the
piston out again. The alternating motion inwards and outwards of the
piston drives the engine.

Before investigating the cause for the temperature increase dur-
ing compression, let us first look at some more examples of practical
applications of this phenomenon. In a common type of refrigerator
(so-called compression refrigerator), shown as a schematic in Figure
4.1, the cooling takes place when a liquid (the refrigerant) evaporates
at low pressure (A) in an evaporator that is placed inside the refriger-
ator. For molecules to be able to leave the liquid and vaporize, energy
is required as we have seen in Section 3.2. This energy is brought in
the form of heat from inside the fridge, which thereby is cooled down.

The gas that is formed in the evaporator is drawn (B) into a com-
pressor which compresses the gas strongly (C). Thereby, the temper-
ature of the refrigerant gas increases so that it becomes much higher

83
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Figure 4.1 A schematic diagram of a refrigerator. Liquid refrigerant passes
out through a narrow valve (throttle valve) and vaporizes (A). The heat re-
quired for vaporization is taken from the refrigerator’s interior. The steam
enters (B) into a compressor (C) where its temperature is raised greatly dur-
ing compression. The hot steam is cooled (D) in a heat exchanger outside the
fridge and is condensed into liquid that is returned (E) to the throttle valve.

than room temperature. This is accordingly a practical example of a
rise in temperature during compression. The hot gas is led through
tubes that are cooled by the surrounding air (a heat exchanger) and
heat is dissipated from the compressed gas (D) into the room where
the fridge is situated. Thus we obtain refrigerant gas at high pressure
but at a considerably lower temperature. As we saw in Section 3.2,
the gas will condense when the vapor pressure of the liquid is less
than the pressure of the gas (just like when water droplets are formed,
for example, in the form of fog when moist air is cooled). This hap-
pens when the temperature becomes sufficiently low. During the con-
densation a large amount of heat is released, which is also dissipated
into the room through the heat exchanger. The liquid is then led (E)
through a narrow valve (throttle valve) to the evaporator, where it va-
porizes at low pressure and the process is repeated. The temperature
rise during gas compression therefore has a key role in the refrigera-
tion process, even if the main transfer of heat is via first evaporation
and then condensation of the refrigerant.

Temperature increase due to gas compression is also essential in
heat pumps. Such a pump is basically a reverse refrigeration unit



More on gases and the basics of thermodynamics 85

Gas

Cylindrical

container

Force F

Piston

Evacuated box

Cross-sectional

area a

Figure 4.2 A cylinder that is sealed by a freely movable piston, which is
assumed to run without any friction. The cross-sectional area of the cylinder
and the piston is a. The device is located in an evacuated box. The cylinder
contains a gas. The volume of the gas can be changed by moving the piston
inwards or outwards. The piston is held at the desired position by the appli-
cation of a suitably large force F on the exterior side of the piston. When F is
increased the gas is compressed and when F is reduced it expands.

where the heating occurs, for example, inside a house and the cool-
ing outside. In this case, it is the temperature increase that one wants
for heating the building. Here one uses energy to pump heat from
the cold surroundings to the warm(er) house. The heat released in the
building comes both from the surroundings outside (which is cooled)
and from the electrical energy used to drive the pump. Therefore, less
electrical energy is used to bring a certain amount of heat to the in-
side, than if the same amount of heat would be generated directly in
an electric heater. This is the reason for using a heat pump instead of
a heater.

Why is the temperature increased when a gas is compressed? Let
us consider a cylindrical container with a movable piston where the
container volume can be changed by moving the piston, as shown in
Figure 4.2. In the cylinder there is a gas. We assume that the piston can
move without any friction in the cylinder. The piston and the interior
of the cylinder both have a cross-sectional area a. For simplicity, we
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Surface

Figure 4.3 A molecule colliding with the surface of a much heavier body
changes the direction of its velocity.

assume that the entire device is located in an evacuated box. We apply
a force F on the piston.

The gas molecules collide with the container walls and the inside
surface of the piston. Each molecule that collides gives rise to a force
on the surface since the molecule changes direction upon impact, as
illustrated in Figure 4.3. As mentioned in Section 2.1, each individual
molecular collision gives a very small contribution to the force on the
surface. The total force due to collisions will, however, be very large
since there is a huge number of molecules colliding. What we can
measure macroscopically is an average value of the total force, which
does not vary noticeably in time but is constant.

The force that acts on the surface due to molecular collisions is
proportional to the surface area. A surface area twice as large is ex-
posed to force twice as large since the number of molecular collisions
is doubled (given that the gas density is equal in the two cases). The
force on the surface from the gas molecules divided by the area of the
surface is, however, the same in both cases and it is this quantity that
is called the pressure, P, of the gas

P =
Total force on surface

Surface area
.

Thus, in our container above, the interior surface of the piston will be
exposed to a force due to the gas that is equal to a × P. This force is
directed to the right (perpendicularly to the piston surface).

To obtain a feeling for the order of magnitude, one can eas-
ily figure out that a gas with a pressure of 1 atmosphere (1 atm ≈
101300 Nm−2) exposes an area of 3 dm2 for a force of 3040 N, i.e., the
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Surface

Figure 4.4 The speed of a molecule increases when it collides with a body
that is moving towards the molecule. This occurs during compression of a
gas when the piston moves inwards.

gravitational force on a 310 kg weight at Earth’s surface. Since 3 dm2

is approximately the area of the top surface of the head, it is as if we
humans go around carrying 310 kg on top of our heads because of
the atmosphere. We do not experience this great weight because our
tissues have an internal pressure that exactly counteracts the external
pressure.

Similarly, we have to apply a force F = aP on the outside of the
piston in Figure 4.2 for it not to move, that is, the force on the out-
side and inside of the piston must be equal. As long as the force F
has this magnitude, nothing will happen (provided everything else is
unchanged). If we want to compress the gas, we have to exert a force
F > aP and if we want to expand the gas, we need to reduce the force
so that F < aP. The piston will then move and the pressure of the
gas will change until the forces on either side of the piston are equal
again.

What happens when we exert a force F > aP so that the piston
moves to the left and the gas is compressed? For simplicity, we limit
ourselves to monatomic molecules such as argon, but the principles
are largely the same for polyatomic molecules. We also assume that
the molecular collisions with the piston are elastic, which means that
they occur without changes in kinetic energy (other cases are treated
later). Since the piston moves to the left, each molecule that collides
with the piston surface will acquire a higher speed after the colli-
sion compared to before (Figure 4.4), just like a tennis ball receives
a higher speed when we hit it with a tennis racket (see Appendix C
for a detailed discussion about this). The influence of each collision
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on the piston’s speed is, on the other hand, extremely small, since the
piston has a vastly larger mass than the molecule.

The gas molecules move generally much faster than the piston, so
their increase in speed is relatively small at each collision, but each
molecule will collide several times with the piston surface and af-
ter several collisions, its speed will have increased significantly. Since
the molecules also collide with each other, the changes in speed will
spread among all molecules.1

The movement of the piston to the left thus results in an increase
in speeds of the gas molecules and therefore an increase in their ki-
netic energy. It is this energy increase that causes the increase in tem-
perature. If the piston and the cylindrical container are made of ther-
mally insulating materials, the energy will stay in the gas and the
temperature will remain high. Otherwise, the energy will spread to
the surroundings by, for example, heat conduction through the walls
of the container and of the evacuated box.2 This happens until the gas
temperature has again been reduced to that of the surroundings.

How much energy have we added to the gas during compression?
Fortunately, we do not need to keep track of how much energy each
molecular collision transfers; it is enough to keep track of the force F
(which we use to compress the gas) and the distance the piston moves.
If we push on an object with force F and the object moves a distance s,
we have, according to the laws of mechanics, done the work w = F × s,
which is equal to the energy that we have added to the object. Because
it is we ourselves who control the force F that acts on the piston and
since we know how far the piston is moved, we also know how much
work we have performed.

We assume that the gas is thermally insulated from the surround-
ings, so the only energy exchange it has is the work w that we add
during the compression. Let us do the compression with a constant
force F (Figure 4.5). If the piston thereby moves the distance s, the

1For polyatomic molecules one must also take into account that they rotate and
vibrate, while monatomic molecules cannot do so. A monatomic molecule’s energy is
essentially equal to its kinetic (translational) energy, which changes when its speed is
changed. (We here ignore the energy due to the atom’s internal structure, which does
not change in the present context. If the temperature is moderately high or less, one
can in most cases ignore the energy that is received through electronic excitations.)

2The energy can reach the walls of the box from the cylindrical container via radi-
ation even when the box is completely evacuated.
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Figure 4.5 During a compression where the piston moves distance s to the
left, the gas volume decreases by the amount sa, where a is the cross-section
area of the cylinder. The size of this volume is illustrated below the cylinder.

energy of the gas has been changed by3

∆U = w = Fs. (4.1)

Note that even if the piston moved very slowly, the energy of the gas
will change by the amountw according to Equation (4.1). Themolecu-
lar speeds will then increase by a very small amount for each collision,
but it will take a long time before the piston has moved the distance
s so the molecules will have time to collide a very large number of
times.4

Since the cross-section area of the cylinder is a, the gas volume
is reduced by the amount s × a during compression, as illustrated
in Figure 4.5. The gas volume has decreased from Vbefore to Vafter =
Vbefore− sa, which means that ∆V = Vafter−Vbefore = −sa. Note that ∆V
is negative since we decrease the volume. It follows that s = −∆V /a, so
we have

w = Fs = −F∆V
a

. (4.2)

3In this book, the work w constitutes an energy added to the system. There exists
another common convention for w as explained in the footnote to Equation (4.6).

4No matter how fast the piston moves, we assume that all kinetic energy that the
piston receives through the action of the force F is transmitted to the gas.
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Figure 4.6 When the cylinder with the movable piston is placed in a box
filled with gas, a force F = aPext acts on the outside of the piston, where Pext

is the gas pressure in the box. The gas inside the cylinder acts with the force
aP on the inside of the piston, where P is the gas pressure in the cylinder.
When these two forces are equal, there is equilibrium and the piston is not
moving. Otherwise the piston will be set in motion in the same direction as
the greatest force.

We add energy in the form of work to the gas during compression and,
consequently, the work w is positive when ∆V < 0 (therefore there is
a minus sign in the formula).

In our example we have applied the force F via a rod attached to
the piston. This is obviously not necessary. We can, for example, let
the cylinder be in a gas-filled box with the gas pressure Pext (“ext”
stands for external), whereby the gas exerts a force F = aPext on the
outside of the piston, as shown in Figure 4.6. If the box is open, Pext

is equal to the ambient pressure of the atmosphere.
Just like before, the piston will not move if the force on either side

of the piston is equal, that is F = aP, where P is the gas pressure inside
the cylinder. Thus, we have the condition P = Pext for this to apply, i.e.,
the gas pressure is equal on both sides at equilibrium. If P < Pext the
gas in the cylinder will compress and if P > Pext it will expand. This
will occur until the pressure is the same on the inside and the outside.
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Surface

Figure 4.7 The speed of a molecule decreases when it collides with a body
that moves in the same direction as the approaching molecule. This occurs
during expansion of a gas when the piston moves outwards.

If we compress the gas at a constant external pressure, Pext, such
as the atmospheric pressure, we obtain from Equation (4.2) with F =
aPext inserted

w = −Pext∆V . (4.3)

Equation (4.3) also applies during expansion (when Pext < P). In such
cases, the gas volume in the cylinder will increase, that is, ∆V > 0, and
the workw is negative. When the gas expands, it performs work on the
surroundings, which is the same thing as the surroundings perform-
ing negative work w on the gas. The energy of the gas in the cylinder
is thereby decreased, ∆U = w < 0.

This decrease in energy occurs because when the piston moves to
the right, the molecules will acquire lower speeds at collisionswith the
piston surface and thereby lower kinetic energy (Figure 4.7). (Com-
pare this with the corresponding situation during compression, Fig-
ure 4.4, where the wall motion to the left gave increased speed of the
molecules. For further discussion, see Appendix C.)

Molecules that collide with the inner surface of the piston will set
it in motion to the right. This continues as long as the force aP on the
inside of the piston is greater than the opposing force F = aPext on
the outside. Part of the kinetic energy of the gas in the cylinder is thus
used to move the piston against the external force F, and this energy is
accordingly transferred to the surroundings. The gas pressure in the
cylinder is reduced during the expansion, and at equilibrium it has
become equal to the external pressure.
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Finally, we will look at cases where the volume changes by small
amounts. For a small change in volume, dV , the work is

dw = −PextdV , (4.4)

whereby the amount of energy dU = dw = −PextdV is added to the
system (i.e., the gas in the cylinder). The expression (4.3) for the work
is valid only when the external pressure is constant throughout the
entire volume change from Vbefore to Vafter (with ∆V = Vafter −Vbefore),
while Equation (4.4) is general and can be used when the pressure
varies. In the latter case, one makes a sequence of small volume
changes from Vbefore to Vafter and sums up the work dw from all of
them to obtain the total work. Thereby one uses the appropriate value
of Pext for each step.5 Work performed by a volume change as ex-
pressed by Equations (4.3) and (4.4) is called pressure and volume
work (PV work).

Key points

• The gas pressure P is equal to the force per unit area that the gas
molecules exert on a wall surface when they collide with it.

• When a gas is compressed through the action of an external force,
such as via a piston, the gas is supplied energy in the form of work.
The external force sets the piston in motion and this motion in-
creases the energy of the gas molecules when they collide with the
piston.

• When a gas expands against an external force, such as via a piston,
the gas gives away energy in the form of work. This is done when

5Mathematically, this means that an integration is performed

w =
∫ w

0
dw =

∫ after

before
dw = −

∫ Vafter

Vbefore

Pext(V )dV ,

where it is taken into account that the external pressure may vary when the vol-
ume changes, Pext = Pext(V ). An important case is when a volume change is done by
varying Pext in the setup shown in Figure 4.6 and equilibrium is maintained so that
Pext = P throughout the whole process (since P depends on the volume, Pext must
be varied too). This is an example of reversible work – a subject that is treated in Sec-
tion 4.3. If, on the other hand, Pext is constant during the volume change we have

w = −
∫ Vafter
Vbefore

PextdV = −Pext
∫ Vafter
Vbefore

dV = −Pext∆V , and Equation (4.3) is recovered.
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the gas molecules deliver energy to the surroundings via the pis-
ton, which is set in motion from collisions by the molecules that
thereby lose kinetic energy.

• The work dw done on the gas during a small volume change, dV , is
given by dw = −PextdV , where Pext is the external pressure acting
on the piston. This kind of work, which is done when the gas vol-
ume is changed, is called pressure and volume work (PV work).

• When the volume is changed by ∆V and Pext is constant through-
out the entire volume change, the work equals w = −Pext∆V .

• At equilibrium, the pressure P of the gas is equal to the external
pressure, P = Pext.

4.2 To work and to heat
Definition of work and heat; the first law of thermodynamics

We have seen how one can change the energy of a system in two dif-
ferent ways: by performing work (w) on the system or adding heat (q)
to the system. The signs of q and w are always determined from the
system’s point of view – positive means addition and negative means
removal of energy in the form of work or heat. We have shown that
one can raise the temperature of a gas by, for example, performing
work on it (by compressing the gas) or simply by heating it, that is, to
bring it into contact with something that has a higher temperature. In
both cases, we increase the energy of the gas molecules – the differ-
ence is the way we do it. Upon compression, energy is transferred to
gas molecules when some part of the gas container walls (for example,
a piston) moves. During heat transfer, energy is also brought from the
wall to the gas molecules, but the wall is stationary. Another way to
transfer energy in the form of work to a system is, for instance, to stir
with a propeller in a gas or liquid. When the propeller surface hits the
molecules, they get a higher energy – an energy that is then spread in
the system.

Let us examine what happens when a monatomic gas is heated by
heat transfer through a container wall that is, for instance, made of
metal. When a gas particle collides with the wall it may lose or gain
energy. If the wall is hot and its atoms vibrate strongly, it is very likely
that an approaching particle will collide with one or a few vibrating
wall atoms in such a way that the particle shoots away from the wall
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Figure 4.8 A gas particle that collides with a wall consisting of atoms that
vibrate strongly (the wall is hotter than the gas) has a high probability to be
shot away from the wall at a higher speed than it had before.

at a higher speed, and thus higher kinetic energy, than it had when
it approached (see Figure 4.8). As a result, the wall atoms that the
particle has hit will vibrate less strongly – they have lost energy to
the gas particle – but energy from nearby wall atoms will at the next
moment be redistributed, which means that the atoms very soon vi-
brate “normally” again.

If the gas particle has a very high speed when it approaches – a
few particles will have this even if the gas is cold – it is likely that
it loses energy when it hits the surface and then the wall atoms in-
stead receive energy and vibrate faster. (This is like hitting a string
to make it vibrate.) If the gas is colder than the wall, it is, however,
more common that the gas particles receive rather than lose energy at
collisions with the wall. Thus, net energy is transferred from the hot
wall to the cooler gas; the kinetic energy of the gas particles increases
and likewise the gas temperature. This is an example of heat transfer
to the gas from the environment. (We assume that the wall similarly
obtains energy in the form of heat from the rest of the world on the
other side of the wall, which in this case is assumed to have a higher
temperature than the gas.)

Similarly, if the gas is warmer than the wall, collisions will on av-
erage result in a reduction in energy of the gas particles that collide
with the surface and, consequently, the wall atoms will vibrate faster.
Heat will then be transferred from the gas to the wall and then passed
on to the surroundings (q for the gas, which is our system, is negative
here). In these two cases, the energy of the gas has increased or de-
creased, respectively, without any change in the gas volume (the gas
container walls are stationary) and we have

∆U = q (when V is constant), (4.5)
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where q is the total amount of energy that has been added to the gas
via the vibrations of the wall atoms. Note that “removal” = “nega-
tive addition,” so when heat has been removed from the system q is
negative and ∆U = q < 0.

If the wall and the gas have the same temperature and the wall is
still stationary, no net energy will be transferred by collisions between
the gas molecules and the wall atoms (it is thereby equally likely that
energy is transferred in one direction as in the other during the colli-
sions). Since no net energy is transferred, q = 0.

For polyatomic molecules, energy will be transferred both to and
from their vibrational and rotational motions when they collide with
the wall. A molecule can, for example, vibrate faster after the collision
than before, whereby it has received energy from atoms in the wall,
which vibrate somewhat slower until energy has been supplied from
the nearby wall atoms. Energy transfer can also occur between the
wall and the gas molecules through radiation,6 whereby vibrational
and rotational motions are changed.7 The same principles regarding
transfer of energy at different and same temperatures also apply in
these cases.

In the case where the walls are made of a completely heat insu-
lating material, heat is not led through the wall. The system is then
fully thermally insulated. The outermost surface layer of the inside
of the container wall can, however, possibly be heated or cooled by
the gas. This requires an insignificant amount of energy that can be
completely neglected in the current context and the heat is not passed
on through the wall. The surface layer thereby attains the same tem-
perature as the gas without any significant change in energy of the
gas and q = 0 in practice.8 Even if a gas molecule changes its energy
at each collision with the wall, the effects of the velocity changes will

6Everyday examples of heating through radiation are to heat food on an infrared
cooktop or in a microwave oven. In the first case, the radiation mainly excites vibra-
tional motions of molecules in the food and in the latter rotational motions of water
molecules, from which energy spreads to the other molecules in the food.

7The electronic states of the molecules are involved only if the frequency of the
radiation is high enough (visible light and UV). Electronic transitions can be impor-
tant if the wall temperature is very high, such as when the material is white-hot.
The significant energy transfer occurs usually at the lower frequencies (infrared and
microwave), which involves transitions for rotational and vibrational states of the
molecules.

8A fully thermally insulating wall is obviously an idealization. In reality, there is
always some, albeit small, transfer of heat through the wall.
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on average be the same as during the elastic collisions we considered
in the preceding section.

When the system is fully thermally insulated, energy can be added
or removed only in the form of work, for example, by moving a wall
(piston) so that the volume is changed. When the walls are not ther-
mally insulating, the energy of the system can be changed both in the
form of heat (like heat conduction through the walls) and work (for
instance, a volume change). Both forms of energy change may occur
simultaneously.

What, then, is the essential difference between transferring heat
and performing work (like compression) when one changes the en-
ergy of a system? During compression, the energies of the gas
molecules are changed due to the macroscopic movement of the en-
tire piston – a movement that we can completely control. We can,
for instance, change the direction of the piston movement whenever
we want. During heat transfer, on the other hand, energies of the gas
molecules are changed due to the interaction with the individual wall
atoms that havemicroscopicmovements (vibrations) – movements that
we cannot control in a precise manner. The essential difference be-
tween work and heat is thus the way in which energy is transferred to
the system; in particular, whether the transfer thereby can be directly
controlled macroscopically or not. One can express the difference as
follows:

Work is energy transfer due to changes in the external macro-
scopic variables that define the system and that directly affect the mo-
tions of the molecules – variables that we can control macroscopically
(like volume).9 Heat is all other forms of energy transfer, i.e., any en-
ergy transfer that is notwork. The sum of heat and work is thus always

9Amore accurate way to define work is that it is the energy transfer due to changes
in the variables that define the system and that affect the equations of motion of the
molecules (i.e., the equations themselves or their boundary conditions). Examples
of work are energy changes due to an alteration in location of the system’s external
enclosing surfaces (walls), a change of the volume of or the number particles in the
system. If the system is subjected to an external electric field, the energy change due
to variations in the field is also work.
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equal to the total internal energy change of a system10

∆U = q +w. (4.6)

This expression is a common formulation of the first law of thermo-
dynamics.

In this form, it may look as if the first lawwould be trivial: the sum
of work and what is not work obviously must be everything. How-
ever, the first law of thermodynamics expresses another fact that we
touched upon in Section 2.1. One of the main principles of physics is
that energy cannot be destroyed or created, it can only be transported
from one place to another or be converted from one form to another
(like from potential to kinetic energy or vice versa). The total energy
U of a system can be changed only by adding or removing energy, that
is,

The change in energy of a system
= The energy transferred across the system’s boundaries,

whereby addition is a positive transfer and removal is a negative
transfer. This is the main content of the first law. The splitting of the
energy transfer into heat and work in Equation (4.6) is solely a ques-
tion of a definition of these two concepts.

The difference in internal energy between the initial and final
macroscopic equilibrium states of the system, ∆U , is uniquely deter-
mined by these states, while this is not the case for the division of ∆U
into q and w. There are many ways to go between two macroscopic
states and ∆U has the same value regardless of the manner in which
we do the change. The values of q and w, on the other hand, depend
on how the change is done. One says that U is a state function, while
q and w are not.

The concept of a state function generally means a macroscopic
physical quantity that is determined by the system’s macroscopic state
(at equilibrium) and that does not depend on how this state has been
reached. Examples of such functions are internal energy U , entropy
S , pressure P, temperature T , volume V , number of particles N , and

10Sometimes this expression is written as ∆U = q −w, where w is the work that the
system performs on the surroundings. In this book w always means the work done on
the system. The only difference between the two alternatives is a change in sign of w
everywhere.
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the number of moles n, as well as quantities that are defined as com-
binations of these such as the Helmholtz energy A = U − TS .11 When
the system changes from one equilibrium state to another, the change
in value for each of these quantities is uniquely determined by the
system’s initial and final states.

Heat andwork are accordingly not state functions because they are
not determined by the initial and final macroscopic states of the sys-
tem. They are instead determined by how the process is designed that
takes the system between these states.12 For example, for a liquid one
can change the energy by a certain amount by heating it, stirring in it
with a propeller, or both. In the first case q , 0 and w = 0, while in the
second q = 0 and w , 0, and in the third q , 0 and w , 0. However, the
sum ∆U = q +w is equal when the initial and final state, respectively,
are identical in the three cases. It is only the division of ∆U into q and
w that are different. When energy is added, the thermal motions of
the molecules are increased in all three cases and the same applies to
other forms of molecular energies (see the discussion in Section 2.1).
For a given macroscopic state of the system, the magnitude and inten-
sity of the thermal motions have nothing to do with how the energy
was transferred to the system in order to reach this state – irrespec-
tively of whether heat or work was supplied. The molecules “do not
remember” how they received the energy.

In thermodynamics, the terms heat and work only refer to energy
transfer. You cannot say that a system contains a certain amount of
heat, just as you cannot say that it contains a certain amount of work.
Our everyday language is a bit deceptive in this regard; we happily
talk about heat as if it were something that exists in a system. In the
summer, you may want to avoid the heat outdoors, or during a cold
winter, perhaps you like the heat in a sauna. What you then mean is
something that is hot, i.e., something that has a high temperature. It
is only when you are exposed to the high temperature that you expe-
rience heat in the thermodynamic sense, that is, when heat is trans-
ferred to your body. “Being hot” is thus not the same as “to contain
heat.” The latter has no meaning. Nobody would say that an exca-
vator machine contains work just because it can do work. A system

11Examples of state functions that we introduce later are heat capacity, enthalpy,
and Gibbs energy. The latter two are defined as combinations of other state functions.
12Heat and work are therefore sometimes called process functions. They are also

called path functions since they depend on which “path” is taken between the initial
and final states.
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contains simply an amount of energy that can be transferred as heat
or work (or both) to another system. Howmuch of the energy transfer
that is heat or work depends, as we have seen, on how the process is
done.

The symbol ∆ is used in thermodynamics only to indicate changes
in values of state functions, like ∆U , ∆V , and ∆T . Work and heat are
denoted w and q without a ∆ because they are not state functions.13

However, one writes dw and dq to denote small quantities of energy
that are transferred in the form of work and heat,14 whereby the first
law of thermodynamics is written

dU = dq + dw. (4.7)

Key points

• Work (w) and heat (q) constitute different forms of energy transfers
to or from a system. How much of the energy transfer that is work
or heat, respectively, depends on how one performs the transfer.

• Work is energy transfer due to changes in the external macroscopic
variables that define the system and that directly affect the mo-
tions of the molecules – variables that we can control macroscopi-
cally (like volume).

• Heat is all other forms of energy transfer, whereby the sum of heat
and work constitutes the entire energy transfer.

• The signs of q and w are determined from the system’s point of
view (positive for addition and negative for removal of energy).

• The energy of a system can only be changed by energy transfer to
or from the system, that is, ∆U = q +w, or for small amounts of
energy, dU = dq + dw. This is the first law of thermodynamics.

13The erroneous notation ∆w and ∆q would imply that w and q were properties of
the system, which they are not.
14To indicate that it is not a question of a small change in a state function such as

dU , dV , and dT , one sometimes uses modified symbols d̄w and d̄q for small amounts
of work and heat.
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4.3 To work quickly or slowly
Entropy during volume changes; reversible work and the

second law

When we discussed the entropy S for an ideal gas in Sections 2.3 and
2.4 we saw that S depends on the volume. We treated the case when
we allowed a gas that was trapped in a small container to expand
into a larger space that was initially empty (vacuum). We made the
expansion by removing a partition (Figures 2.11 and 2.12) and we
found that the entropy changed by

∆Sconf =NkB ln

(

Vafter

Vbefore

)

, (4.8)

where N is the number of particles, Vbefore is the gas volume before,
and Vafter the gas volume after the expansion. The change in entropy
is, as we have seen, a consequence of the change in the number of
particle configurations.

This type of expansion is called “free expansion” since the gas,
after our removal of the partition, acquires free access to the larger
volume without anything being in its way. In such an expansion no
work is performed, w = 0. The kinetic energy of the ideal gas does not
change. No heat is exchanged with the surroundings, q = 0. Thus, the
total energy of the gas is unchanged, ∆U = 0. In contrast, the entropy
is changed by the amount ∆Sconf that is positive.

The gas expansion that we discussed at the end of Section 4.1 is
not a free expansion since the gas, in order to expand, has to push a
piston against a force F. To move the piston and expand the volume
of the gas, the gas molecules will lose kinetic energy: the gas performs
work on the surroundings and w is negative. This energy loss implies
a negative contribution to the entropy of the gas because there is less
energy to distribute among the gas molecules after the expansion. At
the same time, the increased volume implies an increase in the num-
ber of particle configurations and this gives a positive contribution to
the entropy. The latter contribution is given by Equation (4.8) for an
ideal gas. If one performs the expansion without heat exchange, q = 0
(thermal insulation), these two contributions constitute the entire en-
tropy change. The same applies to compression, but then, the signs of
the contributions are reversed (the first positive and the second nega-
tive).
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Thus there is one positive and one negative contribution to the en-
tropy change of the gas. As we shall see, there is one important case
where these contributions will exactly cancel each other so ∆S = 0,
namely, when we make the volume change reversibly and (still) with-
out heat exchange. A reversible process is, as we have seen, a process
that is performed in very small steps (infinitely slowly) when the sys-
tem is in equilibrium the whole time. The second law, Equation (2.18),
says that for an arbitrary process that is carried out in small steps, the
change in S for each step is

dS =
dq

T
+ dSirrev,

where dq is the heat added during the step and dSirrev is the entropy
increase due to irreversible changes. This relationship implies that
dS = dSirrev when dq = 0. The total change ∆S for the entire pro-
cess is the sum of dS for all steps. For an arbitrary process with no
heat exchange (q = 0), we thus have ∆S = ∆Sirrev. When the process
is carried out reversibly ∆Sirrev = 0 and hence ∆S = 0. On the other
hand, for an irreversible process we have ∆Sirrev > 0 and the entropy
of the system increases. An example of an irreversible process with no
heat exchange that is familiar to us is a free expansion of an ideal gas
where ∆Sirrev = ∆Sconf so that ∆S > 0.

Let us now see how it can be true that the entropy is unchanged
during a reversible volume change in absence of any heat exchange.
We enclose the gas in a cylindrical container with a movable piston
that can move without friction. The cylinder is placed upright in a
vacuum chamber and we place a weight on the piston, as illustrated
in Figure 4.9. The masses of the piston and the weight are chosen
such that the volume of the gas has a certain value V at equilibrium.
The gravitational force on the weight and the piston is F (the down
arrow in the figure) and at equilibrium the gas pressure is P = F/a,
so the force on the piston from the inside exactly counteracts F. The
system is thus at equilibrium when the volume is V . We assume that
the cylinder walls and the piston are thermal insulators, so no heat
can be exchanged.

Let us examine what happens if the volume of the gas would
change by a very small amount from V to V + dV due to a
displacement of the piston by a small distance ds. Thereby the pis-
ton carries out a small amount of work dw = F × ds on the gas and
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Figure 4.9 A gas enclosed in a cylinder with a freely movable piston. The
piston is assumed to run without friction. In the upper part of the cylinder
there is a vacuum and a weight is placed on top of the piston. The gravita-
tional force F from the piston and the weight balances the force from the gas
pressure on the inside of the piston.

dV = −a× ds, which means that (compare with Equation (4.2))

dw = Fds = −FdV
a

= −PdV . (4.9)

Accordingly, the energy of the gas is changed by15

dU = dw = −PdV . (4.10)

The potential energies of the piston and the weight change in the grav-
itational field when they move the distance ds, but nothing else is
changed for them. Their energy change is −dw because dw is trans-
ferred to the gas.

What happens to the total entropy Stot during this change in vol-
ume? If the entropy would increase, the volume change would be
spontaneous, which implies that the system was not in equilibrium
before the volume was changed. Since we assumed that the system
was in equilibrium when the volume was V , this cannot be the case.
The same applies if the volume would change in the opposite direc-
tion (with opposite sign for dV ). If the entropy then increases, the

15For simplicity we disregard the insignificant change in potential energy due to
gravity for the gas molecules.
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system could not have been at equilibrium at volume V . Thus Stot has
a maximal value when the volume is V and for a very small volume
change we have dStot = 0, which we can recognize as the general equi-
librium condition (see the Stot plot in the upper part of Figure 3.18 –
this upper plot applies for the general case). Thus, the entropy is un-
changed when the volume is changed by dV (in principle, this applies
when dV is very small, in the limit dV → 0).

Now, dStot consists of the entropy changes of the gas and the sur-
roundings, but the latter change must be equal to zero because the
only thing that happened in the surroundings was that the potential
energies of the weight and the piston were altered in the gravitational
field. Thus, the entropy dS for the gas must be equal to dStot, but since
the latter is zero we have dS = 0. Accordingly, if we do a very small
change in volume at equilibrium the entropy is unchanged, which is
exactly what the second law of thermodynamics says for a reversible
process with no heat exchange.

To do a large volume change reversibly, we must perform it in
very small steps (infinitely slowly). The gas pressure P will change
when the volume is varied and to maintain equilibrium all the time,
we must change the force F (by increasing or reducing the weight on
top of the piston in small steps) so that P = F/a is fulfilled through-
out. The reasoning above applies to each small step and the entropy
change is zero,

∆S = 0,

since each step gives zero (dS = 0) and ∆S is the sum of changes in all
steps.16

Note that the gas does not “know” what there is on the other side
of the piston; the only essential thing is that there is a force F there
that exactly counteracts the force due to the gas pressure all the time.
This force F can arise from gravity as in the earlier example, or, for ex-
ample, from a gas that is located on the exterior side of the piston and
that has the same pressure as the gas inside (compare with Figure 4.6).

16This reasoning applies as an approximation that becomes better when the steps
become smaller and smaller, and at the same time, more numerous. When the steps
become infinitely small and infinitely many, the reasoning becomes exact. During the
volume change, work has been performed, i.e., both V and U have changed. Since
dS = 0 for each step, we have simply followed a so-called level curve (contour curve)
where S = S(U,V ) = constant when U and V vary (compare this with a map where
each level curve for a mountain indicates the same height above sea level).



104 Thermodynamics Kept Simple – A Molecular Approach

The entropy change of the gas in the cylinder is independent of what
is causing the force F and it follows that ∆S = 0 provided that the
volume change is performed reversibly and q = 0.

This reasoning can be generalized to other forms of work, and,
generally, the entropy of a system is not changed during reversible
work provided no heat exchange occurs. If heat dq is added to the
system while the reversible work is performed, we have instead dS =
dq/T whereby it is only the heat transfer that gives rise to an en-
tropy change.17 For irreversible work18 we have dS > dq/T and thus
dSirrev > 0 (see Equations (2.18) and (2.19)).

Note the important difference between heat and work during a re-
versible process. At thermal equilibrium the temperature is the same
for the system and the surroundings, so when heat is transferred re-
versibly the total entropy is constant since the entropy increase in the
system and the entropy decrease in the surroundings (or vice versa)
exactly cancel each other. The reason that the total entropy is constant
during reversible work is, on the other hand, that the entropy is un-
changed in the system as well as in the surroundings, i.e., individually
in each part.

In classical thermodynamics the second law of thermodynamics is
not necessarily formulated as a statement about entropy; there are
several equivalent ways to express it. One formulation, usually at-
tributed to Lord Kelvin,19 is a postulate about conversion of heat

17When reversible work is performed on the system, one does not excite the system
from a lower to a higher energy level, but instead the energy increase occurs by a shift
of the energy levels themselves to higher energy values. This does not lead to any
change in S . When heat is added, the system is excited to a higher energy level and
thereby S increases since the number of ways to distribute the energy is increased.
18If work is carried out irreversibly on a system, such as a compression at a rate

different from zero, the system becomes excited to a higher energy level simultane-
ously as the levels are shifted to higher energy values. In the case of an irreversible
compression, this results in the addition of a larger amount of energy to the sys-
tem than during the corresponding reversible compression (i.e., for the same volume
change). The excitation that occurs because the rate is not zero leads to an increased S
for the same reasons as an addition of heat (i.e., an increase in the number of ways of
distributing energy). However, this increase in entropy is not included in the amount
dq/T (which is solely the entropy change due to heat transfer), but it is instead in-
cluded in dSirrev.
19It is sometimes also called the Kelvin-Planck formulation of the second law. Lord

Kelvin (William Thomson) was a British physicist who lived 1824–1907. He has given
important contributions to thermodynamics and other parts of physics. Max Planck
(1858–1947) was a German physicist who made many important contributions to
theoretical physics, in particular to the basis of quantummechanics.
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to work in cyclically operating machines. That a machine operates
cyclically means that it repeats the same process again and again,
such as a steam engine or a conventional motor. After one cycle, the
machine will return to the same macroscopic state as it had at the
beginning of the cycle. Kelvin’s formulation of the second law of ther-
modynamics states:

It is not possible to construct a cyclically operating machine
that takes heat from a heat reservoir at one temperature and
converts it completely into work without changing something
else permanently.

(A heat reservoir is a system at a certain constant temperature
from where one can take heat.)

It is an intellectual challenge to show that Kelvin’s formulation
is equivalent to the following formulation of the second law, which
corresponds to the one we have used:

There is a state function called entropy, S , which has the prop-
erty that dS = dq/T + dSirrev, where dq is added heat, T is the
absolute temperature, and dSirrev ≥ 0, where the equal sign ap-
plies for reversible processes.

In this book, we will not show that these formulations are equiva-
lent; the arguments which show that Kelvin’s formulation leads to the
existence of entropy and gives its properties can be found in many
textbooks in thermodynamics (it is usually in this rather abstract and
difficult way that entropy is introduced into the traditional teaching
of thermodynamics).

However, it is not so difficult to show that Kelvin’s formulation is a
correct statement based onwhat we know about entropy (i.e., from the
formulation of the second law that we have used). Because the process
performed by the machines is cyclic, this means that all properties of
the system (the machine) are equal before and after a cycle, for in-
stance Ubefore = Uafter and Sbefore = Safter, which means that ∆U = 0
and ∆S =0. Since ∆U = q +w (according to the first law of thermo-
dynamics), we have q +w = 0, that is, q = −w. This means that all the
energy in the form of heat q that is taken up by the machine from the
heat reservoir must be delivered in the form of work to the surround-
ings (delivered work = −w), as illustrated in Figure 4.10. The question
is whether this can happen or not.
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Figure 4.10 A hypothetical machine that operates cyclically and that takes
up the heat q from a heat reservoir and delivers work −w to the surroundings
during a cycle.

If the machine should be able to do work (that is, w < 0), then q
must be positive. The entropy change of the system due to the up-
take of heat q is necessarily positive (the heat q > 0 absorbed at tem-
perature T > 0 gives the entropy contribution q/T ). The only addi-
tional entropy change that the machine can have is from the contri-
bution ∆Sirrev, which cannot be negative. If q > 0, this means that ∆S
for the machine during a full cycle consists of a positive contribution
and a contribution that is not negative. Thus, it is impossible to have
∆S = 0, which is required for the process to be cyclic. The only possi-
bility to obtain ∆S = 0 is that q = 0 and that the process is reversible
(∆Sirrev = 0). This implies that w = 0, and hence the machine cannot
perform any work. This is what Kelvin’s formulation of the second law
of thermodynamics expresses.

A perpetual motion machine is a machine that produces work
without any energy being supplied. Such a machine is impossible
to construct according to the first law of thermodynamics, because
energy cannot be created out of nothing but must be supplied from
somewhere else. A perpetual motion machine of the second kind is a
machine that produces work by completely converting heat into work
without anything else being changed. Such a machine is impossible
according to the second law of thermodynamics. If it were possible to
make one, you could, for example, have a ship that is driven forward
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Figure 4.11 A heat engine takes energy in the form of heat at a high tem-
perature, converts some of it to work (performed on the surroundings), and
delivers the rest of the energy as heat at a low temperature.

without fuel by taking heat from the ocean and converting it to work
that drives the propeller.

However, it is possible to construct a machine that produces work
by partially converting heat into work, such as a steam engine. It takes
energy as heat at a high temperature (the hot steam) and delivers a
smaller amount of heat at a low temperature (the cold surroundings).
The energy difference is the work that the steam engine performs.
Such a kind of machine that produces work by taking heat at high
temperature and releasing part of it at low temperature is generally
called a heat engine, schematically depicted in Figure 4.11.

A heat engine which is run in the opposite manner, so that it
uses work to take heat from a low temperature and deliver a greater
amount of heat at a high temperature, is a heat pump that we dis-
cussed earlier in Section 4.1. This principle is also used in refrigera-
tors (Figure 4.1).
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Key points

• The second law of thermodynamics, dS = dq/T + dSirrev, where
dSirrev ≥ 0, implies that the entropy of a system can be changed
only by heat transfer (q , 0) or by the occurrence of an irreversible
process (dSirrev > 0).

• Reversible work does not give rise to any entropy change.

• The second law of thermodynamics can alternatively be formu-
lated: It is not possible to construct a cyclically operating machine
that takes heat from a heat reservoir at one temperature and con-
verts it completely into work without changing something else
permanently.

4.4 The gas follows the law
The ideal gas law

Let us examine an ideal gas that is expanded without any heat ex-
change with the surroundings. We assume that the expansion takes
place reversibly. As we have seen, when the volume of the gas in-
creases the number of possible particle configurations grows and this
results in a positive contribution to the entropy,∆Sconf, given by Equa-
tion (4.8). Upon expansion, the gas performs work on the pistonwhich
causes the energy of the gas to decrease. This energy loss implies a
negative contribution to the entropy of the gas, denoted ∆Sener, be-
cause there is less energy to distribute among the gas molecules after
the expansion. Since reversible work does not give rise to any change
in the entropy of the gas, these two contributions must exactly can-
cel out. This observation has an important consequence as we shall
now show, namely, the ideal gas law. Anyone who is not interested in
details can go directly to Equation (4.14), but it is a good idea to note
the principles in what follows.We first calculate the entropy contribu-
tions dSconf and dSener when the volume is changed by a small amount
dV . (These contributions are given by Equations (4.11) and (4.12)).
From the condition dS = dSconf + dSener = 0, expressed in Equation
(4.13), then follows the result, Equation (4.14).

A little derivation*
Let us examine the different contributions to the entropy change

for the expansion. When we do an expansion with a small volume
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change dV , we have Vbefore = V and Vafter = V + dV . The entropy con-
tribution from the increase in the number of configurations, dSconf,
becomes, according to Equation (4.8)

dSconf =NkB ln

(

V + dV

V

)

=NkB ln

(

1+
dV

V

)

.

Since ln(1 + x) ≈ x when x is a small number (as illustrated in Figure
4.12), this means that

dSconf ≈NkB
dV

V
.

When dV is a very small number, this approximation applies to
a very high accuracy, and we have in practice an equal sign in the
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y = ln(1+x)
y = x

Figure 4.12 A plot of the functions y = ln(1 + x) (dashed curve) and y = x

(solid line), which shows that when x is close to zero, we have ln(1 + x) ≈ x.
We see that when x is very small, there is practically no difference between
ln(1+ x) and x.

relationship, that is,20

dSconf =
NkB
V

dV . (4.11)

20We can alternatively obtain this result mathematically by differentiating Sconf.
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How large is the change in entropy dSener because of the energy
loss due to the work? The energy change of the gas when the
gas molecules push the piston during the expansion is given by
Equation (4.10)

dU = −PdV .

In Section 2.7 we discussed how much the entropy is altered when
we vary the amount of energy that is distributed over a system’s mi-
crostates. In this discussion, we considered the variation in energy
due to heat transfer, but the result is more general than that. We
saw that the derivative dS/dU is the rate of entropy change when
energy is varied, and according to our definition of temperature we
have dS/dU = 1/T (Equation (2.14)). If we multiply this deriva-
tive with the energy amount dU , we obtain the change in entropy
(Figure 4.13)

dSener =
1
T
dU

and when we insert dU from above we obtain

dSener = −
P

T
dV . (4.12)

S 

U 

slo
pe 1

/T
 

dU 

dSener = (1/T) × dU 

Figure 4.13 The entropy S plotted as a function of the energy U (solid line)
has the derivative 1/T (= the slope of the curve). When U increases with
dU (= the base of the right-angled triangle) S accordingly increases with the
slope × the base.
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The entropy change dS for the gas is given by the sum of these two
contributions21

dS = dSconf + dSener.

When we insert Equations (4.11) and (4.12), and the condition dS = 0,
we obtain

dS =

(

NkB
V
− P

T

)

dV = 0. (4.13)

Since dV , 0, the parentheses must be equal to zero, that is, NkB/V =
P/T , which can be written as PV =NkBT . This is our final result.

The ideal gas law reads

PV =NkBT . (4.14)

It is a relationship between the number of molecules, pressure, vol-
ume, and absolute temperature, which applies generally to an ideal
gas. Alternatively, we can express the ideal gas law in terms of the
number of moles n =N/NAv and the universal gas constant R = kBNAv

PV = nRT . (4.15)

We are now going to examine some of its consequences.
If we divide Equation (4.14) by P on both sides, we obtain V = bT

where b = NkB/P. Thus, the gas volume is proportional to tempera-
ture when the pressure and the number of gas molecules are constant
(whereby b is constant). This applies, for instance, to the gas in the
container in Figure 4.9 where P is constant since P = F/a = constant.
The distance between the piston and the container bottom is propor-
tional to the gas volume and thus also proportional to the tempera-
ture. By measuring this distance, we can determine the temperature

21For the mathematically versed it can be said that dS is given by the differential
expression

dS =

(

∂S

∂V

)

U,N
dV +

(

∂S

∂U

)

V ,N
dU,

where the first term on the right-hand side yields dSconf and the second dSener where
(∂S/∂U )V ,N = 1/T (the subscript on the derivative shows which variables are held
constant in the partial derivation). Note that we implicitly assume that the number
of particles N is constant throughout the current section.
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of the gas when we know how many moles of gas the container con-
tains.22

This relationship can be used to construct a thermometer. By plac-
ing the container with the piston (= the thermometer) in contact with
some system so that heat can be exchanged, we can determine the sys-
tem’s absolute temperature by measuring the gas volume in the ther-
mometer. We assume thereby that the thermometer is so small that
the heat exchange does not significantly affect the temperature of the
system. At thermal equilibrium the temperature of the thermometer
and the system is the same. If we know the force F, how much gas
we have in the cylinder and the value of kB, we can mark the cylin-
der with a scale in Kelvin units23 and then directly read the absolute
temperature from the piston position.

A similar principle is used, for example, for ordinary alcohol ther-
mometers, but then it is the volume of the liquid (the alcohol) that
is read on a scale which has been calibrated in advance. In contrast
to the case of an ideal gas, the liquid’s volume cannot be related in
a simple manner to the absolute temperature. Instead, one has to do
the calibration empirically by comparing with other thermometers or
by using freezing/boiling points of a substance (for example, water)
as points of reference for some scale. This is the basis for so-called
empirical temperature scales such as the Celsius and Fahrenheit
scales.

By dividing Equation (4.14) with V on both sides, we obtain

P = ρkBT , (4.16)

22If the distance between the piston and the container bottom is h, we thus have
T = const × h with const = Mg/NkB = Mg/nR, where M is the combined mass of
the weight and the piston, and g is the acceleration due to gravity. We assume of
course that the gas to a good approximation behaves like an ideal gas. This means
that the temperature cannot be too low. (If one is to determine the temperature with
high precision it is necessary to take into account that an actual gas is not ideal – a
complication we do not bother with here.)
23In this context, we can clearly see the connection between the unit of temperature

and the value of kB. Nothing fundamentally prevents us from choosing any value for
kB; we would even be able to choose its value equal to 1. If we did the latter, we would
have entropy as a dimensionless number (i.e., S = lnΩ) and measure the absolute
temperature in energy units (from T = [dS/dU ]−1 = dU/dS when V and N are con-
stant, i.e., T = (∂U/∂S)V ,N ). It is only when we insist on measuring temperatures in a
unit equal to 1/100 of the difference between the boiling point and freezing point of
water at about atmospheric pressure at the Earth’s surface that kB acquires the value
we usually use (and there is obviously nothing fundamental with that choice).
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where ρ = N/V is the molecular density of the gas, that is, the num-
ber of molecules per unit volume. Equation (4.16) implies that the
gas pressure is proportional to the density when the temperature is
constant. A doubling of the density thus gives a doubling of pressure.
This is because twice as many molecules collide per unit time against
the walls of the container for the gas; the total force against the walls
is therefore doubled.

Equation (4.16) also implies that the gas pressure is proportional
to the temperature when the density is constant. A doubling of the
temperature of the gas thus gives a doubling of the pressure. This in-
crease in P is a consequence of the fact that the molecules move faster
when the temperature is increased, and therefore they collide more
strongly and more frequently with the container walls. The question
is, how much faster do they move (on average)?

One might think that the pressure is proportional to the average
molecular speed, but this is not the case. Instead, it is the average ki-
netic energy (translational energy) per molecule, ε̄tr, that matters (a
bar over a symbol indicates average value). By examining the molec-
ular collisions with a wall, one can show that (see Appendix D) the
pressure is given by

P =
2ρ
3
ε̄tr. (4.17)

Since the translational energy of a molecule with speed v and mass
m is given by εtr = mv2/2, a doubling of ε̄tr corresponds to a dou-
bling of the value of v2 averaged over all molecules. The speeds of the
molecules will on average increase by a factor of

√
2 when the temper-

ature and thereby the pressure is doubled.24

If we compare Equations (4.16) and (4.17) we see that, kBT =
2ε̄tr/3, that is,

ε̄tr =
3
2
kBT , (4.18)

which means that the average translational energy of the molecules
and the temperature are proportional to each other. This provides a
direct illustration of the fact that if one somehow increases the kinetic
energy, the temperature will rise, and vice versa. It also provides an
illustration of the fact that an energy amount of the order kBT is easily

24One can alternatively show that this applies by taking the average of |v| for all
molecules.
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accessible to a molecule at temperature T (see the discussion on the
availability of energy in Section 2.8).

A, perhaps, astonishing fact is that Equation (4.18) is not only
valid for ideal gases, but it also applies for strongly interacting
molecules in a liquid25 (a more in-depth analysis is needed to show
this). The relationship between temperature and motion is accord-
ingly quite general. The other results in this section are, however,
valid for ideal gases only.

For a monatomic ideal gas, the translational energy constitutes the
entire energy, so for N molecules we have U =Nε̄tr.26 By inserting ε̄tr
from Equation (4.18) we obtain

U =
3
2
NkBT =

3
2
nRT (monatomic ideal gas), (4.19)

where n is the number of moles of gas. For an ideal gas of polyatomic
molecules, the energy is larger than this at a given temperature,
because such molecules have energy also in the form of, for instance,
vibrational and rotational energies. These energy contributions in-
crease too as the temperature increases, and themolecules vibrate and
rotate faster.

Equation (4.18) is an example of the general fact that the average
energy per particle, ε̄ , for an ideal gas only depends on temperature,
ε̄ = ε̄(T ). This is because the molecules in an ideal gas do not interact
with each other, so the energy is independent of the distance between
the molecules, that is, independent of the gas density. The total inter-
nal energy of the ideal gas is U =Nε̄(T ).

Key points

• The ideal gas law, PV = NkBT , relates the pressure P, volume V ,
and temperature T for an ideal gas ofN particles. The law can also
be written PV = nRT , where n is the number of moles of gas.

25The equation applies if the motions of the molecules are described by Newtonian
mechanics, which is a good approximation for many liquids. In cases where quantum
mechanics describe the motions of the molecules, the relationship between tempera-
ture and movement is more complicated.
26We assume here that the molecules are in their electronic ground state, which

applies if the temperature is not too high. The energy of the ground state of the gas
is here taken as the zero for the energy scale. If some other zero is used for this scale,
U =N (ε̄tr + ε0) where ε0 is the energy of the ground state of a molecule.
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• A molecule has an average translational (kinetic) energy, ε̄tr, that
is proportional to the temperature.

• The energy U of an ideal gas with N molecules is U = Nε̄(T ),
where the average energy per particle, ε̄, depends only on tem-
perature. For a monatomic ideal gas ε̄ = ε̄tr, while for ideal gases
of polyatomic molecules ε̄ > ε̄tr since such molecules have, for ex-
ample, vibrational and rotational energies in addition to the trans-
lational one.

4.5 To heat the kettle
Heat capacity

When we heat a kettle of water on the stove, we may be interested
in how much energy is needed to raise the temperature, for example,
from 20 to 100◦C. (At least we should be if we want to save energy.)
In order to do this as cheaply as possible (and as quickly as possible)
we should make sure that a lid is tightly closed so very little energy
is used to evaporate water. It will be most efficient if we use a closed
vessel, so practically all the energy is utilized to heat the liquid and
nothing else.

The amount of energy used is proportional to the temperature in-
crease ∆T (at least when ∆T is sufficiently small, which we assume
here) and the quantity of heat q we need to add to the system is given
by

q = C∆T , (4.20)

where C is a proportionality constant. C is called heat capacity and
it depends on the amount of substance to be heated: to warm up 2
liters of water a certain number of degrees requires twice as much
energy than to warm up 1 liter the same number of degrees, so C for
2 liters is twice that for 1 liter. The value of C depends also on what
substance we heat. More heat is needed to raise the temperature of 1
mole of water by ∆T than to do it for one mole of iron, so C is greater
for water than for iron.

If we take∆T = 1K(= 1◦C), we see from Equation (4.20) that q = C.
Thus, the heat capacity is the amount of heat needed to raise the tem-
perature of the system by one degree. The term heat capacity refers to
the system’s ability to “store” energy added as heat. The larger the C,
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Figure 4.14 Addition of heat q at (a) constant volume, V = const, and (b) at
constant pressure, P = Pext = const. In case (a) all added energy (q) remains
in the system and is used to increase the energy of the molecules there, ∆U .
In case (b), a part of the added energy is used to push the piston outwards
against the external pressure, whereby the energy of the molecules in the
surroundings is increased. Only a part of the added energy will remain as an
increased energy of the molecules in the system, ∆U .

the more energy can be stored for a given temperature increase. The
same amount of heat can subsequently be removed from the system
during the corresponding temperature decrease (we then have nega-
tive q and ∆T ).

Let us, for example, warm up a system that is enclosed in a ves-
sel, the walls of which are such that the volume V of the system is
constant (a pressure cooker is approximately such a vessel). When we
add energy in form of heat q, the energy of the system will increase
by ∆U = q (Figure 4.14a). No work is performed during the heating,
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w = 0, because the volume is constant. Thus, we have

q = CV∆T = ∆U when V = constant, (4.21)

where CV is the heat capacity according to the definition in Equation
(4.20). We have set the subscript V on CV to emphasize that the rela-
tionship q = CV∆T applies at constant volume.

If we have a monatomic ideal gas in the vessel, Equation (4.19)
applies and we accordingly have

∆U =
3
2
NkB∆T (monatomic ideal gas), (4.22)

so the proportionality constant is CV = 3
2NkB = 3

2nR in this case.
All added heat is used to increase the speeds of the molecules (in-
creased translational energyNε̄tr) and thereby the temperature. Since
the density ρ = N/V is constant, the gas pressure P is raised when T
increases (this follows from Equation (4.16)). As we have seen, the rise
in pressure occurs because of the increased speeds of the molecules.

If the gas instead consists of an equal number of polyatomic
molecules, only a fraction of the added energy q will go to an increase
in the speeds of the molecules (increased translational energy). The
rest will mainly go to an increase in their vibrational and rotational
motions.27 If we want to raise the temperature equally as much as for
the monatomic case, we therefore need to add more heat (note that
ε̄tr must be increased equally in both cases for an equal temperature
rise). Thus, the heat capacity CV for a gas of polyatomic molecules is
larger than for a gas of monatomic molecules.

As a further example, we take a system that has constant pressure.
It can, for instance, be contained in a vessel like the cylinder in Figure
4.6, where the system pressure P at equilibrium is equal to the exter-
nal pressure, P = Pext = constant (for example, a constant atmospheric
pressure). For the pressure to remain constant when we heat up the
system, the volume V must increase (Figure 4.14b). This increase will
make the density ρ of the system decrease and the pressure P will re-
main unchanged despite the rise in temperature. The process can be
described as follows: When heat is added to the system, its molecules
take up energy and, among other things, they increase their speeds.
In doing so, they expose the piston to a slightly larger force from the

27When the temperature becomes high, the electronic states of the molecules are
also involved for both monatomic and polyatomic molecules.
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inside than the force on the outside due to Pext. The molecules there-
fore push the piston outwards (against the external pressure) and V
increases. As they thereby make the piston move, they lose some of
the energy that they have obtained. This means that their net increase
in energy is smaller than if the piston had been fixed (as it was in
the case of constant volume). The volume increase continues until the
density has decreased so much that P again is equal to the external
pressure Pext (despite the fact that the molecules in the system now
move faster). The rise in P over the value Pext is insignificant if we
make the process slow enough, and in practice we can consider P to
be constant, P = Pext, all the time. During the expansion, the system
performs work equal to P∆V on the surroundings (the work on the
system, w = −P∆V , is negative). This is the energy that the molecules
of the system give up in order to move the piston against the external
pressure (Figure 4.14b).

Since the increase in the molecules’ energy is less than when the
volume was constant (for a given added heat q), the temperature rise
∆T is smaller. The question is, how much smaller? How large is the
heat capacity at constant pressure? As we have seen, the added en-
ergy q goes on one hand to raise the energy of the molecules in the
system, ∆U , and on the other hand to carry out the work P∆V on the
surroundings. Accordingly, q = ∆U+P∆V and we have (compare with
Equation (4.21))

q = CP∆T = ∆U +P∆V when P = constant, (4.23)

where CP is the heat capacity according to the definition in Equation
(4.20). We have set the subscript P on CP to emphasize that the re-
lationship q = CP∆T applies at constant pressure. Compared to the
case with constant volume, it follows that CP > CV since the temper-
ature rise for a given supplied heat q is smaller at constant pressure.
(If the temperature increase is to be the same as for constant volume,
we must therefore add more heat.)

A little derivation*
The difference between CP and CV can be easily determined for an

ideal gas. From the ideal gas law (4.14) follows that the term P∆V in
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Equation (4.23) can be written

P∆V = PVafter −PVbefore

= NkBTafter −NkBTbefore =NkB∆T . (4.24)

Let us first consider a monatomic ideal gas as an example. Equa-
tion (4.22) says that ∆U = 3

2NkB∆T in this case, which, as we have
seen, can be expressed as ∆U = CV∆T with CV = 3

2NkB. Hence,
∆U+P∆V = CV∆T +NkB∆T , where we have inserted P∆V from Equa-
tion (4.24). The last equality of Equation (4.23) can therefore be ex-
pressed as

CP∆T = CV∆T +NkB∆T ,

which implies that CP = CV +NkB since ∆T , 0. We accordingly have

CP = CV +NkB = CV +nR. (4.25)

For the monatomic ideal gas we have CP = 3
2NkB +NkB = 5

2NkB.
Equation (4.25) is, in fact, always valid for ideal gases, not only for

monatomic ones. The reason for this is, as mentioned in Section 4.4,
that the average energy per molecule in an ideal gas depends only on
temperature, ε̄ = ε(T ), and is the same irrespective of the gas density.
Therefore, when the temperature is varied between two values, the in-
ternal energy of an ideal gas, U = Nε̄(T ) changes equally irrespective
of whether the pressure or the volume is constant. Thus, ∆U = CV∆T
is valid for an ideal gas both in the cases of constant volume and con-
stant pressure. When we insert ∆U = CV∆T and Equation (4.24) in
the last equality of Equation (4.23), the result, Equation (4.25), fol-
lows in the same manner as above.

To conclude, the heat capacity at constant pressure is greater than
at constant volume, because only a part of the added heat goes to the
raising of the temperature. The rest goes to an increase in the volume.
If one wants to achieve a temperature rise of, say, 10 degrees, one thus
has to add more heat to a system at constant pressure than at constant
volume. It is this fact that the larger heat capacity describes.



120 Thermodynamics Kept Simple – A Molecular Approach

Key points

• The heat capacity C of a system specifies how much heat should
be added to raise the temperature by one degree.

• To change the temperature by ∆T , the heat q = C∆T is needed
(provided that ∆T is not too large).

• If the volume is kept constant, the heat capacity is denoted CV and
if the pressure is kept constant CP . In the former case q = CV∆T
and in the latter q = CP∆T .

• When the pressure is held constant, the volume is increased during
the addition of heat and a larger amount of heat is required to
raise the temperature by ∆T than when the volume is constant. A
portion of the added energy goes to the expansion of the system
(that is, to the work done on the surroundings) instead of raising
the temperature. Therefore CP > CV .

4.6 The balance of two bank accounts
The concept of enthalpy

In the previous section we found that the temperature of a system
is increased more if we add an amount of heat q at constant volume
than at constant pressure. At constant volume, all heat goes to an in-
crease in the energy of the molecules in the system (Equation (4.21)
and Figure 4.14a)

q = ∆U when V = constant, (4.26)

while at constant pressure, some of the added heat goes to an increase
of the volume and only a portion goes to an increase in the energy of
the molecules (Equation (4.23) and Figure 4.14b)

q = ∆U +P∆V when P = constant. (4.27)

The amount of energy P∆V is thereby transferred to the surroundings
in the form of work during the volume increase and only the energy
∆U remains in the system. If q is equal in Equations (4.26) and (4.27),
∆U in the former is larger than in the latter.

Let us now make the system return to its original state by remov-
ing the same amount of heat from it. Thereby the whole of this energy
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is taken from the molecules of the system in the first case, while the
energy will be drawn from both these molecules and from the sur-
roundings in the second case. The absolute values of q, ∆U , and ∆V
are thereby the same as during the addition of heat, but the signs are
reversed (negative). Let us look at this process for the case of constant
pressure, such as when the system is enclosed in a container like in
Figure 4.6. (The following reasoning is similar to that for the addition
of heat discussed in the previous section, so it suffices with a short
version here.) When we take the heat from the system, the speeds of
the molecules decrease and the pressure P becomes slightly less than
the external pressure Pext. The surroundings will therefore push the
piston inwards, whereby the molecules in the system receive a speed
increment. This increment makes the speed reduction due to the heat
removal less than in the case of constant volume, where all energy
was taken from the molecules of the system. At constant pressure, we
accordingly take out a larger amount of heat than what corresponds
to the net decrease in the molecular energies. The energy difference
comprises the work that the surroundings do on the system via the
piston movement.

When we add heat for the case of constant pressure, the energy is
“stored” partly in the molecules of the system and partly in the sur-
roundings. We can take the heat back out, and the energy is then being
taken partly from the system and partly from the surroundings. It is
as if we deposit money in a bank, but distribute the amount between
two different bank accounts. When we take the money back out, we
take it from both accounts. That the bank has placed money from one
account “abroad” (in the surroundings) does not play any role for our
overall balance. The bank takes the money back again from abroad
when we need it. What is interesting in this context is the total bal-
ance, and it is the same way in thermodynamics. From Equation (4.27)
follows

q = ∆U +P∆V = Uafter −Ubefore +PVafter −PVbefore

= Uafter +PVafter − (Ubefore +PVbefore) = ∆(U +PV )

when P = constant.
We see that the quantity of heat is equal to the change in U +PV ,

which hence plays the role of the “total balance” at constant P. This
combination of variables has an important role to play and it is
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therefore handy to introduce a separate symbol H for it,

H =U +PV , (4.28)

and to give it a name, enthalpy. We accordingly have

q = ∆H when P = constant, (4.29)

and H is constructed so that it keeps track of the bookkeeping of the
two “accounts” (the system and the surroundings) which are relevant
for heat transfer at constant pressure.

In the case of constant volume, we have no access to the second
“account” (the surroundings), so we “place” all heat as increased en-
ergy of the molecules in the system (Equation 4.26). Remember that
U , the internal energy, is the total energy of the molecules, that is, the
sum of all kinetic energy (translational, vibrational, and rotational en-
ergy) and potential energy (interactional energy) of the molecules in
the system.

When the pressure is constant we have from Equation (4.28) that

∆H = ∆(U +PV ) = (Uafter +PVafter)− (Ubefore +PVbefore)

= Uafter −Ubefore +PVafter −PVbefore = ∆U +P∆V .

Therefore, we can write Equation (4.23) as

q = CP∆T = ∆H when P = constant, (4.30)

which we can compare with Equation (4.21). The heat capacity at con-
stant pressure is thus directly related to the variation in enthalpy dur-
ing temperature changes.

We saw in Section 4.4 that the average energy per molecule for
an ideal gas depends only on temperature, ε̄ = ε̄(T ). This is a conse-
quence of the condition that the molecules do not interact with each
other. For a gas of N molecules, this means that the internal energy
depends only on temperature, U = U(T ). The same applies for the
enthalpy, H = H(T ), because according to the ideal gas law we have
PV = NkBT . From Equation (4.28) we therefore see that for an ideal
gas, H = U +NkBT , where both terms of the right-hand side depend
on T only (when N is constant), and the conclusionH =H(T ) follows.

Since U = U(T ) and H = H(T ) for an ideal gas, it follows that
when the temperature is changed from Tbefore to Tafter, the variations
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∆U and ∆H for the gas are determined solely by these two temper-
atures, irrespective of what happens to the pressure and the volume.
Therefore,

∆U = CV∆T for ideal gas

∆H = CP∆T for ideal gas (4.31)

when the particle numbers are unchanged. These relationships are
valid when the pressure is constant, the volume is constant, or both
P and V vary. Note, however, that the relationship q = CV∆T is valid
only for constant volume and q = CP∆T only for constant pressure.

Key points

• The heat added to a system when volume is constant (no work is
done) is equal to the change in the system’s internal energy, q =
∆U .

• When the pressure is held constant, the volume is increased during
addition of heat and the added energy q goes partly to an increase
in energy of the molecules in the system and partly to the expan-
sion of the system.

• The enthalpy,H =U +PV , is a system property that is so designed
that when heat q is added, H keeps track of both the energy that
stays in the system and the energy that goes out into the surround-
ings in the form of work during the expansion. H changes by both
amounts and thus q = ∆H when the pressure is constant.

• The enthalpy H and the internal energy U for an ideal gas de-
pend only on the temperature (provided no particle numbers are
changed), H =H(T ) and U =U(T ).

4.7 Spontaneity for the most common circumstances
The concept of Gibbs energy

The general criterion for a process to occur spontaneously in a sys-
tem is, as we have seen, that the total entropy Stot for the system
and the surroundings increases. However, when one wants to find out
whether a process can occur spontaneously or not, it is convenient to
focus solely on the system and not to explicitly consider changes in
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the surroundings. Therefore, we introduced in Section 3.8 the quan-
tity Helmholtz energy A, which we defined on the basis the system’s
energy U , entropy S , and temperature T as A = U − TS (Equation
(3.6)). A was constructed so that it keeps track of the entropy changes
both in the system and the surroundings. We saw that if the process is
carried out at constant temperature (because the system can exchange
heat freely with a thermostat at temperature T ) and constant volume,
A decreases for a spontaneous process. The relationship between the
change in A and Stot is, according to Equation (3.7), ∆A = −TStot when
T and V are constant, so a decrease in A represents an increase of Stot,
as illustrated in Figure 3.18. The equilibrium condition at constant T
and V is, as we have also seen, that A has reached a minimal value
and thus dA = 0.

Processes at constant temperature and volume are, however, not
very common in practice.28 Instead, processes at constant temperature
and pressure are more common and therefore more important. Under
these conditions, it is not A that can be used to determine whether
or not a process can occur spontaneously and whether equilibrium
is obtained. However, the general criterion ∆Stot > 0 for spontaneous
processes and the equilibrium condition dStot = 0 still apply. Also in
this case, it would, however, be helpful to have a criterion that only
uses some property of the system itself, like the quantity A above.

To find such a quantity, we will argue in a similar manner as we
did when introducingA in Section 3.8. At the beginning of the section,
we derived Equations (3.1) and (3.2), which apply generally provided
the temperature is constant. Equation (3.2) says that a spontaneous
process is characterized by ∆S − q/T > 0, where q is the heat deliv-
ered to the system to keep T constant during the process. When the
pressure is constant, we have seen in the previous section (Equation
(4.29)) that q = ∆H , so we obtain (compare with Equation (3.3))

∆S − ∆H

T
> 0 (for spontaneous process at constant T and P).

(4.32)

As an illustration of this equation, let us discuss an endothermic
process, i.e., a process where q = ∆H > 0. Since ∆Ssurr = qsurr/T =

28Important examples of constant volume cases are batch reactor processes in
chemical engineering.
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−q/T = −∆H/T , the second term in Equation (4.32) is equal to the en-
tropy change in the surroundings when heat is transferred to the sys-
tem in order to keep T constant. Equation (4.32) therefore says that
an endothermic process is spontaneous provided that the entropy of
the system increases more than the entropy of the surroundings de-
creases, just as before. Thereby, the total entropy Stot increases. Simi-
lar reasoning, departing from Equation (4.32), can be carried out for
exothermic processes; compare with the discussion of Equation (3.2)
in Section 3.8. The fact that Equation (4.32) contains ∆H instead of
∆U , means that it has taken into account that the volume of the sys-
tem may change during the process when P is constant.

According to Equation (3.1), ∆Stot = ∆S − q/T and hence we have

∆Stot = ∆S − ∆H

T
= −∆H −T∆S

T
(at constant T and P). (4.33)

This equation says that the total entropy change in the current case
can be expressed in the enthalpy and entropy changes of the system.
Like in the passage from Equation (3.4) to (3.5) in Section 3.8, we
obtain from Equation (4.33)

∆Stot = −
(H −TS)after − (H −TS)before

T
(at constant T and P).

(4.34)

The total entropy change is thus proportional to the change in the
value ofH−TS . (In the case of constant volume it was insteadU −TS ,
namely, A, that had this role.) It is therefore convenient to introduce a
symbol for H −TS and give it a name: Gibbs free energy

G =H −TS (4.35)

or simply Gibbs energy.29

At constant temperature and pressure, it is thus the balance be-
tween the system’s entropy change ∆S and the effect of its enthalpy
change ∆H (in the form of the entropy change in the surroundings)
that determines whether a process in the system is spontaneous or
not. This balance is expressed in

∆G = ∆H −T∆S = −T∆Stot (at constant T and P); (4.36)

29The modern, recommended name is Gibbs energy, but Gibbs free energy has long
been the commonly used name and is still the most common one in the scientific
literature. In this book, the names Gibbs energy and Helmholtz energy are used. Both
quantities are, however, called free energies as a collective name.
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Stot

G  T and P constant

dStot = 0

G decreases

dG = 0

G decreases

Stot increases Stot increases

process

Figure 4.15 A process at constant temperature and pressure can take place
spontaneously in the direction of decreasing free energy G (Gibbs energy).
Thereby, the total entropy of the system and the surroundings increases.
Equilibrium is reached when G has attained its minimum value and at the
same time Stot is as large as possible under the given circumstances. At the
minimum and maximum point, respectively, the derivative is zero (horizon-
tal line) and dG = 0 and dStot = 0.

compare with Equation (3.8). If ∆G < 0, the process can take place
spontaneously (∆Stot > 0), and if ∆G > 0, the reverse process can in-
stead occur spontaneously. The free energy G is thus designed so that
it automatically takes into account entropy changes in both the system
and the surroundings. This is generally the case for a free energy, and
it is this characteristic that gives it such an important role. Depending
on the circumstances, there are different free energies (Gibbs energy
at constant pressure and Helmholtz energy at constant volume) that
have this role.

The properties of G are summarized in Figure 4.15, and we see
that equilibrium corresponds to the minimal value of G (compare to
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Figure 3.18 and the corresponding discussion in Section 3.8). At the
minimum point we have dG = 0, which accordingly is the equilibrium
condition at constant T and P. Note that the process is spontaneous
in one direction to the left of the equilibrium position and in the op-
posite direction to the right of it.

Since according to Equation (4.28) H = U + PV and according to
Equation (3.6) A = U − TS , we can write Gibbs energy in Equation
(4.35) as

G =U +PV −TS = A+PV . (4.37)

When the pressure is constant we thus have

∆G = ∆(A+PV ) = (Aafter +PVafter)− (Abefore +PVbefore)

= Aafter −Abefore +PVafter −PVbefore = ∆A+P∆V .

The difference between ∆A and ∆G is therefore P∆V at constant P.
When gases are released or consumed during the process, the change
in volume can be substantial and there is a large difference between
∆A and∆G. For systems that only consist of solid or liquid substances,
however, the volume changes during the process are often small, and
then ∆A and ∆G are usually approximately equal. In such cases it
is not so important to make a distinction between ∆A and ∆G. (An
important exception is when the process is carried out at very high
pressure, so the factor P makes P∆V large even if ∆V is small.) It
is therefore mainly for processes that involve a gas phase that it is
important to use Gibbs energy rather than Helmholtz energy when
the pressure is constant.

Key points

• Gibbs energy, G =H−TS , is a system property that is so designed
that it keeps track of entropy changes in both the system and the
surroundings when T and P are constant.

• When T and P are constant, we have ∆G = −T∆Stot.

• The criterion for a process to be spontaneous at constant T and P
is that G decreases.

• Equilibrium at constant T and P occurs when G has reached its
minimal value and then Stot is as large as possible. At the mini-
mum point for G we have dG = 0.
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• Depending on the circumstances, different free energies should be
used to determine whether or not a process is spontaneous. At con-
stant P and T the Gibbs energy, G, should be used and at constant
V and T it is the Helmholtz energy, A, that has this role.



chapter 5

Mixtures and reactions

In this chapter we will make use of what we have learned about en-
tropy, enthalpy, and Gibbs energy in a particularly important appli-
cation, namely, chemical reactions. When we have a mixture of chem-
ical compounds, a relevant question is whether these compounds can
react with each other and form other compounds. If our aim is to pro-
duce a certain chemical we would like to know the conditions when it
can be formed and preferably the reaction should occur in an optimal
manner giving a high yield. In other cases we may want to know un-
der what conditions there is chemical equilibrium in the mixture, so
the composition of the mixture does not change with time. With these
applications in mind, we will in the following section investigate ther-
modynamical properties of mixtures of gases. We limit ourselves to
ideal gases since we have everything ready for this case, but many of
the results have a more general applicability, in particular the law of
mass action that we derive in Section 5.2. This law, which gives the
condition for chemical equilibrium, is a cornerstone in chemistry and
was formulated for the first time by Guldberg andWaage1 in the 19th
century on the basis of empirical data.

Properties of mixtures and changes in thermodynamical quanti-
ties when mixtures are formed are, however, of general importance.
So apart from applications in chemical reactions, this subject is worth
a study in itself.

5.1 Take from the bottle and mix
Gas mixtures and standard states

The composition of a mixture can, for example, be specified as the
proportion of molecules that are of each kind, such as that 1/3 of the
molecules are of species A and 2/3 of species B. This is called the
mole fraction, xi , where the subscript i indicates molecular species,

1Cato M. Guldberg (1836–1902) and Peter Waage (1833–1900) were Norwegian
scientists who formulated the law of mass action, also known as the Guldberg-Waage
law, for the first time in 1864 and 1867.
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whereby in this example xA = 1/3 and xB = 2/3. We have xA =
NA/(NA +NB) = nA/(nA + nB) and analogously for xB, where Ni is the
number of molecules and ni the number of moles of species i and
where the last equality follows from ni = Ni/NAv . The sum of the mole
fractions of all components is equal to one, xA + xB = 1. In the general
case xi = Ni /Ntot = ni /ntot, where Ntot and ntot are the total number of
molecules and moles, respectively. The composition of a mixture can
also be given in terms of the molecular density ρi of species i, defined
as ρi = Ni/V , or the concentration ci = ni /V (number of moles per unit
volume). The relationship between them is ρi = ciNAv .

A common alternative for gas mixtures is to specify the compo-
sition as the partial pressure Pi for each component i, defined as
Pi = xiP where P is the total gas pressure (= the sum of all partial
pressures). The ideal gas law (4.14) applied to component i becomes

PiV =NikBT (5.1)

and written as in Equation (4.16) it is Pi = ρikBT . This implies that
the partial pressure is proportional to ρi when T is constant. The pro-
portionality can be understood as a consequence of the fact that the
number of wall collisions per unit time for species i is proportional to
the density of the species.

In Section 2.5 we investigated a case where we mixed two differ-
ent ideal gases with each other. When the gases are allowed to mix, the
number of particle configurations for each particle type increases by a
factor of [Vafter/Vbefore]N , whereN is the number of particles of the re-
spective species, Vbefore is the volume that respective gas occupies be-
fore mixing, and Vafter the volume after (see Equation (2.3)). In the ex-
ample of Section 2.5, Vafter/Vbefore = 2 for both gases. The entropy in-
crease for each gas is ∆S = kB ln[Vafter/Vbefore]N =NkB ln[Vafter/Vbefore]
(Equation (2.8)), and the total increase in entropy is the sum of the
contributions from the two species. The reason why we can simply
add the ∆S contributions of the two gases when we mix them is that
the molecules of ideal gases do not interact with each other. Each
single molecule “does not know about” the existence of the other
molecules, irrespective of whether they are of the same or different
species. When we make an ideal gas mixture, we can treat each gas
independently of the other gases. Let us denote the entropy contribu-
tion from a gas of species i as ∆S(i), for instance, if the gas is carbon
dioxide we have ∆S(CO2(g)).
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Pure
C

pressure P0

Pure
B

pressure P0

Pure
A

pressure P0

Mixture of
A, B, and C

partial pressures PA, PB, PC

Figure 5.1 The making of a gas mixture from pure gases taken from gas
bottles which all have pressure P0.

Let us now make a mixture of gases by taking a suitable number
of molecules from some gas bottles that contain the pure gases and
bring the molecules into a container where the gases are mixed. The
temperature T is the same the whole time (everything is in contact
with a thermostat). Assume that the pure gas in each bottle has pres-
sure P0, equal for all bottles as illustrated in Figure 5.1. Thus, the gas
density is the same in all bottles, ρ0 = P0/kBT . Since we can treat each
gas separately, we can put them into the container one by one inde-
pendently of each other. Thereby, the pressure of the gas of species i
is changed from P0 (in the bottle) to Pi (in the container), that is, the
final partial pressure of the mixture. How much does the entropy and
other quantities of the gases change when we mix them?

A little derivation

We take Ni molecules (ni moles) of a pure gas from a bottle. To
change the pressure from P0 to Pi = NikBT /V , where V is the volume
of the container for the mixture, we need to change the gas density
from ρ0 to the density ρi in the mixture, where ρi = Ni /V = Pi /kBT .
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Note that

ρ0

ρi
=
P0/kBT

Pi /kBT
=
P0

Pi
. (5.2)

To do this change in density, we must change the volume of the gas
from Vbefore =Ni /ρ

0 to V = Vafter =Ni /ρi and we have

Vafter

Vbefore
=

Ni /ρi
Ni /ρ0

=
ρ0

ρi
=
P0

Pi
.

Equation (2.8) gives the entropy change when the volume is varied
from Vbefore to Vafter. For the entropy S(i) of the gas of species i
we obtain ∆S(i) = NikB ln(Vafter/Vbefore) = NikB ln(P0/Pi). Let us write
∆S(i) = S(i)Pi − S(i)P0 , where the subscript indicates which pressure
the entropy applies for. Thus we have

S(i)Pi − S(i)P0 =NikB ln

(

P0

Pi

)

= niR ln

(

P0

Pi

)

. (5.3)

Note that the entropy we consider here is the configurational entropy
Sconf.

How about the enthalpy and the free energy? In Section 4.6, we
saw that the enthalpy of an ideal gas depends on the temperature only,
H =H(T ). Since T is constant, we have

H(i)Pi =H(i)P0 (5.4)

so the enthalpy does not change ∆H(i) = 0. From the relationship
∆G = ∆H − T∆S we can now calculate the change in Gibbs en-
ergy and by using Equation (5.3) we obtain ∆G(i) = −T∆S(i) =
−NikBT ln(P0/Pi ) =NikBT ln(Pi /P0), where we have inverted the argu-
ment of the logarithm and therefore changed the sign in front. Thus

G(i)Pi −G(i)P0 =NikBT ln
(
Pi
P0

)

= niRT ln
(
Pi
P0

)

. (5.5)

Since the entropy and enthalpy of the mixture can be obtained by
adding the contributions from each component, this also applies to
Gibbs energy.
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We now assume that we know the entropy, enthalpy, and Gibbs
energy for each pure gas in the bottle, and we let S0, H0, and G0 de-
note these quantities where the zero indicates that the pressure of the
gas is P0. More precisely, let 1 mole of the pure gas at pressure P0

have Gibbs energy G0
m(i), where subscript m stands for “per mole.”

For ni moles, the Gibbs energy is accordingly niG
0
m(i), which we de-

noted G(i)P0 in Equation (5.5).
Gibbs energy for the gas at partial pressure Pi can, according to

Equation (5.5), be written

G(i)Pi = ni

[

G0
m(i) +RT ln

(
Pi
P0

)]

. (5.6)

For a mixture of, for example, nA moles A and nB moles B with partial
pressures PA and PB, respectively, the Gibbs energy is the sum ofG(i)Pi
for the components, that is, G(A)PA +G(B)PB , and we obtain

G = nA

[

G0
m(A) +RT ln

(
PA
P0

)]

+nB

[

G0
m(B) +RT ln

(
PB
P0

)]

, (5.7)

which we can write as

G = nAG
0
m(A) +nBG

0
m(B) +nART ln

(
PA
P0

)

+nBRT ln
(
PB
P0

)

. (5.8)

The first two terms on the right side of Equation (5.8) is G for the
pure gases at pressure P0. The last two terms is the change in Gibbs
energy when the pressures are changed from P0 to partial pressures
PA and PB, respectively, in the mixture. Similarly, we introduce S0

m(i)
and H0

m(i) as S
0 and H0 per mole of the substance at pressure P0 (the

“molar” entropy and enthalpy, respectively, at P0) and we obtain the
corresponding expressions for entropy and enthalpy. (Exercise: De-
rive the expressions for entropy and enthalpy starting from Equations
(5.3) and (5.4).)

The important conclusion from these results is that if we know
the entropy, enthalpy, and Gibbs energy per mole of the pure gases
at pressure P0, we have everything we need in order to calculate S ,
H , and G for any mixture of them (assuming that the gases are ideal
as a good approximation). This is very convenient because we thereby
need only to experimentally determine the data for the pure gases at
pressure P0 (i.e., the gases we have in the bottles) and not for every
possible mixture of them.
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If we choose P0 = 1 bar = 105 Pa, the pure gas in the bottle is in
the macroscopic state that is commonly referred to as the standard
state of the substance at the temperature in question (this is actu-
ally the meaning of the zero in P0 and, for example, G0

m). That the
standard state of a substance is the pure substance at 1 bar pressure
is a common international convention (agreement). A previous con-
vention has been to instead choose P0 = 1 atm and this choice still
occurs in scientific literature and some textbooks. (Note that 1 atm
≈ 1.01 bar so the difference is quite small.) The concept of standard
state does not apply only to gases but to all substances regardless of
their state of aggregation. Tables of data are available for a large num-
ber of substances in their standard state. It is normally specified at
which temperature the tabulated value applies (if the temperature is
not given, it is usually 25◦C). From these data, one can thus calculate
S , H , and G for mixtures of the substances (at least when they are
ideal gases).

Before proceeding, we should note the following. To specify a
value for a thermodynamic property like the internal energy U of a
system, one must have agreed on what zero level to use, i.e., the cir-
cumstance under which U has the value zero. Experimentally, one
always measures differences in energy, for example, the energy of an
object when it is on the 10th floor in a building compared to the street
level or the energy of a system in one state compared to another state.
It may be practical to say, for instance, that the energy of the object is
equal to zero when it is at the street level and then one can specify a
numerical value of the energy when the object is on the 10th floor (the
value is equal to the difference in energy compared to the zero level).
When the object is on the 11th floor it has a different (higher) value of
energy due to gravity.

However, there is nothing that says that one has to choose the
street level as the zero level; perhaps the lowest point of the street
is a better choice or the lowest point in the city. If one chooses any
of the latter as zero level, one obtains, of course, a different numer-
ical value of the energy. Provided that one is interested in chemical
processes, it is reasonable to include the energy for the molecules of
the object (i.e., the kinetic and potential energies of the electrons and
nuclei in the molecules). Then the energy of the object once again
takes on a different value. If one is interested in nuclear processes, it
is reasonable to also include the energy of the protons and neutrons
in the atomic nuclei. There is simply no obvious zero level and the
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numerical value of the energy depends on the zero level chosen. How-
ever, the energy difference between the 10th floor and the ground floor
or between two other states is of course independent of the choice of
the zero level.

The same applies to enthalpy and free energy and therefore one
has to determine what zero level to use by means of a convention
(since U has no natural zero level this also applies to H = U + PV
and G =U +PV −TS which contain U). The internationally accepted
convention in chemical sciences is:

For a pure element in its most stable form at the temperature in ques-
tion H = 0 and G = 0 in the standard state.

Examples of the most stable form of some elements at 25◦C are:
oxygen (gas), chlorine (gas), bromine (liquid), iodine (solid phase),
and carbon (solid phase in the form of graphite).2

The enthalpy of a substance is thereby equal to the enthalpy dif-
ference between the substance and the elements it consists of. This
difference is a quantity called the enthalpy of formation and is of-
ten denoted ∆f H

0
m (subscript f stands for “formation”). For example,

the enthalpy of carbon dioxide, ∆f H
0
m(CO2(g)), at 25°C is equal to

the difference in enthalpy between 1 mole CO2(g) and the elements
it consists of, i.e., 1 mole carbon (in the form of graphite) and 1 mole
O2(g). This enthalpy difference is equal to the enthalpy of the reac-
tion C(graphite) +O2(g)→ CO2(g), that is, the difference in enthalpy
between the products and the reactants, H(products) −H(reactants),
when one mole of the substance is formed from the elements. This is
the reason for the name “enthalpy of formation.” Each substance par-
ticipating in the formation reaction should be in its standard state, as
indicated by the superscript 0 on ∆f H

0
m. Note that for an element in

its most stable form, ∆f H
0
m = 0, in accordance with the selected zero

level. For example, the enthalpy for the reaction O2(g)→O2(g) is zero
since nothing happens and therefore ∆f H

0
m(O2(g)) = 0. The same ap-

plies for Cl2(g), but for bromine at 25°C we have ∆f H
0
m(Br2(g)) > 0

since the stable form is Br2(l) and the enthalpy for Br2(l)→ Br2(g) is
positive since heat must be added to vaporize Br2(l).

In this book we will, however, not use the notation ∆f H
0
m for the

enthalpy of a substance. Instead, we will write H0
m and thereby we let

2Pure carbon in the form of diamond is unstable at 25◦C and normal atmospheric
pressure. However, the conversion to graphite takes, fortunately, an extremely long
time.
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the zero level be implicit.3 The corresponding thing applies to Gibbs
energy and we will continue to use the notation G0

m for the Gibbs en-
ergy of one mole of a pure substance at pressure P0. Provided that
the zero level for G is selected according to the convention above, the
value of G0

m is equal to Gibbs energy of formation ∆f G
0
m, i.e., the dif-

ference in Gibbs energy between the products and the reactants when
one mole of substance is formed from the elements in their most sta-
ble forms. If some other convention would be used for the zero level,
G0
m would have a different value, but differences in Gibbs energy would

be the same. Experimentally determined values of ∆f H
0
m and ∆f G

0
m

are tabulated for a large number of substances in their standard state
and these values can be used forH0

m andG0
m. (Such tables can be found

in various scientific handbooks and in most major textbooks in gen-
eral chemistry and physical chemistry.)

In contrast, for entropy there exists a natural zero level due to the
third law of thermodynamics, namely, S = 0 for the substance in per-
fect crystalline form at absolute zero, T = 0. The value of S0

m for a sub-
stance that is tabulated usually refers to the entropy relative to this
zero level. Therefore, even the elements in their most stable forms
have values of S0

m that are different from zero when T > 0. S0
m is called

the standard entropy of the substance.

Key points

• The thermodynamic quantities (for example, S ,H , andG) of an ar-
bitrary mixture of ideal gases can be easily calculated if the corre-
sponding properties are known for the pure substances at pressure
P0.

• Thermodynamic properties of many substances in their standard
state (the pure substance at pressure P0 = 1 bar) are published in
tabular form in various scientific handbooks.

3This deviation from standard practice is done for pedagogical reasons. For a
chemical reaction A→ Bwhere onemole of A forms onemole of B, the enthalpy of the
reaction at constant pressure P = P0 is given by ∆H0 =H0

m(B)−H0
m(A) in our notation,

which conforms to ∆H =Hafter−Hbefore =H(products)−H(reactants) (A and B are in
their standard states). The usual way of writing this is ∆H0 = ∆f H

0
m(B) −∆f H

0
m(A),

which is, in the experience of the author, quite confusing for many beginners in the
subject. In practice, to find the value of, for example,H0

m(A) one looks up ∆f H
0
m(A) in

a table, which is the molar enthalpy for A given the conventional choice of zero level
for H .
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5.2 Can they react?
Chemical reactions and equilibria

In the previous section we learned how to calculate thermodynamic
properties, such as Gibbs energy, for an arbitrary mixture of ideal
gases. The only things we need to know in advance are the values
of the respective property of the pure gases at pressure P0 = 1 bar
(tables are published with such values). If a reaction takes place be-
tween the components of the gas mixture, the composition of the mix-
ture will change; the number of reactant molecules will decrease and
product molecules will increase. If we keep temperature T and total
pressure P constant (the latter by changing the volume of the system
if necessary), we know that the process is spontaneous if G decreases.
Provided G of the initial state (the mixture of reactants) is higher than
G of the final state (the mixture of products), the reaction can occur
spontaneously.4 If, on the other hand, G for the initial state is lower
than for the final state, the reaction cannot occur spontaneously but
the reverse reaction can. By calculating G for mixtures of gases, we
can hence predict whether the reaction is possible or not under the
given circumstances (“circumstances” = the current composition of
the gas mixture and the given total pressure and temperature).

In many cases the reaction does not go to completion, but we get
a mixture of products and reactants as the final result. The reaction
will proceed until G has decreased as much as possible (to its min-
imal value) and then the system has reached equilibrium (compare
with Figure 4.15). Since we can calculate G for all possible compo-
sitions of the mixture, we can predict the variations in G when the
composition changes due to the reaction and thereby determine the-
oretically at which composition G has minimum. Thus, we can set up
the condition for equilibrium – a condition known as the law of mass
action, which has a central role in chemistry. The current section is
primarily concerned with the equilibrium condition and the molecu-
lar interpretation of it.

4The lowering of G is a necessary condition, but in some cases the process may
occur so slowly that a progression cannot be detected. One then says that the reaction
is kinetically hindered. Typically, for such a reaction a very large energy barrier has to
be passed between the initial and the final states, which makes the probability to pass
the barrier very low even if the final state has a lower free energy than the initial one.
The speed of the reaction can be increased by, for example, the addition of a catalyst
that lowers the barrier.
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5.2.1 Equilibrium of type A⇋ B

We start with a simple example, a mixture of two isomers A and B in
the gas phase which can be converted into one another

A⇋ B,

for example, A = cis-butene and B = trans-butene as shown in Figure
5.2. They are the two possible forms of 2-butene.

CH3 CH3

C = C

 H H  

—

—

—

—

CH3 H  

C = C

 H CH3

—

—

—

—

)B()A(

Figure 5.2 Equilibrium between cis-butene (A) and trans-butene (B).

The conversion between the cis and trans forms is achieved by ro-
tation around the double bond. Of the two isomers, cis-butene has
the highest energy for spatial reasons; the two methyl groups are
quite bulky and repel each other as they sit on the same side of the
molecule. The hydrogen atoms do not take up as much space, so a hy-
drogen atom on the same side as a methyl group does not compete for
space. Therefore, trans-butene has the lowest energy. A sketch of how
the energy depends on the angle between the methyl groups is shown
in Figure 5.3. There is a fairly high energy barrier between the two iso-
mers that must be overcome to enable conversion between these two
forms. The essential matter for the equilibrium properties is, however,
mainly the difference in energy between the two minimum points.

The lower energy of trans-butene implies, as we shall see, that
this isomer is normally favored. For T = 400 K there is at equilib-
rium about twice as much trans-butene as cis-butene in the gas mix-
ture, that is, [PB/PA]eq ≈ 2, where superscript “eq” means equilibrium
value. This implies that if we start from a mixture containing a lower
amount of trans-butene, the reaction will go to the right until the cis-
butene content has decreased and trans-butene content has increased
so much that the equilibrium value is reached. If, on the other hand,
the amount of trans-butene is higher, the reaction will instead go to
the left. We will now examine why this is the case and we start by de-
termining how Gibbs energy varies for different compositions of the
mixture when the total pressure P = PA +PB is constant.
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Figure 5.3 Schematic diagram of the energy as a function of the rotation
angle for the methyl groups around the double bond in 2-butene. The il-
lustration on the right shows how the angle is measured when one sees the
molecule along the double bond (marked as a filled circle).

In Figure 5.4 we have plotted G from Equation (5.7) for one mole
of amixture of cis-butene and trans-butene as a function of the partial
pressure. (Since we have one mole, the notation Gm is used in the fig-
ure.) Values forG0

m(cis-butene) andG0
m(trans-butene) have been taken

from published data. We have chosen the case with a total pressure
PA + PB = 1 bar, that is, the total pressure is equal to P0. The curve
has a minimum located at PB = 0.68 bar and PA = 0.32 bar, i.e., when
PB/PA = 2.1. To the left of the minimum point, the conversion of A to
B is spontaneous (Gm decreases when going to the right, i.e., when PB
increases). At the minimum point the system is at equilibrium (com-
pare with Figure 4.15). To the right of this point the reverse reaction
is spontaneous (Gm increases when going to the right, but decreases
in the opposite direction).

Let us now investigate in more detail how G changes for the reac-
tion at constant P.
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Figure 5.4 Gibbs energy Gm for one mole of a mixture of cis-butene (A) and
trans-butene (B) plotted as function of the partial pressure trans-butene PB.
The total pressure is 1 bar so the partial pressure cis-butene is PA = 1 − PB
bar, which means that PA is 1 bar to the left on scale and 0 to the right. The
temperature is 400 K. Gibbs energy G0

m(A) and G0
m(B) for pure A and B at

pressure P0 = 1 bar are marked by thick horizontal lines (the values of these
two quantities are taken from literature data). ∆rG

0 is the difference between
G0
m(B) and G0

m(A), and is illustrated by the downward arrow. When Gm as a
function of PB decreases we have dG < 0, and when it increases dG > 0. At
the minimum point dG = 0.

A little derivation

We assume that we have a mixture with partial pressures PA and
PB. Gibbs energy of the mixture is given by Equation (5.7) which we
can write as

G =
NA

NAv

[

G0
m(A) +RT ln

(
PA
P0

)]

+
NB

NAv

[

G0
m(B) +RT ln

(
PB
P0

)]

, (5.9)

where NA and NB are the number of molecules in the mixture (we
have divided by Avogadro’s constant NAv to obtain the number of
moles of A and B).
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If an A molecule is converted to a B molecule, we obtain NA − 1
molecules of species A andNB+1 molecules of B. From Equation (5.9)
we see that Gibbs energy then becomes5

NA − 1
NAv

[

G0
m(A) +RT ln

(
PA
P0

)]

+
NB +1
NAv

[

G0
m(B) +RT ln

(
PB
P0

)]

.

Thereby G has been changed by dG, which is the difference between
this expression and Equation (5.9), that is,

dG =
−1
NAv

[

G0
m(A) +RT ln

(
PA
P0

)]

+
1

NAv

[

G0
m(B) +RT ln

(
PB
P0

)]

.

If we introduce dn = 1/NAv , we can write this as

dG =
[

G0
m(B)−G0

m(A) +RT ln
(
PB
P0

)

−RT ln
(
PA
P0

)]

dn. (5.10)

Thus, dG is the small change in G when the number of moles of A
changes by dnA = −dn and of B by dnB = dn, corresponding to one
molecule each of A and B.6

Equation (5.10) gives the change in Gibbs energy when an A
molecule is converted to a B molecule in a mixture with the partial
pressures PA and PB. Since

ln
(

PB/P
0
)

− ln
(

PA/P
0
)

= ln

(

PB/P
0

PA/P0

)

= ln

(

PB
PA

)

we can write Equation (5.10) as

dG =

[

∆rG
0 +RT ln

(

PB
PA

)]

dn (5.11)

where

∆rG
0 = G0

m(B)−G0
m(A) (5.12)

5One can show that there is no contribution from changes in partial pressures (this
is proven in footnote 6).

6The expression (5.10) actually applies generally when dn moles react according
to the formula A → B, provided dn is small. Thereby dG is the change in G for dn
moles. (Mathematically, one can derive this result by obtaining the differential of G
from Equation (5.7) and inserting dnA = −dn and dnB = dn. Thereby one uses that
nARTd lnPA + nBRTd lnPB = nARTdPA/PA + nBRTdPB/PB = VdPA + VdPB = VdP,
where V is the volume of the vessel that contains the A and B gases and we have
used the ideal gas law. VdP is zero since P is constant, so the small changes in partial
pressures give no contribution.)
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is the difference in Gibbs energy between one mole pure B and one
mole pure A at temperature T and pressure P0 (the subscript r in
∆rG

0 stands for “reaction”).7 In Figure 5.4 we have indicated ∆rG
0

by a large vertical arrow to the right. We have defined dn in Equa-
tion (5.11) as a positive number when A is converted to B. There-
fore, the sign of dG is determined by the expression in square brack-
ets in this equation. A negative dG (decreasing G) means that the
conversion of A to B is spontaneous and this therefore occurs when
∆rG

0 +RT ln(PB/PA) < 0. If the expression is positive we have dG > 0,
and then, instead, the reverse reaction is spontaneous, i.e., the conver-
sion of B to A.8

As we saw in Figure 5.4, to the left of the minimum point, the
conversion of A to B is spontaneous (dG < 0) and to the right of it
the reverse reaction is spontaneous (dG > 0). At the minimum point
we have dG = 0 and then there is equilibrium (like the minimum in
Figure 4.15). This means, according to Equation (5.11), that we have
equilibrium when the expression in square brackets is zero. The equi-
librium condition is therefore

∆rG
0 +RT ln

([

PB
PA

]eq)

= 0. (5.13)

As we have seen, this occurs when [PB/PA]eq = 2.1 in our example.
We can write Equation (5.13) as ln[PB/PA]eq = −∆rG

0/RT . This
means that [PB/PA]eq at a given temperature is equal to a number
which is determined by ∆rG

0. In our example in Figure 5.4, we as-
sumed that the total pressure PA + PB for the mixture is 1 bar, but
Equation (5.13) does not require this. The total pressure can be any-
thing. At equilibrium, the ratio between PB and PA still has the same
value. If, for example, PA + PB is 0.5 bar, we still have [PB/PA]eq = 2.1
at equilibrium and thus PB = 0.34 bar and PA = 0.16 bar. This means
that no matter how much A and B we have in our ideal gas mixture
from the beginning and regardless of the total pressure, equilibrium is
reached when the ratio PB/PA becomes equal to a certain number that

7The symbol ∆r symbolizes change of some quantity during a reaction according
to the stoichiometry of the reaction formula (in moles).

8Here, we have chosen to look at the change of G when A is converted to B. This
does not mean that the transformation of molecules takes place only in one direction.
When, for example, the reaction A → B is spontaneous, more A-molecules are con-
verted to B-molecules per unit time than B-molecules are converted to A-molecules.
At equilibrium, an equal number is converted on average in either direction.
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is the same in all these cases (provided the temperature is the same).
This number is denoted K and is called the equilibrium constant

[

PB
PA

]eq

= K. (5.14)

The relationship (5.14) is called the law of mass action as applied to
the reaction A⇋ B. In our example K = 2.1.

Since ln[PB/PA]eq = −∆rG
0/RT it follows that

lnK = −∆rG
0

RT
, (5.15)

which implies that K = exp(−∆rG
0/RT ). Hence, the equilibrium con-

stant for a mixture at a given temperature T is determined by ∆rG
0,

which in turn is determined by the properties of the pure substances at
pressure P0 and temperature T .

Let us now do a molecular interpretation of our results. First we
consider the influence of the configurational entropy, Sconf, on the
curve in Figure 5.4, which shows G for the mixture as obtained from
Equation (5.7). In fact, the configurational entropy of the mixture of A
and B is as large as possible when the system contains equal amounts
of A and B. This can be understood from the following argument.9

The influence of configurational entropy alone

The logarithmic terms in Equation (5.7) and hence the logarithm
in Equation (5.11) originates from Sconf (this follows from the deriva-
tion of Equations (5.3) and (5.7)), If we would have G0

m(A) = G0
m(B),

we see from Equation (5.12) that ∆rG
0 = 0. When ∆rG

0 = 0, only the
configurational entropy contributes to the equilibrium condition and
from Equation (5.15) follows that K = 1, so equilibrium would occur
when the system contains equal amounts of A and B, i.e., when PA =
PB. Thus, if Sconf alone would determine the equilibrium, it would

9In order to realize this by instead using an argument where one counts the num-
ber of configurations (as we did in Sections 2.3–2.5), one must take into account that
particles of the same kind (for example, of species A) cannot be distinguished from
each other (this we did not do in Section 2.3 as noted in footnote 13 there). If we
do this, the constant K in Equation (2.2) becomes K = 1/(N !νN ), where the factor
N ! asserts that permutations between particles of the same kind (for example, that
molecules 1 and 2 change places with each other) are counted as the same configu-
ration. The argument presented here avoids this complication, but it is still correct
because it is based on Equation (2.3) where K is eliminated.
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occur at PB = 0.5 and the minimum for G in Figure 5.4 would accord-
ingly be located there (the curve would then be symmetrical around
this point).10 Remember that entropy contributes with a term −TS
to G, so a minimum in G corresponds in the present case to a maxi-
mum in S , so Sconf is as as large as possible when PA = PB = 0.5 bar.
The configurational entropy accordingly favors the reaction where the
component with the highest partial pressure is converted to that with
the lowest. When PA > PB (that is, PB < 0.5 bar in the present case), the
configurational entropy increases when A → B (which is favorable),
while for PA < PB (i.e., PB > 0.5 bar) there is a decrease in Sconf when
A→ B (which is unfavorable). In the latter case, if the reverse process
would occur (B→ A), Sconf would increase instead. After this investi-
gation of Sconf, let us now return to our case where G0

m(A) , G
0
m(B).

The reason why we do not obtain a mixture with PA = PB at equi-
librium is that apart from a change in configurational entropy there is
another contribution when A is converted to B and vice versa. In our
example where A = cis-butene and B = trans-butene, we have seen
that cis-butene has a higher energy than trans-butene, which means
that energy is released when A is converted to B. The released en-
ergy is distributed throughout the environment, which gives a posi-
tive contribution to the total entropy (a negative contribution to G).
This means that the total entropy can increase when A is converted
to B even when PB > 0.5 bar (PA < PB), despite that the configuration
entropy then decreases. The condition for this to be the case is that
the increase in entropy caused by the energy release is larger than the
decrease in Sconf.

The release of energy therefore shifts the equilibrium so much
that there is more B than A in the mixture, but not so much that the
amount of B becomes too large. If PB becomes too large compared to
PA, the decrease in Sconf will be so great that the total entropy does
not increase when A is converted to B. This is because the larger the
difference between PB and PA, the greater the change in Sconf during
the conversion, which limits how far the equilibrium is shifted. As we

10This symmetry can also be understood from the fact that the sum of the two
logarithmic terms in Equation (5.8) would be unchanged if subscripts A and B were
swapped. When G0

m(A) = G0
m(B) the same applies to the entire right-hand side in the

equation as well as to the condition nA+nB = constant that is used in the current case.
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saw earlier, at T = 400 K, there is about twice as much trans-butene
(B) than cis-butene (A) in the gas mixture at equilibrium.

The energy change when A (cis-butene) is converted to B (trans-
butene) is included in the term ∆rG

0 in Equation (5.11). The quantity
∆rG

0, which is given by Equation (5.12), is equal to the change in
Gibbs energy when one takes one mole pure A at pressure P0 and
converts it completely to one mole pure B at the same pressure (see
the downward arrow labeled ∆rG

0 in Figure 5.4). The energy change
during the transformation A → B contributes to ∆rG

0 since G = U −
TS +PV and therefore ∆G = ∆U −T∆S +∆(PV ). The most significant
contribution to ∆rG

0 in this case is the energy change. There is also
an entropy contribution in ∆rG

0, which we shall discuss shortly. Since
the total number of moles of gas does not change during the reaction,
the volume does not change so ∆(PV ) = P∆V = 0.11

Since the gases are ideal, we have no interaction between the
molecules. The change in energy when we convert an A molecule to
a B molecule is thus independent of the presence or absence of other
molecules. Therefore, the energy change per converted molecule is
the same at pressure P0 as at the actual partial pressures in the mix-
ture. Furthermore, cis-butene and trans-butene molecules have dif-
ferent entropies because they have different molecular structures,12

so there is an entropy contribution in ∆rG
0. This entropy difference

gives a smaller contribution to ∆rG
0 than the difference in energy (at

least if the temperature is not very high), so the energy contribution
dominates for the conversion between cis-butene and trans-butene.13

The entropy contribution is, however, not negligible. At 400 K, it is

11Since PV = nRT for an ideal gas, we have ∆(PV ) = RT∆n, where ∆n is the change
in total number of moles and T is constant. When ∆n = 0 it is clear that ∆(PV ) = 0.
Furthermore, this means that there is no difference between the changes in enthalpy
and energy in this case. We have H =U +PV and therefore ∆H = ∆U +RT∆n. When
∆n = 0 we have ∆H = ∆U for an ideal gas at constant T .
12The entropy difference is due to the fact that the energy of a cis-butene molecule

can be distributed between the internal vibrations, rotations, and electronic states
in different ways than the energy of a trans-butene molecule. (A difference in num-
ber of possible molecular conformations can in the general case also give an entropy
difference.)
13In the general case, ∆rG

0 also contains a contribution from the configurational
entropy of the gases. Here, however, there is no such contribution because this case
concerns the conversion between two isomers and the pressure is equal to P0, both
before and after the conversion.
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about half as large as the energy contribution. Consequently, it too
affects the location of the equilibrium point.

5.2.2 Equilibrium of type A⇋ 2B

Now let us examine a case where the number of moles of gas changes
during the reaction, which is the most common type. We take the sim-
plest example of such a reaction, namely, when a molecule is dissoci-
ated into two identical molecules

A⇋ 2B,

for instance A = N2O4 and B = NO2 in gas phase

N2O4(g)⇋ 2NO2(g).

At 25◦C and 1 bar about 20% of N2O4 is dissociated into NO2 at
equilibrium. If we start from a mixture with excess of A and let the
reaction take place until equilibrium is reached, the system volume
must be increased for the pressure to remain constant because two
B molecules are formed per A molecule. We will now determine how
much Gibbs energy changes during the reaction. The reasoning is very
similar to what we did when we came up with Equation (5.10).

A little derivation

We assume that we have a mixture with partial pressures PA and
PB that contains NA molecules of A and NB of B. Gibbs energy of the
mixture is still given by Equation (5.9). When one A molecule is con-
verted into two B molecules, we obtain NA − 1 molecules of species
A and NB + 2 molecules of B. From Equation (5.9) we see that Gibbs
energy then becomes

NA − 1
NAv

[

G0
m(A) +RT ln

(
PA
P0

)]

+
NB +2
NAv

[

G0
m(B) +RT ln

(
PB
P0

)]

,

which implies that G has changed by

dG =
−1
NAv

[

G0
m(A) +RT ln

(
PA
P0

)]

+
2

NAv

[

G0
m(B) +RT ln

(
PB
P0

)]

.

If we again introduce dn = 1/NAv , we can write this as (compare with
Equation (5.10))

dG =
[

2G0
m(B)−G0

m(A) + 2RT ln
(
PB
P0

)

−RT ln
(
PA
P0

)]

dn. (5.16)
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Thus, dG is the small change in G when the number of moles of A
changes by dnA = −dn and of B by dnB = 2dn, corresponding to one
molecule of A and two of B.14

Equation (5.16) gives the change in Gibbs energy when an A
molecule is converted to two B molecules in a mixture with partial
pressures PA and PB. Now, since

2ln
(
PB
P0

)

− ln
(
PA
P0

)

= ln

({
PB
P0

}2)

− ln
(
PA
P0

)

= ln












{
PB
P0

}2

PA
P0












we can write Equation (5.16) as

dG =












∆rG
0 +RT ln












{
PB
P0

}2

PA
P0























dn (5.17)

where

∆rG
0 = 2G0

m(B)−G0
m(A) (5.18)

is the change in Gibbs energy at temperature T when one takes one
mole pure A at pressure P0 and converts it completely to two moles
pure B at the same pressure (thus one starts with the reactant in its
standard state and finishes with the product in its standard state).
Note that ∆rG

0 can be calculated directly from known (tabulated) val-
ues for the pure substances.

The most significant difference from the previous case is that
PB/P

0 is raised to the power 2. This is a consequence of the fact that
we have a coefficient 2 in front of B in the reaction formula A⇋ 2B,
as apparent from the preceding derivation. Otherwise, all is much
the same. In Figure 5.5, G from Equation (5.7) is plotted for a mix-
ture of N2O4 and NO2 (for a total amount equivalent to one mole of

14The expression (5.16) applies generally when dn moles react according to the
formula A→ 2B, provided dn is small (compare with footnote 6). Thereby dG is the
change in G when dn moles A are converted to 2dn moles B.
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Figure 5.5 Gibbs energy G for a mixture of N2O4 (A) andNO2 (B) plotted as
a function of the partial pressure of NO2, PB. The total pressure PA+PB is 1 bar
and the temperature is 298 K. At the left end of the pressure range, we have
onemole of pure A and at the right end twomoles of pure B. For intermediate
partial pressures, we have a mixture where N2O4 has been dissociated into
NO2 to varying extents. Gibbs energy at the end points of the curve, G0

m(A)
and 2G0

m(B), respectively, are marked by thick horizontal lines (values from
literature data). ∆rG

0 is the difference between these two values.

pure N2O4 that is partly dissociated). The total pressure is constant,
PA +PB = 1 bar. The analogy to Figure 5.4 is evident.

It is practical to introduce the notation

Q =

{
PB
P0

}2

PA
P0

, (5.19)

which is called the reaction quotient for the reaction A ⇋ 2B,
whereby Equation (5.17) can be written

dG =
[

∆rG
0 +RT lnQ

]

dn. (5.20)
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Note that the value of Q depends on the partial pressures PA and PB
of the mixture.15

We derived Equation (5.20) for the conversion of one molecule A
to two B, but it is easy to show that it applies generally to the change
in G when a small amount dn moles is converted according to the
reaction formula A→ 2B. The equation can alternatively be written16

∆rG = ∆rG
0 +RT lnQ, (5.21)

where ∆rG is the change in G for the conversion of one mole according
to the reaction formula when there is a very large amount of reactants
and/or products in the reaction mixture.

In Equation (5.19), the reaction quotient Q is expressed in terms
of partial pressures. One can also express it in terms of the molecular
densities ρA and ρB (the number of molecules per unit volume). Ac-
cording to the ideal gas law the pressure is proportional to the density
(when T is constant), and we can use Equation (5.2) to write Equation
(5.19) in the form

Q =

{

ρB
ρ0

}2

ρA
ρ0

, (5.22)

where ρ0 is the density at pressure P0. Alternatively, one can use the
concentration c as a measure of content. Since ρi = ciNAv , Equation
(5.22) yields

Q =

{
cB
c0

}2

cA
c0

, (5.23)

where c0 = ρ0/NAv = P0/RT .
The sign of dG in Equation (5.20) is determined by the expres-

sion within the square brackets. When the expression is negative,

15Analogously, one can define the reaction quotient in Equation (5.11) as PB/PA
or rather as {PB/P0}/{PA/P0}, which is the same thing. By making the corresponding
definition of Q in other cases, Equation (5.20) becomes valid for the general case.
16The condition for Equation (5.20) is that the quantity dn that reacts is small. If

we have a system with a huge amount of A and B, a conversion of one mole is so small
that the partial pressures PA and PB, and hence Q, will not be changed significantly.
Equation (5.20) can then be written as Equation (5.21), where we have replaced dG
with ∆rG and dn with 1. This form of the equation is commonly found in textbooks,
but the conditions under which it applies are not always clearly stated.
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dG < 0 and reaction A→ 2B is spontaneous. If instead the expression
is positive, dG > 0 and the reverse reaction 2B→ A is spontaneous. By
inserting the partial pressures PA and PB for a mixture with arbitrary
composition in Equations (5.19) and (5.20), one can hence determine
whether the reaction goes spontaneously in one direction or the other.
In this manner one can find out whether the spontaneous process for
that particular composition is that more A molecules are dissociated
than B molecules are merged or the opposite. A high PA and low PB fa-
vors the former, while a low PA and high PB favors the latter. Since PB
is squared in Equation (5.19), a changed amount of B can very easily
affect this balance. Likewise ρB is squared in Equation (5.22).17

Just as in the former case we have equilibrium when dG = 0, that
is, when the square bracket in Equation (5.20) is zero. The condition
for equilibrium is therefore

∆rG
0 +RT lnQeq = 0, (5.24)

where Qeq is the value of Q at equilibrium. We can write Equation
(5.24) as lnQeq = −∆rG

0/RT , which implies that equilibrium is at-
tained at a certain temperature when Q is equal to a number that
is determined by ∆rG

0. This number is what we call K , the equilib-
rium constant, and we see that in this case too it is determined by
lnK = −∆rG

0/RT (Equation (5.15)). No matter how much of the sub-
stances A and B we have in our ideal gas mixture from the beginning
and regardless of the total pressure, equilibrium is reached when Q
becomes equal to the number K in all cases. Thus we have the equilib-
rium condition Qeq = K , which according to Equation (5.19) implies

17The fact that the square of ρB is essential for the direction in which the reaction
goes can also be understood from the following arguments. The probability to find a B
molecule in a small volume element is proportional to the density ρB. The probability
to find another Bmolecule in the same volume element is proportional to ρB too. This
means that the probability that the two molecules will be there at the same time is
proportional to the product of these probabilities, that is, (ρB)2. The number of B
molecules which merge per unit time in the system is thus proportional to (ρB)2,
because two such molecules must be in the same place at the same time in order to
react. The number of A molecules that dissociates per time unit is, on the other hand,
proportional to the number of such molecules in the system, which is proportional to
the ρA. The ratio (ρB)2/ρA is therefore of importance to determine whether a larger
number of A molecules dissociate, than B molecules merge per unit time, or vice
versa. This is consistent with Equation ((5.22)), where (ρB)2/ρA appears.
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that
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P0
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PA
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eq

= K. (5.25)

For partial pressures that fulfill this condition, G is minimal and then
an equal number of A molecules dissociate per unit of time as A is
being formed by the merger of B molecules. Equation (5.25) is the
equilibrium expression for the reaction A → 2B, giving the law of
mass action for this case. We can alternatively write it as

[

(PB)2

PA

]eq
P0

(P0)2
= K,

that is,
[

(PB)2

PA

]eq

= KP , (5.26)

where KP = KP0. While K is a dimensionless number, KP has the same
unit as that used for the pressures P0, PA, and PB. Thus, KP is an equi-
librium constant in pressure units.

For the example in Figure 5.5, where the total pressure is 1 bar
and T = 298 K, G has minimum when PB = 0.32 and PA = 0.68 bar.
The value of the equilibrium constant KP = 0.148 bar = 1.48 · 104 Pa.
The first value should be used in Equation (5.26) when the partial
pressures have the unit bar and the second when they have the unit
Pa. The value of K in Equation (5.25) is equal to the dimensionless
number 0.148 regardless of which unit one uses for the pressures. This
is one of the reasonswhy it is useful to write the equilibrium condition
as Equation (5.25) rather than (5.26). In calculations it is, however,
often more practical to use (5.26).

Say that we would like to find out the equilibrium values of the
partial pressures for a gas mixture of N2O4 (A) and NO2 (B) when
the total pressure is, for example, 0.5 bar and T = 298 K. We then
use Equation (5.26) with the same value of the equilibrium constant,
KP = 0.148 bar. We insert PA = 0.5 − PB in Equation (5.26) and obtain
(PB)2/(0.5−PB) = 0.148, where we specify the pressures in bar. The so-
lution to this equation (which can be written as a quadratic equation)
is PB = 0.21 bar and we obtain PA = 0.5−PB = 0.29 bar.

If we compare to the previous case where the total pressure was 1
bar and PB = 0.32 bar, we see that the partial pressure PB = 0.21 bar is a
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larger proportion of the total pressure 0.5 bar in this latter case. Thus,
we obtain an increased percentage NO2 when we lower the total pres-
sure. The amount of N2O4 that is dissociated at equilibrium, accord-
ingly increases with decreasing pressure (we say that the degree of
dissociation increases). At 1 bar the degree of dissociation is 19% and
at 0.5 bar it is 26%, that is, if we had pure N2O4 from the beginning,
then, at equilibrium, 19% and 26% of N2O4 has dissociated, respec-
tively. The growing degree of dissociation when one reduces the total
pressure by increasing the volume can be understood molecularly in
the following manner. When the volume is increased the system gains
configurational entropy by dissociating N2O4 and thereby forming a
larger number of molecules which spread in the volume. How much
the total entropy changes (and thus howmuch is actually dissociated)
depends also on the enthalpy and entropy changes for the dissocia-
tion itself. This is taken into account in the equilibrium condition via
∆rG

0 and therefore affects the value of the equilibrium constant. The
shift in degree of dissociation of N2O4 when the pressure is decreased
is an example of what is called Le Châtelier’s principle,18 namely, that
an equilibrium that is disturbed will be shifted in the direction that
counteracts the cause of the disturbance.

The law of mass action can also be expressed in terms of con-
centrations. If we insert Equation (5.23) in the equilibrium condition
Qeq = K we obtain
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eq

= K (5.27)

and we can alternatively write it as
[

(cB)2

cA

]eq

= Kc, (5.28)

where Kc = Kc0 = KP0/RT . Hence Kc, the equilibrium constant in con-
centration units, has the same unit as that used for the concentrations
c0, cA, and cB, for example, M (molar = moles per liter) or the SI unit
molm−3. In our example with N2O4 and NO2 at 298 K, the equilib-
rium constantK in Equation (5.27) is, of course, still 0.148 and dimen-
sionless, while Kc = 0.148P0/RT = 6.0molm−3 = 6.0·10−3M should be

18Henry-Louis Le Châtelier (1850–1936) was a French chemist who is most known
for his work regarding this principle.
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used in Equation (5.28). K is called the thermodynamic equilibrium
constant in order to distinguish it from the other equilibrium con-
stants KP and Kc, which have units and have values that depend on
the units one uses.

5.2.3 Equilibria of type aA+bB⇋ xX+yY

The reasoning above is easily generalized to arbitrary reactions in
ideal gas mixtures and we will only give the main results without
derivations. For example, the reaction

aA+ bB⇋ xX+ yY

with stoichiometric coefficients a, b, x, and y, has the reaction quotient

Q =

{
PX
P0

}x { PY
P0

}y

{
PA
P0

}a { PB
P0

}b
, (5.29)

where PA, PB, PX, and PY are the partial pressures of substances A, B,
X, and Y in the gas mixture one is dealing with. For a A-molecules that
react with b B-molecules and form x X-molecules and y Y-molecules
in the mixture, the change dG in Gibbs energy is given by Equation
(5.20) with Q taken from Equation (5.29). In this case, ∆rG

0 is the
change in Gibbs energy when a moles of pure A and b moles of pure
B reacts completely to form x moles of pure X and y moles of pure Y,
where the pressure of all pure gases is equal to P0, as illustrated in
Figure 5.6. We have

∆rG
0 = G0

after −G
0
before = G0

products −G
0
reactants

= xG0
m(X) + yG0

m(Y )− [aG0
m(A) + bG0

m(B)]. (5.30)

The equilibrium condition is still dG = 0, which implies, as before,
that we have Qeq = K , where K is the equilibrium constant given by
Equation (5.15) that implies

K = e−
∆rG

0

RT . (5.31)

The equilibrium expression is therefore
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eq

= K (5.32)
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1. Mix the reactants

2. Perform the reaction 
completely

3. Separate the products
b moles
pure B

pressure P0

x moles
pure X

pressure P0

y moles 
pure Y

pressure 
P0

a moles 
pure A

pressure P0

∆rG
0

Figure 5.6 ∆rG
0 is the total change in G for the following process: The re-

actants, a moles of pure A and b moles of pure B at pressure P0, are passed
into a reaction chamber (whereby their pressures change) and are made to
react completely to form the products, x moles of X and y moles of Y, which
are separated from the reaction mixture and given pressure P0. Note that G
in the general case is changed not only during the reaction but also during
mixing and separation.

in this case and gives the law of mass action for this more general case.
The equilibrium expressions in the previous subsections are special
cases of this more general equation.

We can alternatively write Equation (5.32) as
[

(PX)x(PY)y

(PA)a(PB)b

]eq

= KP , (5.33)

where KP = K(P0)∆Nr and where ∆Nr is the change in number of
molecules during the reaction according to reaction formula, namely,

∆Nr = x + y − a− b.

Note that KP therefore has the unit (bar)∆Nr when the pressures are
measured in bars. One can also express the equilibrium condition in
terms of concentrations similar to Equations (5.27) and (5.28).

Key points

• One can determine whether a chemical reaction can take place
or not for an arbitrary mixture of reactants and products by
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examining Gibbs energy for the mixture (T and P are assumed to
be constant). If G decreases as the reactants form products at the
actual composition, the reaction can occur spontaneously. If G in-
creases, the reaction cannot take place, but instead the reverse re-
action can occur spontaneously. Equilibrium is reached when the
composition is such that G assumes its minimal value.

• These criteria can be expressed in a rational manner by using two
quantities, ∆rG

0 and Q, which are defined as:

∆rG
0 is the change in Gibbs energy when one starts from pure

reactants at pressure P0, mixes the reactants, performs the reaction
completely, and finally has clean, separated products at pressure
P0.

Q, called the reaction quotient, is determined by the composition
of the mixture and by the reaction formula.

• For the reaction aA+ bB⇋ xX+ yY in the gas phase (ideal gases)
the reaction quotient is

Q =

{
PX
P0

}x { PY
P0

}y

{
PA
P0

}a { PB
P0

}b
,

where PA, PB, PX, and PY are the partial pressures in the gas mixture
one is dealing with.

• If ∆rG
0+RT lnQ is negative, the reaction can occur spontaneously

to the right. If the expression is positive, the reaction can happen
spontaneously to the left, and if it is zero, one has chemical equi-
librium.

• The equilibrium condition can also be expressed by the expres-
sion Qeq = K where K is the thermodynamic equilibrium con-
stant, which can be calculated from ∆rG

0 according to K =
exp(−∆rG

0/RT ).

• For the reaction aA+bB⇋ xX+yY one has the equilibrium expres-
sion (law of mass action)
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eq

= K.
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It can also be written
[

(PX)x(PY)y

(PA)a(PB)b

]eq

= KP ,

where KP = K(P0)∆Nr with ∆Nr = x+ y − a− b or

[

(cX)x(cY)y

(cA)a(cB)b

]eq

= Kc,

where Kc = K(c0)∆Nr . While K is unitless, KP and Kc have units.



chapter 6

Phases and temperature variations

In the previous chapter we saw howwe can utilize the thermodynami-
cal quantities and relationships obtained earlier to understand chem-
ical reactions and equilibria. The general nature of thermodynami-
cal concepts and reasoning is further illustrated in the present chap-
ter, where we will investigate other applications of thermodynamics.
First, we shall investigate how matter changes its state of aggregation
between gas, liquid, and solid under various conditions. Thereby we
will, for example, look in more detail into the vaporization and con-
densation processes that we investigated earlier. In particular we will
focus on Helmholtz and Gibbs energies to see how they can be utilized
to understand what phases are present under various conditions and
the transitions between them. Thus we will familiarize ourselves with
how to use the thermodynamic “machinery” that we have built up in
order to see how and why thermodynamic arguments work for these
kinds of questions. Finally, in Section 6.2 we shall investigate how var-
ious thermodynamical quantities depend on temperature, building on
what we already know about this.

6.1 To boil and to freeze
Phase transitions

When we investigated the evaporation of a liquid droplet in Section
3.2, we saw that the balance between entropy and energy is crucial
for what happens. For molecules to be able to leave the liquid phase,
energy is required, which is taken from the environment. This gives a
negative contribution to the total entropy because the number of pos-
sibilities to distribute the energy then decreases. At the same time,
the molecules get access to a larger number of configurations, which
gives a positive entropy contribution. If the latter contribution dom-
inates, then the liquid evaporates spontaneously, and if the former
dominates, then the vapor condenses spontaneously. In Section 3.8,
we saw that this balance can be expressed in a practical manner by

157
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using the concept of free energy and we will begin by recapitulating
the results there.

We assume that the liquid and its vapor are in a closed vessel with
constant volume V and we keep the temperature T constant. The con-
tents of the vessel is our system and we assume that there is only one
species present, so the liquid and gas are pure. Let ∆U be the change
in energy and ∆S the change in entropy of the system when a quantity
of liquid is vaporized, i.e., for the process fluid→ vapor. The change
in Helmholtz energy is ∆A = ∆U − T∆S and the change in total en-
tropy of the system and the surroundings is according to Equation
(3.8) given by

∆Stot = −
∆A

T
= ∆S − ∆U

T
, (6.1)

where −∆U/T is the entropy change of the surroundings. We have
∆U > 0 because the molecules in the vapor have higher energy than
in the liquid and ∆S > 0 because the entropy of the vapor is higher.
When ∆A < 0 (∆Stot > 0) evaporation is spontaneous and when ∆A > 0
(∆Stot < 0) condensation is spontaneous, i.e., the reverse process (com-
pare with Figure 3.18). We have equilibrium when A does not change
upon evaporation of a small amount of liquid (or condensation of a
small amount of vapor), dA = 0, and then the pressure of the vapor is
equal to what we call the vapor pressure of the liquid at the tempera-
ture in question.

What happens if we change the temperature but keep the volume
constant? From Equation (6.1) we see that at a higher temperature,
the last term, −∆U/T , becomes less important since the denomina-
tor becomes larger.1 This negative contribution to ∆Stot, which stems
from the reduction in spreading of energy in the surroundings, then
plays a smaller role compared to the first term, that mainly consists of
the positive entropy contribution from the increase in number of con-
figurations. Since the negative entropy contribution −∆U/T , which
counteracts evaporation, becomes less important, the liquid evapo-
rates more easily and the vapor pressure increases as T increases. In
Section 3.2, we expressed this fact in a different but equivalent way,

1If ∆U and ∆S are approximately constant independent of T , it is easy to realize
this. As we shall see later, this condition is, however, not necessary. The conclusion is
true – at least in a limited temperature range – even when ∆U and∆S are temperature
dependent (see footnote 13).
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namely, that the energy required for evaporation is more easily acces-
sible from the surroundings at higher temperature. This follows from
the fact that it becomes easier for the surroundings to deliver energy
∆U to the system since the entropy change of the surroundings, which
equals −∆U/T and is unfavorable, becomes smaller at increasing tem-
peratures. In other words, the penalty to deliver energy is smaller at
high temperatures (see also the optional material in Section 2.8).

As we raise the temperature further, the vapor pressure of the liq-
uid continues to increase. An increasing proportion of the molecules
will be present in the gas phase and since V is constant this gives rise
to the increased pressure in the closed vessel. Let us assume that we
initially have a sufficient amount of liquid in relation to the vessel’s
volume, so that all the liquid does not evaporate during the heating.
We can, in fact, heat up the system far beyond the normal boiling
point of the liquid and both gas and liquid will still be left in the ves-
sel. The pressure in the vessel will then be far greater than normal
atmospheric pressure.

The density of the vapor thus increases more and more as T is
increased. The gas density eventually becomes so great that the in-
teractions between the molecules in the gas phase become strong.2

At the same time, the density of the liquid decreases slightly because
it expands. The increase in density for the gas and the decrease for
the liquid will continue with increasing temperature until we eventu-
ally reach a point where the gas and liquid densities are equal.3 This
point is called the critical point. For example, for water this occurs
at 374◦C and then the vapor pressure is 218 atm. At this point, there
is no distinction between gas and liquid. At temperatures higher than
the critical value, there is no separation of the system into a gas and a
liquid phase (so-called phase separation). This applies irrespective of
the gas pressure – a gas cannot condense into liquid when compressed

2Our simple reasoning about the configurational entropy et cetera then does not
apply because the gas is far from ideal. Both the energy and the entropy of the gas
phase depend on the intermolecular interactions. Equation (6.1) is, however, valid in
the general case when V and T are constant.

3For this to occur, the amount of substance in relation to the vessel’s volume must
be exactly such that both phases are present all the time during heating. If there is
too little liquid, it will evaporate before this point is reached. In case there is too little
gas, it will be compressed so much due to the increasing pressure that it disappears
and only liquid remains.
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a b c

Figure 6.1 A cylinder containing a pure gas is compressed at a constant
temperature T , which is below the critical value. Heat must be removed
when compression is carried out in order to keep T constant. (a) When the
gas pressure has become equal to the vapor pressure of the liquid at tem-
perature T , the gas begins to condense into liquid. (b) When the volume
is reduced further, more of the gas condenses into liquid. The pressure is
constant and equal to the vapor pressure as long as both gas and liquid are
present. (c) When all gas has condensed, only liquid remains. If the volume
is reduced further, the liquid is compressed.

at temperatures above the critical value. The compression results only
in a gas with increasingly high density.

However, if we compress a gas when the temperature is lower than
the critical value, the gas will eventually condense into a liquid.4 The
condensation occurs when the gas pressure has increased to a value
that is equal to the vapor pressure of the liquid at the temperature in
question; recall that this is the pressure at which liquid and vapor are
in equilibrium with each other. Initially, a few liquid droplets form
on the vessel walls, as illustrated in Figure 6.1a. When we continue to
compress the gas (by reducing the volume of the vessel) at constant
temperature, the amount of fluid increases and the amount of gas de-
creases (Figure 6.1b). This is because the liquid has a higher density
than the gas, so the system responds to the decrease in volume by gas
turning into liquid. The gas pressure is constant and is equal to the
vapor pressure as long as both gas and liquid are present in equilib-
rium with each other. When the volume has become so small that the

4Provided that the temperature is not so low that the gas instead solidifies.
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entire vessel has just become filled with liquid (all gas has condensed
to liquid, Figure 6.1c), the pressure will begin to increase again when
the volume is further reduced. Since we are then compressing a liquid,
the pressure will increase rapidly because the liquid is dense and its
molecules repel each other when pressed together. One says that the
liquid has a low compressibility; one has to expose it to high pressures
in order to reduce its volume slightly.

After this interlude on gas compression, let us return to what
happens when we change the temperature. We have considered the
case of constant volume, but the case of constant pressure is more
relevant in most applications. If we, for example, heat water on the
stove, the pressure is constant (it is equal to the atmospheric pressure)
and then something special happens when the temperature reaches
100◦C, namely, that the water boils (provided we have normal atmo-
spheric pressure in the kitchen). Boiling means that more and more
liquid evaporates as we add heat, while the water temperature re-
mains constant (at 100◦C in this case) until eventually all the liquid
has evaporated. This is true no matter how much liquid we have from
the beginning. When no liquid remains, the temperature will rise
above 100◦C when we add more heat, but then the water is present
only in the form of steam. Note that the process is different than when
we kept the volume constant, in which case we could heat the liquid
to much higher temperatures than 100◦C provided sufficient liquid
was present from the beginning.

Thus, there is an essential difference between the cases of constant
volume and constant pressure. The fact that water boils at 100◦C has
to do with the circumstance that the pressure is equal to normal at-
mospheric pressure. If we would be located at a high mountain top
where the pressure is lower, we would find that water boils at a lower
temperature. How come? Why, in the first place, does a liquid boil
when the temperature is high enough? To answer these questions, we
will study the case of constant pressure in detail.

Let us place a small glass of liquid in a closed container filled with
air. After a while, the air also contains liquid vapor. The container has
a freely movable piston. On the outside of the piston the atmospheric
pressure is constant, as illustrated in Figure 6.2, and therefore the to-
tal gas pressure P inside the container is kept constant. The system
and the surroundings have temperature T , which we can vary. For
each temperature, however, we hold T constant until equilibrium is
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Total pressure P 

Constant atmospheric

pressure P

Liquid

Gas

Piston

Figure 6.2 A glass with a liquid placed in a closed container which has a
constant pressure P equal to the ambient pressure. The gas in the container
consists of air and liquid vapor.

reached between the liquid and the vapor. We will now investigate
evaporation at constant P and T .

Let ∆H = q be the heat (see Equation 4.29) that the system in the
container takes up during the evaporation and ∆S be the change in
entropy. The change in Gibbs energy is ∆G = ∆H−T∆S and according
to Equation (4.36) the total change in entropy of the system and the
surroundings is

∆Stot = −
∆G

T
= ∆S − ∆H

T
, (6.2)

where −∆H/T is the entropy change of the surroundings. We have
∆S > 0 and ∆H > 0 for the process liquid→ vapor. As we have seen in
Sections 4.6 and 4.7, the fact that we have ∆G instead of ∆A and ∆H
instead of ∆U (compare with Equation 6.1) means that we take into
account that the volume of the system changes (the piston moves) to
keep the total pressure P constant. When ∆G < 0 (∆Stot > 0) evap-
oration is spontaneous and when ∆G > 0 (∆Stot < 0) condensation
is spontaneous, i.e., the reverse process (compare with Figure 4.15).
When equilibrium is reached (that is, when G attains its minimum
value at the current temperature), the partial pressure of vapor in the
gas is equal to the vapor pressure of the liquid at the temperature in
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question.5 In the same way as in the discussion of Equation (6.1) we
can conclude that the vapor pressure increases with increasing tem-
perature because the term −∆H/T becomes less important.

Thus, the liquid vapor content of the gas inside the container
grows with increasing temperature (we assume that sufficient liquid
is initially in the glass so that there is always some liquid left). The
gas volume becomes larger in order to maintain the total pressure P
constant. Since the number of air molecules in the gas is unchanged,
the partial pressure of air in the mixture decreases at the same time
(an increasingly smaller percentage of the mixture consists of air).6

The sum of the vapor pressure and the partial pressure of air inside
the container remains equal to P. As long as the vapor pressure is
less than the ambient atmospheric pressure P everything is fine. The
piston is pushed out as much as needed to make the pressure on the
inside and outside equal and pressure balance to occur.

Something new happens, however, when one heats up the system
to the temperature at which the vapor pressure becomes equal to at-
mospheric pressure P. Then the sum of the vapor pressure and the
partial pressure of air in the container must exceed P. The pressure
inside the container thus becomes greater than the external pressure
regardless of how far the piston is pushed out. Hence, pressure bal-
ance cannot be obtained and the piston will be completely pushed out
from the container. (Even in the absence of air inside the container,
this would be the case if T is increased just a tiny bit above this tem-
perature – the vapor pressure then exceeds the atmospheric pressure
P.) When the piston has been completely pushed out, any remain-
ing liquid will be vaporized as heat is applied, i.e., the liquid boils.
We have accordingly reached the boiling point. If the temperature be-
comes slightly higher than the boiling point during the boiling, the
vapor pressure exceeds the ambient atmospheric pressure, whereby
the steam bubbles that form will expand greatly and displace the
surrounding atmosphere. When steam is formed, the required heat
is taken from the liquid, which effectively prevents the temperature

5Actually, the partial pressure of vapor in the gas mixture at equilibrium, the so-
called partial vapor pressure, is not exactly equal to the vapor pressure above a pure
fluid at the same temperature (in the latter case there is no other substance than
the vapor of the liquid present in the gas phase). The difference is usually negligible
provided that the partial pressure of the gas present in addition to the vapor (i.e., air
in our case) is not very high.

6We here ignore that a small portion of the air is dissolved in the liquid.
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from increasing any further despite the fact that heat is added to the
system all the time. This applies until all liquid has vaporized.

The boiling point of a liquid is accordingly the temperature at
which its vapor pressure is equal to the atmospheric pressure. On top
of a mountain where the atmospheric pressure is lower, the boiling
point is therefore lower. In a pressure cooker the boiling point is in-
stead higher, because the cooker has a valve with a spring mecha-
nism that does not allow steam to pass out until the pressure inside is
much greater than the external pressure. The higher boiling temper-
ature makes the food in the cooker become cooked faster than at the
normal boiling point.

Thus, the boiling point Tb depends on the pressure P, the fact of
which we can highlight by writing Tb(P). At the boiling point a pure
liquid is in equilibrium with pure vapor (without air) at pressure P.
This means that two pure phases (liquid and gas) at the same pressure
are in equilibrium with each other. If the pressure is the same but the
temperature is lower, the pure substance is in the form of liquid, and
when the temperature is higher it is in the form of gas. Notice the
difference between a pure substance (i.e., only one component) and a
systemwhere we have a mixture of gases present (for example, air and
vapor). A pure liquid cannot be in equilibrium with pure vapor when
the pressure is P and T < Tb(P); the substance is solely in the form of
liquid under these conditions. It is, however, possible for the liquid
to be in equilibrium with a mixture of vapor and air when the total
pressure is P and T < Tb(P) in accordance with our discussion above.
The partial pressure of vapor is then equal to the vapor pressure of
the liquid (which is less than P); the remainder of the total pressure P
is comprised of the partial pressure of air.7

Let us continue to discuss pure substances at constant pressure P,
which condition we do not write out explicitly anymore. A transition
from liquid to gas at the boiling point Tb is called a phase transition.
Since the liquid and the gas are in equilibrium, Gibbs energy does not
change during the transition, that is, we have Ggas = Gliquid. This fact
is a consequence of the condition of equilibrium because if G were
not unchanged during the transition, a spontaneous process would
take place in the direction of reduced G, which would imply that the
equilibrium does not prevail – contrary to what we have assumed.

7A small amount of air is dissolved in the liquid, which we can disregard in this
context.
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If we have one mole substance that changes from liquid to gas at

the boiling point, we thus have G
gas
m = G

liquid
m (index m means “per

mole”) and if n moles changes, we have nG
gas
m = nG

liquid
m . Generally,

we can write the criterion for equilibrium between liquid and gas as
follows:

G
gas
m = G

liquid
m (6.3)

and we have

∆vapGm = G
gas
m −G

liquid
m = 0 when T = Tb, (6.4)

where∆vapGm, the Gibbs energy of vaporization, is defined by the first
equality. Let us, in what follows, assume that we have one mole that
changes from liquid to gas.

What about temperatures around Tb? How does G vary as a func-
tion of T , i.e., G = G(T )? We have G = H − TS so if H and S were
constants independent of temperature, G plotted as a function of T
would be a straight line8 with the slope −S . In reality,H and S are not
constant, but if we restrict ourselves to a small temperature interval,
G(T ) can still be approximated as a straight line with a slope of −S .9

Since the gas has more particle configurations than the liquid, we
have Sgas > S liquid. This means that Ggas plotted as a function of T has
a larger (negative) slope than Gliquid, see Figure 6.3 where we have
written subscript m to indicate that we consider each quantity per

mole of substance. When T < Tb we see that G
gas
m > G

liquid
m so the sys-

tem will reduceG when all the gas condenses into liquid, so the liquid
is the stable state (equilibrium state). At higher temperatures, T > Tb,

we have G
gas
m < G

liquid
m and the gas is stable instead. When the temper-

ature is gradually increased from below Tb to above, G for the system
will assume the lowest possible value at each temperature all the time,
i.e., G will follow the thick curve segments in Figure 6.3. Therefore,
the substance is in liquid form below Tb, vaporizes at Tb, and is in gas
form above Tb. If the temperature is reduced from a value above Tb,
the substance instead condenses at Tb.

8A straight line has the equation y = kx+ l where k is the slope coefficient and l the
intercept (intersection) with the y-axis, that is, y = l when x = 0. In the present case we
have y = G, x = T , k = −S , and l = H , provided S and H were constants independent
of T .

9The fact that the slope is −S even when H and S are temperature dependent is
shown later.
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Figure 6.3 Gibbs energy per mole of pure liquid, Gliquid
m , and pure gas,Ggas

m ,
plotted as functions of temperature when the pressure is constant. The two
curves intersect at the boiling point Tb and have slopes −S liquid

m and −Sgas
m ,

respectively. The thick curve segments show which G value is the lowest one
at each temperature.

Let us follow what happens when we add heat to the system that
contains solely a pure liquid at constant pressure. When T < Tb the
added heat is used to raise the temperature of the liquid. The heat re-
quired to raise the temperature by ∆T is given according to Equation

(4.30) by q = C
liquid
P ∆T , where C

liquid
P is the heat capacity CP for the

liquid. When we reach the boiling point, we need to add heat to va-
porize the liquid. The amount of heat needed for this is according to
Equation (4.29) equal to the difference in enthalpy between the initial
state (liquid) and final state (gas), that is, H liquid and Hgas, respec-
tively. This difference,

∆vapH =Hgas −H liquid (6.5)

is called the enthalpy of vaporization (or heat of vaporization) and
is accordingly the heat we have to add to vaporize the liquid to gas (it
is denoted ∆vapHm per mole of substance). During boiling, T remains
constant until all liquid is vaporized. Thereafter, when T > Tb, the
added heat is used to raise the temperature of the gas. An amount of
heat equal to q = C

gas
P ∆T has to be supplied for the temperature to

increase by ∆T , where C
gas
P is the heat capacity of the gas, which has

a different value than that of the liquid (generally a lower value).
At the boiling point the entropy of the system will change from

S liquid to Sgas when we add heat. In Figure 6.3, we see this as a change
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in the slope at T = Tb when we move along the thick curve segments.
Since ∆G = ∆H − T∆S and ∆vapG = 0 at T = Tb, we see that ∆vapH −
Tb∆vapS = 0, which we can write as

∆vapS =
∆vapH

Tb
, (6.6)

where ∆vapS = Sgas − S liquid is the entropy of vaporization. This
is exactly what the second law of thermodynamics says about en-
tropy change for a reversible process at constant temperature, namely,
∆S = q/T , where q = ∆H since P is constant. Provided that the evap-
oration takes place slowly by a gradual addition of heat, it is a re-
versible process at T = Tb since liquid and vapor are at equilibrium
for this temperature. At other temperatures evaporation (or conden-
sation) is an irreversible process since it is spontaneous.

The corresponding applies when a solid melts to form a liquid,
such as the phase transition from ice to water. The molecules in a
solid (crystalline) phase sit attached at certain locations and in cer-
tain orientations in the crystal, while the molecules in a liquid are
freely movable. Therefore, the entropy will increase when a solid
melts, S liquid > Ssolid. In order to free the molecules from their at-
tachments in the crystal, one has to add energy (heat) and there-
fore H liquid > Hsolid. When we plot Gsolid and Gliquid as functions
of T , the slope of the first graph is smaller than the second because
Ssolid < S liquid, as shown in Figure 6.4 which is a sketch of how G for
the various phases depends on temperature (we have written index m
in the figure to indicate that the plottedG is per mole of substance). In
reality, the graph of G = G(T ) for each phase is slightly curved, which
is a consequence of the fact that H and S depend on T . The slope at
each point (the derivative) equals −S at the temperature in question.10

10When we plotG =H−TS as a function of T when P andN are constant,G = G(T ),
the slope is dG/dT = −S even when the curve is not a straight line, that is, when we
take into account that H and S are temperature dependent. This can be understood
mathematically as follows:We have dG/dT = dH/dT−d(TS)/dT , where the derivative
of the product TS is given by d(TS)/dT = S + T dS/dT . According to the second law
of thermodynamics dS = dq/T , and when P is constant we have dq = dH , which
means that T dS = dH and hence T dS/dT = dH/dT . Therefore, dG/dT = dH/dT −
[S +T dS/dT ] = −S . (This implies that the temperature dependence of G is primarily
due to the factor T in the term TS .) Incidentally, we note that the corresponding fact
applies to the Helmholtz energy A = U − TS . The temperature derivative of A is −S
when V and N are constant, which can be shown in the same way since dq = dU in
this case.
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T
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gas

Gm
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Tb

Gm

Tm

Gm

liquid

Figure 6.4 Sketch of Gibbs energy per mole for the solid, Gsolid
m , liquid,

G
liquid
m , and gas, Ggas

m , phases of a pure compound plotted as functions of
temperature when the pressure is constant. The first two curves cross each
other at the melting point Tm and the last two at the boiling point Tb . In re-
ality, the graphs are slightly curved. The slope at any point is equal to −Sm
of the phase at the temperature in question. The thick curve segments show
the G value that is lowest at each temperature. The region around Tb is also
shown in Figure 6.3.

At the melting point Tm there is equilibrium between the solid
and liquid phases, and accordingly Gliquid = Gsolid. This means that
the graphs for G of these phases in Figure 6.4 intersect at that temper-
ature. When T < Tm the solid phase has the lowest G and between Tm
and Tb the liquid has the lowest G. This implies that the solid is the
most stable phase below the melting point and the liquid is the most
stable one when Tm < T < Tb. The heat needed to melt the solid at the
melting point

∆fusH =
[

H liquid −Hsolid
]

T=Tm
(6.7)

is called the enthalpy of fusion (or heat of fusion). It is denoted
∆fusHm per mole of substance. The entropy of fusion, ∆fusS, is like-
wise the difference in entropy between the liquid and solid phases at
the melting point. It satisfies

∆fusS =
∆fusH

Tm
, (6.8)
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since ∆fusG = ∆fusH − T∆fusS = 0 when T = Tm (compare with Equa-
tion (6.6)). At all other temperatures, ∆G = ∆H −T∆S , 0 for the pro-
cess solid phase→ liquid phase and the sign of ∆G determines which
phase is stable in accordance with Figure 6.4. When T < Tm the liquid
freezes and when T > Tm the solid melts spontaneously.

Accordingly, for both solid/liquid and liquid/gas at equilibrium,
the Gibbs energy per mole, Gm, is equal in the two phases. As we
saw when we obtained Equation (6.3), this expresses that G does not
change when the substance goes from one form to the other, i.e., when
the substance is transferred between the two phases in question. On
the other hand, when Gm for the two phases are different, we found
that the substance is transferred from the phase with the highest Gm

to that with the lowest. Therefore, it is customary to introduce the
concept of chemical potential, denoted µ, which can be used to de-
termine to which phase a substance spontaneously “wants to go,” that
is, in which direction it shall be transferred for G to decrease. The
chemical potential of a pure substance is simply equal to Gm, that is,
µ = Gm.11 The substance is thus transferred from the phase of high-
est µ to that with the lowest, and at equilibrium, µ is equal in the
two phases. The name “chemical potential” is used to show the simi-
larity to other types of potentials, such as the gravitational potential
(i.e., the potential energy in the gravitational field). A particle tends
to move from a high to a low potential.

The condition of equilibrium between gas and liquid, Equation
(6.3), can thus alternatively be written

µgas = µliquid (6.9)

and that for equilibrium between liquid and solid phase

µliquid = µsolid. (6.10)

The curves in Figures 6.3 and 6.4 can, if desired, be denoted by µ
instead of Gm and hence one plots µ = µ(T ) for the different phases.

11For a mixture, the chemical potential µi of a substance of species i is equal to
the rate of change of Gibbs energy when the number of moles of that substance in-
creases, while keeping the number of moles of the other species j in the mixture
constant. (Mathematically, this is expressed as µi = (∂G/∂ni )T ,P,nj,i .) Molecules of
species i therefore go from a phase with high µi to one with low µi since G for the
former phase then decreases more than G for the latter increases, so the total change
of G is negative. At equilibrium µi for both phases is the same, which applies for all
substances in the mixture.
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Key points

• A pure gas that is compressed at a constant temperature (below
the critical value) is condensed and turns into a liquid when the
gas pressure becomes equal to the vapor pressure. The pressure is
constant upon continued compression until all gas has condensed.

• A pure liquid boils at the temperature (the boiling point Tb) where
its vapor pressure is equal to the ambient atmospheric pressure.

When T = Tb we have G
gas
m (T ) = G

liquid
m (T ).

• A pure solid phase (for instance ice) melts at the temperature T

(the melting point Tm) where Gsolid
m (T ) = G

liquid
m (T ).

• The chemical potential µ for a pure substance is equal toGm. When
two phases are present, the substance passes spontaneously from
the phase of highest µ to that with the lowest. At equilibrium, µ is
equal in the two phases.

6.2 It depends on the temperature
Temperature dependence of various quantities

6.2.1 T dependence of Gibbs energy

In the previous section we studied the phase transitions between
solid and liquid (melting/freezing), and liquid and gas (evapora-
tion/condensation). One of the questions we investigated was in
which direction the transition occurs spontaneously at different tem-
peratures when the pressure is constant. We found that we can deter-
mine this by studying G = H − TS , where we assumed, as an approx-
imation, that H and S are constants independent of T . Likewise, we
can study

∆G = ∆H −T∆S (6.11)

for the transition, where we can assume that ∆H and ∆S are constants
independent of T . The temperature dependence of ∆G is thus given
mainly by the factor T in the T∆S and if we plot∆G as a function of T ,
we obtain approximately a straight line with slope −∆S . Alternatively,
we can study

∆G

T
=
∆H

T
−∆S (6.12)
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(compare with Equation (6.2)). If we plot ∆G/T as a function of 1/T
we obtain approximately a straight line12 with slope ∆H .13 Equations
(6.11) and (6.12) both say that the entropy change of a system be-
comes more significant and the enthalpy change becomes less sig-
nificant when T is increased. This means that high entropy is more
important than low enthalpy at high temperatures, whereas the re-
verse is true at low temperatures. We took advantage of this fact in
the last section in the discussion of the temperature dependence of
vapor pressure and this is also the reason why one often observes the
sequence solid→ liquid→ gas when the temperature rises. The solid
phase has low enthalpy and low entropy so it is favored by low T ,
while gas has high enthalpy and high entropy so it is favored by high
T .

The same principles apply to the temperature dependence of ∆G
for other processes, for instance, chemical reactions. Equations (6.11)
and (6.12) with constant ∆H and ∆S can generally be used as good
approximations to determine how ∆G changes with T provided that
we restrict ourselves to a sufficiently small temperature interval. We
shall now use this fact for a particularly important case, namely, to
determine how chemical equilibria depend on temperature.

6.2.2 T dependence of equilibrium constant

In Section 5.2, we found that ∆rG
0 (see Figure 5.6) plays a central

role for chemical equilibria. The equilibrium constant K is given by
Equation (5.15) which we can write, using Equation (6.12), as

lnK = −∆rG
0

RT
= −∆rH

0

R

1
T

+
∆rS

0

R
, (6.13)

where we have introduced ∆rH
0 and ∆rS

0, which are the changes in
enthalpy and entropy, respectively, for the process depicted in Figure

12The straight line y = kx+l has in this case y = ∆G/T , x = 1/T , k = ∆H , and l = −∆S ,
provided ∆H and ∆S are approximately constant independent of T .
13When we plot G/T =H/T −S as a function of 1/T while P and N are constant, the

slope at any point is equal toH even when the curve is not a straight line, that is, when
we take into account that H and S are temperature dependent. This can be shown a
similar way as the fact that the derivative of G with respect to T is equal to −S when
P and N are constant, which we showed in footnote 10. The same applies to ∆G/T
whereby the slope is∆H . Incidentally, we note that similar arguments apply for ∆A/T
when V and N are constant, whereby the slope is ∆U (see the end of footnote 10).
This result is used in footnote 1. Mathematically, we have (∂(∆G/T )/∂(1/T ))P,N = ∆H ,
called the Gibbs-Helmholtz equation, and (∂(∆A/T )/∂(1/T ))V ,N = ∆U .
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Figure 6.5 The dotted curve gives an example of the logarithm of the equi-
librium constant as a function of 1/T . It is approximated by the solid straight
line that shows lnK according to Equation (6.13) with constant ∆rH

0 and
∆rS

0. The line is tangent to the curve at the solid circle which indicates the
point where ∆rH

0 and ∆rS
0 were determined.

5.6. This equation gives the temperature dependence of the equilib-
rium constant, and it implies that if we plot lnK as a function of 1/T ,
we obtain approximately a straight line with a slope of −∆rH

0/R, as
depicted in Figure 6.5. In the use of Equation (6.13) we can take the
value of ∆rH

0 and ∆rS
0 at one temperature (marked by a filled cir-

cle in the figure), insert these values into the equation as constants
and then calculate lnK at various temperatures T in the vicinity of
this temperature. The straight line thus obtained is plotted in Figure
6.5.14

Equation (6.13) with constant∆rH
0 and ∆rS

0 can be used to relate
the equilibrium constant at two different temperatures T1 and T2. If
we take the difference of lnK according to Equation (6.13) at the two

14The slope at any point on the curve is −∆rH
0(T )/R when ∆rH

0 depends on tem-
perature. Therefore, this straight line is tangent to the curve at the temperature where
∆rH

0 was determined.
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temperatures, we obtain after simplification

lnK2 − lnK1 =
∆rH

0

R

[

1
T1
− 1
T2

]

, (6.14)

where K1 andK2 are the equilibrium constants at temperatures T1 and
T2, respectively. For an endothermic reaction, ∆rH

0 > 0 and if T2 > T1
the right-hand side of Equation (6.14) is positive, which means that
lnK2 > lnK1 and hence K2 > K1. For endothermic reactions, the equi-
librium constant accordingly increases with increasing temperature,
which implies that the equilibrium will be shifted towards the prod-
ucts.15 The products, which have higher enthalpy than the reactants
because ∆rH

0 > 0, are thus favored at increased T . This result corre-
sponds to what we found for the evaporation of a liquid, which is also
an endothermic process: The vapor (the “product”) is favored by an
increased temperature compared to the liquid (the “reactant”). The
reason is the same in both cases, namely, that the energy needed for
the process becomes more easily available from the environment with
increasing temperature. For exothermic reactions, the opposite is true;
the equilibrium is shifted towards the reactants at higher tempera-
tures. These consequences of shifts in temperature are further exam-
ples of Le Châtelier’s principle, which we mentioned in Section 5.2.2.

6.2.3 T dependence of internal energy and enthalpy

When studying ∆rG
0 = ∆rH

0 − T∆rS
0 or ∆rG

0/T = ∆rH
0/T − ∆rS

0

at different temperatures, it is, as we saw in Figure 6.5, a reasonable
approximation to assume that ∆rH

0 and ∆rS
0 are constants indepen-

dent of T . As we have utilized in Section 6.1, the same is true when
studying G = H − TS , where one can assume as an approximation
that H and S are independent of T . However, H and S are tempera-
ture dependent, so H − TS is actually affected not only by the change
in the factor T , but also by changes in H and S when T is varied.
However, the changes in H and S give only a small contribution to G
within a limited temperature interval; an increase inH is almost com-
pletely canceled by a corresponding increase in S in the combination

15This shift at increased K follows from Equation (5.32), where the products appear
in the numerator and the reactants in the denominator; the amount of products thus
increases and reactants decreases when K goes up.



174 Thermodynamics Kept Simple – A Molecular Approach

H − TS .16 Individually, however, H and S are changed most signifi-
cantly when the temperature changes. First we look at the tempera-
ture dependencies of enthalpy and internal energy.

In Section 4.6, Equation (4.30), we saw that the change in enthalpy
when the temperature is varied by ∆T is given by

q = ∆H = CP∆T when P = constant, (6.15)

where q is the added heat. The change in internal energy is according
to Section 4.5, Equation (4.21), given by

q = ∆U = CV∆T when V = constant. (6.16)

If the temperature is increased by some other means than adding heat,
for instance, by stirring with a propeller, the second equality in Equa-
tions (6.15) and (6.16), respectively, still applies: ∆H = CP∆T when P
is constant and ∆U = CV∆T when V is constant (the number of par-
ticles of all species should be kept constant too in both cases).17 All
these results are valid provided CP and CV are constants independent
of T , which is a good approximation if the temperature interval ∆T is
not too large. If the heat capacities depend on temperature, Equations
(6.15) and (6.16) apply only for a small temperature change dT and
for the addition of a small quantity of heat dq. The general relation-
ships therefore read

dq = dH = CPdT when P = constant (6.17)

and

dq = dU = CV dT when V = constant. (6.18)

16This is a consequence of the following: When a small amount of heat dq is added,
H and S are changed by dH and dS which satisfy dS = dq/T = dH/T , where we used
the second law of thermodynamics and the fact that dH = dq when the pressure is
constant. Thus we have dH = TdS . If the temperature increases by dT when heat
is added, H − TS will change to (H + dH) − (T + dT )(S + dS), which we can write
H −TS + dH −TdS − SdT − dTdS . The last term is the product of two small numbers
and can be neglected compared to the other terms. Thus H − TS has been changed
approximately by the amount of dH −TdS −SdT , which is equal to −SdT since dH =
TdS . In other words, the change of H −TS originates mainly from the increase in the
factor T , while the contributions dH and −TdS cancel each other.
17For an ideal gas these two latter relationships apply, as we have seen in Section

4.6, irrespective of whether P or V are constant or not. This is a special case, so the
conditions of constant P and V , respectively, are important in the general case.
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However, in this book we assume throughout that the heat capacity
is independent of T to a sufficient approximation, so Equations (6.15)
and (6.16) can be used to calculate ∆H and ∆U when temperature is
changed.18

6.2.4 T dependence of entropy

Finally, let us examine how the entropy depends on temperature T .
We first assume that the volume V and the number of molecules N
are constant. We increase T by increasing the energy U of the sys-
tem. Since V and N are constant, we do this by adding an amount of
heat q (the work w is zero). According to Equation (6.16), the temper-
ature change becomes ∆T = q/CV . When we add energy, the number
of ways to distribute the energy between the molecules will increase
rapidly, as we have seen in Section 2.6. Thus, the number of available
microstates, Ω, increases for the system. Each molecule has a large
number of quantum states and we have to include all possible ways
of distributing the energy, that is, all possible combinations of quan-
tum states of the molecules with the given total energy, exactly as dis-
cussed in Section 2.6. SinceΩ increases whenU increases, the entropy
S = kB lnΩ increases too, but the question is how much?

We first examine an ideal monatomic gas where the energy is
solely translational. The number of microstates Ω of the system de-
pends on U , V , and N , which is denoted Ω =Ω(U,V ,N ). Let us reca-
pitulate the V dependence, which we already know. For ideal gases,
we found in Section 2.3 that Ω increases when we increase the vol-
ume. According to Equation (2.2) we have Ω =KVN where K is inde-
pendent of V . For a macroscopic system, N is a very large number, so

18For a large change in temperature, ∆T = Tafter − Tbefore, one has to consider
that heat capacity depends on temperature. Mathematically, by integrating Equations
(6.17) and (6.18) one obtains the general expressions

q = ∆H =
∫ Tafter

Tbefore

CP (T )dT when P = constant

and

q = ∆U =
∫ Tafter

Tbefore

CV (T )dT when V = constant,

where it is explicitly shown that CP (T ) and CV (T ) depend on temperature. When
CP and CV are constant in the temperature interval they can be taken out from the
integrand and Equations (6.15) and (6.16) are obtained.
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Ω increases very rapidly with V . When we change the energy U for
a monatomic gas, a similar result applies (this is shown in Appendix
E)19

Ω =K′U3N/2, (6.19)

where K′ is independent of U .20

Let us now change the energy from Ubefore to Uafter while holding
V and N constant. From Equation (6.19) we see that

Ωafter

Ωbefore
=
K′U3N/2

after

K′U3N/2
before

=

[

Uafter

Ubefore

]3N/2

.

Since S = kB lnΩ this implies (compare with the derivation of Equa-
tion (2.8) in Section 2.4)

∆S = kB lnΩafter − kB lnΩbefore = kB ln
Ωafter

Ωbefore

= kB ln









[

Uafter

Ubefore

]3N/2





.

The change in entropy when the energy varies from Ubefore to Uafter is
therefore

∆S =
3
2
NkB ln

Uafter

Ubefore
(monatomic ideal gas). (6.20)

In Section 2.7, we saw that the temperature T is related to how the
entropy changes with energy. Equation (2.14) says that 1/T (which is
dS/dU) gives the rate of the entropy increase when we increase the
energy (assuming that V andN are constant). Since Equation (6.20) is
a relationship between entropy and energy, one can use this equation
to determine the temperature of a monatomic gas that has a given en-
ergy. As we will show in the derivation below, Equation (6.20) implies
that the temperature and the energy are proportional to each other;

19This expression is valid provided U is well above the ground state energy, which
is taken as the zero level for U .
20If we combine these two results, we find that Ω(U,V ,N ) = K′′U3N/2VN =
K′′ [U3/2V ]N where K′′ is independent ofU and V (K′′ depends only onN and on the
molecular mass of the molecules). A complete expression for lnΩ is given in footnote
9 of Appendix E.
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more specifically, U = 3
2NkBT . This is identical to Equation (4.19) of

Section 4.4 that we obtained from a completely different reasoning
there.

A little derivation*

If U is changed by a small increment dU from Ubefore = U to
Uafter = U + dU , Equation (6.20) gives the corresponding change dS
in entropy

dS =
3
2
NkB ln

U + dU

U
=
3
2
NkB ln

(

1+
dU

U

)

.

Since ln(1 + x) ≈ x when x is a small number (see Figure 4.12), this
implies that21

dS =
3
2
NkB

dU

U
. (6.21)

Equation (2.14) implies that dS = dU/T when V and N are constant
(compare to Equation (2.18) with dq = dU and dSirrev = 0). If we insert
this into the left-hand side of Equation (6.21), we obtain

dU

T
=
3
2
NkB

dU

U
.

By dividing both sides by dU and rearranging the expression, we ob-
tain

U =
3
2
NkBT (monatomic ideal gas), (6.22)

which is identical to Equation (4.19). Note that this relationship ap-
plies only to monatomic ideal gases since Equation (6.20) is valid for
that case only.

As we noted in Section 4.5 in connection with Equation (4.22),
the relationship U = 3

2NkBT means that we can identify the heat
capacity CV = 3

2NkB and we can therefore write Equation (6.20) as
∆S = CV ln(Uafter/Ubefore). Since U and T are proportional to each

21This can alternatively be obtained by differentiating S = S(U ) = 3
2NkB lnU +

constant, which is valid provided U is well above the ground state energy.
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other, we have Uafter/Ubefore = Tafter/Tbefore and we obtain

∆S = CV ln
Tafter
Tbefore

when V = constant, (6.23)

which describes how the entropy changes with temperature. Equation
(6.23) is a very important result that we so far have shown only for
monatomic ideal gases, but as we shall now see, this equation applies
generally when CV is constant independent of temperature.

First, let us increase the temperature of a system by a small
amount dT from T to T + dT by adding a small amount of heat dq
when V and N are constant. We require that we always have equi-
librium, so the heating takes place reversibly. According to Equation
(6.18) we have dq = CV dT . Equation (2.18) with dSirrev = 0 says that
when we add heat dq, the entropy increases by a small amount dS
given by dS = dq/T . Thus, we have

dS =
dq

T
=
CV

T
dT . (6.24)

We seek the total entropy increase ∆S when the temperature is
changed from Tbefore to Tafter. When we repeatedly increase T incre-
mentally by the amount dT , the entropy increase is given by the sum
of the contributions dS for each step according to Equation (6.24).22

The denominator T will become larger and larger, so the increase dS
for each step therefore becomes smaller and smaller as the tempera-
ture increases, as illustrated in Figure 6.6. The temperature increase
dT in each step should in principle be infinitely small (dT → 0) and
the number of steps infinitely many. Then, the total entropy increase
∆S between Tbefore and Tafter is given by area under the curve CV /T in
the figure, that is,

∆S =
∫ Tafter

Tbefore

CV

T
dT = CV

∫ Tafter

Tbefore

1
T
dT , (6.25)

where we have taken CV outside the integration sign since it is as-
sumed to be independent of T . To perform the integration we note

that the integral is of the kind
∫ b

a
(1/x)dx with x = T , a = Tbefore and

22Anyone who is familiar with integration can go directly to Equation (6.25) by
integrating Equation (6.24) between Tbefore and Tafter to obtain the total entropy in-
crease ∆S shown in Equation (6.23).
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Figure 6.6 (a) The entropy increase, when T increases gradually with the
increment dT in many small steps from Tbefore to Tafter, is given by the sum of
the contributions dS = (CV /T )dT for temperatures between these two values.
These contributions are illustrated with a succession of narrow rectangles
with width dT and height CV /T . The first rectangle is gray toned and is also
shown separately. When we reduce the width dT of each rectangle (dT →
0) and simultaneously increase the number of rectangles between Tbefore to
Tafter, the sum of the surfaces of the rectangles will approach the area under
the curve CV /T . (b) The area between the curve and the T axis from Tbefore
to Tafter equals the total entropy increase ∆S.

b = Tafter. Since

∫ b

a

1
x
dx = [lnx]ba = lnb − lna = ln

b

a

we obtain the same result as in Equation (6.23).
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Equation (6.23) is thus a general result for the entropy change
when the temperature changes and the volume is kept constant (as-
suming CV is constant in the temperature interval).

One may now ask: How large is the entropy change when the pres-
sure is kept constant instead of the volume and temperature changes?
Let us first examine the case when we add a small amount of heat dq.
According to the second law of thermodynamics dS = dq/T in this
case too (see Equation (2.18) with dSirrev = 0) and according to Equa-
tion (6.17) we have dq = CPdT when the pressure is constant, which
means that Equation (6.24) is replaced by

dS =
dq

T
=
CP

T
dT . (6.26)

Before we proceed, we shall, however, examine why this simple rela-
tionship is appropriate.

Discussion of Equation (6.26)

As we saw in Sections 4.5 and 4.6, the volume of a gas increases
when we add heat dq at constant pressure and hence a part of the
added energy is used to expand the gas against the ambient pres-
sure (by pressing out the piston in the examples we discussed there).
Therefore, a smaller amount of the added energy is available to be
distributed among different quantum states of the molecules, which
implies that the corresponding entropy increase (dSener) becomes
smaller compared to the case of constant volume. At the same time,
the number of possible particle configurations of the molecules in-
creases as V increases, resulting in a positive entropy contribution
(dSconf). The total entropy change dS is the sum of these two contri-
butions.

The expansion of the gas is reversible (the pressure of the gas is
at all times equal to the external constant pressure) and we saw in
Section 4.3 that the entropy change due to reversible work is zero. The
loss of entropy of the system because of a part of the added energy is
lost to the surroundings during the expansion, is therefore equal to
the gain in configurational entropy (compare with the derivation of
the ideal gas law in Section 4.4 where this fact was used). The total
entropy change is therefore given by the total energy supplied in the
form of heat dq according dS = dq/T , which is in accordance with
what we wrote in Equation (6.26). The energy loss in the form of the
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reversible expansion work dw = −PdV has no effect on the entropy of
the system. On the other hand, this loss implies that the temperature
increase in the system will be less than if the same amount of heat
would be added to the system at constant volume, just as we found in
Section 4.5. The temperature change is according to Equation (6.17)
given by dT = dq/CP and we saw in Section 4.5 that CP > CV , which
expresses the smaller increase in temperature.

Thereby, we have clarified the background of Equation (6.26) and
we will use it to calculate the entropy change ∆S when the tempera-
ture is varied from Tbefore to Tafter at constant P. Just like in the earlier
case where we used Equation (6.24) to obtain Equation (6.23), we ob-
tain

∆S = CP ln
Tafter
Tbefore

when P = constant, (6.27)

where we have assumed that CP is independent of temperature. The
difference between the two cases “constant pressure” and “constant
volume" is accordingly only which heat capacity one uses, CP or CV .

Key points

• The temperature dependence of G at constant P and N is given by
G = H − TS , where one can assume, as an approximation within
a small temperature range, that H and S are constant. When G
is plotted as a function of T one thus obtains approximately a
straight line with slope −S in a limited temperature interval.23

• The temperature dependence of the equilibrium constant K is
given at constant pressure by

lnK = −∆rH
0

R

1
T

+
∆rS

0

R
,

23When one considers that S and H depend on temperature, S = S(T ) and H =
H(T ), the slope for G =G(T ) is still equal to −S at each temperature. This is shown in
footnote 10. The plot ofG = G(T ) gives in general a curved line with second derivative
−CP /T (this follows from d2G/dT 2 = −dS/dT = −CP /T , where the last equality is a
consequence of Equation 6.26). In a sufficiently small T interval the curvature of
the line can be ignored as an approximation. Mathematically, (∂G/∂T )P,N = −S and
(

∂2G/∂T 2
)

P,N
= −CP /T .
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where one can assume as an approximation within a limited tem-
perature interval that ∆rH

0 and ∆rS
0 are constant independent of

T . If one plots lnK as a function of 1/T one obtains approximately
a straight line with slope −∆rH

0/R.

• When the volume is constant and the temperature is changed from
Tbefore to Tafter, the internal energy and the entropy are changed by

∆U = CV∆T and ∆S = CV ln
Tafter
Tbefore

,

respectively, where ∆T = Tbefore − Tafter and CV is assumed to be
independent of T .

• At constant pressure, the changes in enthalpy and entropy are

∆H = CP∆T and ∆S = CP ln
Tafter
Tbefore

,

respectively, where CP is assumed to be independent of T .



chapter 7

Epilogue

7.1 What are the molecules doing?

In this book, we have seen that by using our imagination and “tak-
ing part” in the world of the molecules, we can gain an understand-
ing of various phenomena that we can observe in our world, i.e., on
the macroscopic level. A large variety of properties and processes of
macroscopic systems can be understood on the basis of what is hap-
pening on a molecular, microscopic level. The microscopic world is
teeming with activity: molecules dart around back and forth, vibrate
and rotate, they collide, exchange energy, repel and attract each other,
and change shape, break apart and merge. All this is done continu-
ously and everywhere. The individual molecules have different ener-
gies at each moment, they move, rotate, and vibrate at different rates,
and have, for example, different shapes – all these properties change
all the time for each molecule.

It is actually quite remarkable that this complex multitude of ac-
tivities can give rise to macroscopic properties and processes that
can be described in a relatively simple manner. The reason why this
is possible is the fact that a macroscopic system consists of an ex-
tremely large number of molecules. On themacroscopic level, we usu-
ally experience averages of properties that involve a huge number of
molecules and on a time scale that is relatively long from the molec-
ular perspective. The fates of individual molecules play a very small
role compared to what happens to the collective at large.

When a system has reached equilibrium, no changes take place as
seen from a macroscopic perspective. The molecular concentrations
do not change and, for example, the temperature, pressure, and to-
tal energy of the system remain constant. From the perspective of
the individual molecules, on the other hand, a lot of things happen
– the same things that happened before equilibrium was reached.
The molecules dart around, collide, exchange energy, and are trans-
formed. The difference between the conditions at equilibrium and
what happens before equilibrium is reached (i.e., during a sponta-
neous process) has to do with the probabilities that various courses of
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events occur. At equilibrium, the possible courses are equally likely
as their opposites. For example, on average, an equal number of
molecules of each species is formed and disappears (that is, is con-
verted into something else), the same amount of energy enters each
part of the system as it leaves and as many molecules move in one
direction as in the other. Before equilibrium is reached, it is, how-
ever, more likely that some courses of events take place than their
opposites. The spontaneous process that one then perceives macro-
scopically is the net change that occurs in the direction that is most
probable.

In thermodynamics one mainly studies equilibrium states and
processes between the initial and the final equilibrium states. The ini-
tial state is thereby the equilibrium state that exists before the process
is allowed to start; for example, before one lets heat pass between a hot
and a cold body, before a barrier is removed that separates different
molecular species from each other, before a candle is lit in the pres-
ence of air, or before the volume is allowed to change for a system that
is exposed to an external force. The final state one considers may be a
real or an imaginary equilibrium state; the latter is the case when one
is interested in determining whether an imagined process can occur
spontaneously. One does not necessarily need to be concerned with
what happens in detail during the process – by comparing the initial
and final states, one can still determine whether the process is possi-
ble. If the total entropy increases, the process is thermodynamically
possible; if it decreases, the process is impossible.

The fact that a process is thermodynamically possible does not
necessarily mean that it can happen spontaneously within a reason-
able time. For some chemical reaction to occur, one may need to have
a suitable catalyst present (a catalyst is a substance that increases the
speed of a reaction without being consumed). On the other hand, if
the process is thermodynamically impossible, it cannot happen spon-
taneously no matter which catalyst one adds. The reverse process is,
however, possible and is speeded up by the catalyst.

The reason why some thermodynamically possible processes are
slow is usually that molecules or their constituent atoms must pass
a high energy barrier between the initial and final states. The barrier
can be passed only for molecules that have high enough energy and
at each moment of time there are just a few molecules that fulfill this.
A catalyst makes the barrier become lower, whereby more molecules
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have sufficient energy to pass and the process occurs more rapidly.
The initial and final states are, however, the same in both cases.

The probability we are talking about in connection with the dis-
tinction between spontaneous and nonspontaneous processes concern
the probability that a process will take place during a time period that
is sufficiently long. What is sufficient depends on the system – in some
cases it can be a very long time, in other cases short. For instance,
the fact that diamond is converted to graphite at room temperature
and normal atmospheric pressure means that this is much more likely
than the reverse taking place (graphite is the thermodynamically sta-
ble form). Yet, the probability of conversion of diamond to graphite is
extremely small and the process takes a tremendous amount of time
(in practice, it does not occur). The probability of a spontaneous pro-
cess to take place is thus always much greater than the reverse pro-
cess, irrespective of whether the first one is large or small.

For each final state that has been obtained in reality, the total en-
tropy of the system and its surroundings has increased (in this con-
nection we disregard reversible changes that must be performed in-
finitely slowly). A spontaneous process occurs, of course, in the di-
rection that is most probable. This corresponds, as we have seen, to
an increase in entropy. The link between probability and entropy is
given by: (a) entropy equals S = kBT lnΩ where Ω is the number of
microstates for a system with a given energy and (b) all microstates
with the same energy are equally probable.1 The equilibrium state is
the macroscopic state that corresponds to the largest number of mi-
crostates and thereby the highest entropy and the highest probability.
All other possible macroscopic states, for instance, the state that the
system had before the spontaneous process was allowed to happen,
correspond to much fewer microstates and hence lower entropy and
lower probability.

Since a very large number of molecules is involved, the equi-
librium state corresponds to the largest number of microstates; this
number is enormously greater than for other possible macroscopic

1That all accessible microstates with the same energy are equally likely at equilib-
rium is one of the basic postulates of statistical mechanics. If the system is isolated,
the energy is constant. All possible microstates of the system thus have the same en-
ergy and are equally likely. If the system can exchange energy, the total energy (for
the system and the surroundings) is constant and the possible microstates of the sys-
tem and its surroundings (considered as one system with constant energy) have the
same energy and are thus equally likely.
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states. Thereby, the system and the surroundings get access to a vastly
larger number of microstates when the system goes from the initial to
the final state. Although it is possible in principle for the process to
go in the reverse direction, this is extremely unlikely – in practice this
does not happen. For example, it is possible that all air molecules in a
room at one moment in time would spontaneously gather in one half
of the room, but the probability for this is so tremendously small that
this does not happen in practice. Even very small deviations from a
uniform distribution throughout the room are in fact very unlikely.
Equalization of the density is a spontaneous process because it is far
more likely that this happens than the reverse.

All processes that we observe in reality are spontaneous.2 For ex-
ample, a warm system (A) in cold surroundings will spontaneously
deliver heat to the surroundings if heat is allowed to be exchanged.
Thereby, the total entropy increases until the temperature of A and
the surroundings is the same. To heat up system A again, we must,
for example, bring A in contact with a body (B) with a higher tem-
perature. The heat transfer to system A is thereby spontaneous and
the total entropy increases. To carry out this process, we must, how-
ever, first heat up body B by adding energy to it from some source.
During this preparation, which is also a spontaneous process, the to-
tal entropy increases. In each step that takes place, the total entropy
increases because energy is spread out more and more.

If we want to perform a process that cannot occur spontaneously,
we have to drive it forward by using another process that can occur
spontaneously. For example, a mixture of oxygen and hydrogen gases
(oxyhydrogen gas) reacts spontaneously to form water upon ignition

2There are developments in nature which are not spontaneous processes in the
sense that we use in this book. The motion of the moon around the earth is an ex-
ample of one, and also the movement of a body which is not affected by any forces
and the velocity of which therefore does not change. These are virtually unchange-
able movements; the moon continues to circle around the earth and the body will
move straight forward for a very long time. Since the moon and the earth mutually
deform each other – partly in the form of tides on earth – the speed of the moon is,
however, slowly decreasing. This change is a spontaneous process in the sense that we
use. For similar reasons, a ball that bounces vertically up and down against the floor
in vacuum, will eventually stop due to friction, whereby the potential and kinetic
energy of the ball is converted mainly into thermal motion of the molecules. This is
a spontaneous process; the final state is the ball at rest on the floor. If the ball would
bounce perfectly elastically (without friction), it would continue to do so indefinitely.
This elastic bouncing is not a spontaneous process in our sense, and it corresponds to
the moon circling the earth.
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or in contact with a catalyst. The driving force is the dispersion of the
released energy. To do the reverse process – to split water into oxygen
and hydrogen gases – wemust add energy. For example, we can do this
by electrolysis, whereby energy is supplied by an electrical current.
This current must be generated by some process that is spontaneous.
We could, for instance, use a generator driven by hydropower (water
falls spontaneously from high to low altitude and thereby drives the
generator) or by an engine that burns oil. The entropy increase when
generating the electrical power is thereby greater than the reduction
in entropy when producing oxygen and hydrogen gases from water.
Overall, the total entropy therefore increases.

Often, we have a situation where the surroundings of the system
participate only by making one or more variables of the system re-
main constant, such as the temperature. As we have seen, in order to
keep track of the total entropy (of the system and the surroundings)
in an efficient way, one introduces the concept of free energy. Free
energy is so designed that its change is proportional to the change in
total entropy, for instance,∆A = −T∆Stot at constant T andV . The free
energy, in this case the Helmholtz energy A = U − TS , contains only
the system’s own variables:U = its energy, T = its temperature (which
is also the temperature of the surroundings), and S = its entropy.

While the condition∆Stot > 0 is a general criterion for spontaneous
processes, the corresponding condition ∆A < 0 is valid only for spon-
taneous processes at constant T and V . In the relationship ∆Stot =
−∆A/T = −∆U/T +∆S , the term −∆U/T represents the entropy change
in the surroundings. This entropy change arises because of the heat
transfer that takes place in order to keep the temperature of the sys-
tem unchanged. For a spontaneous process, the free energy decreases
and equilibrium is reached when it has become as small as possible.
The equilibrium condition is that A has a minimum (dA = 0) when T
and V are constant. At the same time, Stot assumes its largest possible
value under the given conditions (that is, at constant T and V ).

If the pressure P is kept constant, whereby V is allowed to vary,
it is instead the change in Gibbs energy (G = H − TS = U + PV − TS)
that is proportional to the change in total entropy: ∆G = −T∆Stot at
constant T and P. Under these conditions, ∆G < 0 is the criterion for
spontaneous processes (∆Stot > 0 obviously also applies). In this case,
we have ∆Stot = −∆G/T = −∆H/T + ∆S , where −∆H/T is the term
that expresses the entropy change in the surroundings due to heat ex-
change. The equilibrium condition at constant T and P is thatG has its
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minimal value (dG = 0). Stot assumes at the same time its largest pos-
sible value under the given conditions (that is, at constant T and P).

The enthalpy,H =U +PV , is so designed that it takes into account
the energy exchange with the surroundings that takes place because
the volume changes in order to keep P constant. In the relationship
∆H = ∆U + P∆V , which applies when P is constant, the term P∆V
constitutes the energy that the system delivers in the form of work on
the surroundings when the volume changes. Heat added to the sys-
tem, which is equal to ∆H when P is constant, goes partly to a change
in energy of the system’s molecules, ∆U , and partly to the work P∆V
carried out on the surroundings. These effects are thus included in
both the enthalpy H and Gibbs energy G when P is constant.

Thermodynamics thus provides the means to determine, for ex-
ample, which way a process can go spontaneously under various con-
ditions, and what are the corresponding conditions for equilibrium.
The fact that an extremely large number of molecules is involved
in processes for macroscopic systems, makes macroscopic thermody-
namics applicable without necessarily taking into account any details
about what happens to the molecules. This is the strength of classi-
cal thermodynamics; it applies to macroscopic systems regardless of
the molecular description. Since the microscopic world lies behind
what is happening on the macroscopic level, the molecular descrip-
tion gives, however, an increased insight into and understanding of
thermodynamics.

Thermodynamics was, however, developed during the 19th cen-
tury, which was a time when molecular properties were largely un-
known – several prominent scientists even doubted their existence.
The reasons why thermodynamics was developed at that time was to
a large extent due to an interest in energy conversions, such as con-
version of heat to work in steam engines. That a general theory was
developed under these conditions – a theory that at a later stage could
also be applied to understand and describe molecular properties and
behaviors – remains a truly great intellectual achievement.

Today, large areas of science are molecularly oriented and the
molecular world is becoming better and better understood. The pur-
pose of this book has been to make this world even more accessible by
explaining what is the driving force in the world of molecules and a
variety of other issues. So ... Welcome back to the world of molecules
again. I hope that you feel at home there!



appendix A

Heat dispersion and temperature, an
analogy

A.1 Spreading of energy in a body

Molecules that interact are constantly exchanging energy with each
other. At each instant in time the molecules have different energies
– which ones have high and which ones have low energies is due to
chance. A molecule with high energy can at the next moment have
low and vice versa.

Figure A.1 People in a room who move around and occasionally meet each
other. Every person has an amount of coins. When they meet, each one gives
a random number of coins to the person she meets and accepts the money
she receives. The persons represent molecules and the number of coins that
each one has corresponds to the molecule’s energy. The picture shows only a
small part of the room. Illustration: Anette Hedberg.

Let us use an analogy: A large number of people are moving
around in a room. They have been given a large amount of coins
(Figure A.1), which all have the same value. The people represent
molecules and the number of coins that each person has corresponds
to the energy of a molecule. We assume that the people are immensely
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Figure A.2 One of the persons has been given a gift of one million coins.
This corresponds to a large amount of energy has been added to one
molecule. Illustration: Anette Hedberg.

generous and share their coins with each other when theymeet. Some-
times they give away one, sometimes two, and sometimes a larger
number of coins completely at random. At the same time they receive
coins from those they encounter.

At every point in time, different persons have a different number
of coins, but on average, measured over a period of time, each and
every one will have an equal number (averaged over a sufficiently long
time). At a single moment, some have more and some less coins than
the average, and a few may have a very large number of coins. It is
even possible – but not very likely – that a single person at one instant
in time has all the coins.

Let us now give a single person in the room one million coins,
that is, much more than each one of the others. She and everyone else
will, just as before, hand out and receive money in a random manner
(Figure A.2). In the beginning, she will give away more than she re-
ceives. Those who she meets have significantly less money and cannot
give away more than what they currently have. She can, however, give
large amounts. Eventually, she will on average have the same amount
of money as everyone else. The gift that she received has become dis-
persed among all the people.

Everyone has become richer on average. It is very unlikely (but
not impossible) that she at a later time by chance will have her orig-
inal one million coins back. A fairly even distribution is vastly more
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probable than an uneven distribution, where one or a few persons
have far more or far less money than the rest.

At the molecular level, the reasoning above corresponds to what
happens if we heat a specific part of a body by adding energy (heat).
The energy spreads spontaneously: the heated molecules gradually
lose most of the added energy while the energy of all other molecules
is increased on average. The end result is that the entire body has
become somewhat warmer than it was initially. The added energy
has a very high probability of being distributed uniformly over all
molecules.

A.2 Spreading between a hot and a cold body

Let us now examine the transfer of heat between a hot and a cold body
– first when both bodies consist of the same molecular substance, and
then when the bodies are different. Also in this case we make an anal-
ogy with humans.

Suppose we have two rooms with people who behave in exactly
the same way as in our previous example. The two rooms correspond
to the two bodies, the people represent the molecules that the bod-
ies consist of and the value of money corresponds to the energy. The
rooms are equally large and contain an equal number of persons. Ini-
tially the rooms have no connection with each other so the coins that
are exchanged between the persons in each room stay there. Suppose
also that the persons in one of the rooms are on average richer than in
the other one. Room A, which contains the rich persons, corresponds
to the hot body and room B to the cold body.

What happens when we open up gaps in the wall between the
rooms so that money can be exchanged between rooms A and B?
The persons themselves cannot pass through the openings. We as-
sume that the persons in both rooms are just as willing to give and
receive money through openings as they are when they meet inside
the rooms. Coins flow in both directions because people, when they
meet through the gaps, give coins to one another in a random manner
(Figure A.3). More coins flow from room A to room B than vice versa,
since the persons in A initially had more. Thus there is a net flow from
A to B, whereby the people in A are becoming less wealthy on average,
and in B less poor.

Also in this case, an equal distribution of coins among everyone
becomes the most likely outcome. This is vastly more probable than
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Figure A.3 People who are all equally generous are located in two rooms, A
and B. The rooms represent two bodies composed of the same substance. Ini-
tially, the persons in A have on average more money than those in B. When
gaps have been opened in the wall between the rooms, the giving and re-
ceiving of money also takes place between the rooms. Initially, the flow of
coins is greater from room A to room B than the reverse (arrows). Room A
represents a body which initially is hotter than the other one. Both rooms are
larger than what is shown in the picture. Illustration: Anette Hedberg.

an uneven distribution where a number of persons have a lot more
or a lot less money than the others. In other words, the flow of coins
continues until all have become equally rich on average. Once this
occurs, the flow of coins from A to B is on average equal to that from
B to A. The net flow is zero.

We can express this by using a kind of “money temperature,”
which initially must be higher in A because A spontaneously delivers
and B receives a net flow of coins when the gaps are opened. When
the net flow is down to zero, the temperature is the same in the two
rooms.

This example corresponds to the transfer of heat from a hot to
a cold body. The number of ways to distribute energy about evenly
between the molecules is much larger than the number of ways to
distribute the energy unevenly. The reason for the heat transfer is ac-
cordingly that it is much more likely with a uniform distribution than
a nonuniform.
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A.3 Lower temperature – but higher energy

Let us now consider two bodies consisting of different substances. We
will again make an analogy with people in two rooms.

What happens if the people in room A and B do not behave in the
same way? Say that the B persons are inclined to keep some of the
money for themselves. Let us assume that they have several pockets
where they put money. Each B person takes up a number of coins from
one pocket, puts some of it in another of her own pockets and gives the
rest to the person she meets. An A person, on the other hand, always
gives away everything she happens to pick up from her pocket. The
A and B persons represent different kinds of molecules with unequal
abilities to contain energy; they correspond to two molecular species
with different numbers of quantum states per energy level.

Let us further assume that the A persons initially, just as before,
are richer on average than their neighbors in B. When we open gaps
in the wall, coins begin to flow in both directions (Figure A.4), and in
the beginning the flow from room A to room B is, of course, greater
than from B to A.

The net flow does, however, not become zero when the A and B
persons after a while have equally many coins each on average. The

Figure A.4 Here, the people in room B are a little stingy, while those in
A are exactly like before. The B persons have several pockets where they
put money. The rooms represent two bodies consisting of different molecu-
lar substances. Initially, the persons in A have on average more money than
those in B and the flow is greater from room A to B than the reverse. Illustra-
tion: Anette Hedberg.
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Figure A.5 When the flow from B to A finally is equal to that from A to
B, equilibrium is reached and the “money temperature” is equal in the two
rooms. Then, each one of the B persons, who are a bit stingy, has more money
on average than each A person. This illustrates how molecules of two differ-
ent substances typically have different energy even though the temperature
is equal. Illustration: Anette Hedberg.

“cheapskates” in room B continue, as usual, to put coins in their own
pockets. Therefore the net flow from A to B continues until the B per-
sons have significantly more coins per person than their neighbors in
A – so many more that each B person, despite her stinginess, on aver-
age gives away as much as each A person. Only at that stage does the
net flow between the rooms become zero (Figure A.5).

Also in this case, the “money temperature” in room A is initially
higher than in B, since A is spontaneously delivering and B receiving a
net flow. Moreover, the temperature continues to be higher in A when
the point has been reached where the A and B persons are equally rich
on average. The spread of coins continues to increase when even more
coins are transferred from A to B. The number of ways to distribute
the coins becomes greater because the persons in room B distribute
the money not only between each other but also between their various
pockets.

Eventually, the persons in room B have become significantly
richer, the net flow has become zero and the temperature has accord-
ingly become equal. Just before this equilibrium has been reached, the
temperature of B is still lower than of A, despite that the number of
coins per person is higher in B.



Heat dispersion and temperature 195

A body may thus have a lower temperature than another body
even though the energy per molecule is greater in the former. It
should be emphasized that this is normal for bodies that are com-
posed of different kinds of molecules.

The condition that the temperature is higher in one body (A) than
in another (B) means that it is more likely that energy (heat) flows
from hot to cold than in the opposite direction when contact occurs.
The flow is due to a spreading of energy. A net amount of energy is
transferred between the bodies as long as the total number of ways
to distribute the energy can increase. The number of possible ways to
distribute the energy in A decreases (energy is removed), while the
number in B increases (energy is supplied).

While the total number of possible distributions (for A and B to-
gether) increases during the energy transfer, the transfer occurs spon-
taneously. No further net transfer takes place when the total number
of ways to distribute the energy has reached its maximum and can-
not increase any more upon a continued transfer. Thereby, the most
probable state is reached, and the temperature is the same in the two
bodies.

Accordingly, the temperature of a body has no simple relation-
ship to the energy per molecule.1 It is instead associated with how the
number of possible distributions of energy for a body (the number of
microstates) changes when its energy is varied. The exact relationship
between temperature and the change in the number of distributions is
explained in the following box, which provides a mathematical sup-
plement to the discussion of temperature in Section 2.7 (the contents
of the box are, however, not needed in order to read the rest of the
book).

Temperature and the relationship to entropy*
Let system A have ΩA(UA) and system B have ΩB(UB) microstates

when their energies are UA and UB, respectively. The total number
of microstates for systems A and B together is according to Equation
(2.4) equal to ΩAB = ΩA(UA)ΩB(UB). Let a small amount of energy
(heat) dU pass from A to B, so the energy of A becomes UA − dU and
of B UB + dU (we assume that dU > 0). If ΩAB then increases, the

1However, for certain parts of the energy, such as the translational energy, there
are simple relationships (see Section 4.4).
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heat transfer is spontaneous and A must by definition have a higher
temperature than B. When ΩAB increases, lnΩAB increases too and
therefore also

SAB = kB lnΩAB = kB lnΩAΩB = kB lnΩA + kB lnΩB = SA + SB.

Now

dSA =
dSA(UA)
dUA

dUA =
dSA(UA)
dUA

(−dU)

and

dSB =
dSB(UB)
dUB

dUB =
dSB(UB)
dUB

dU

so the total increase in entropy is

dSAB = dSA + dSB =

[

−dSA(UA)
dUA

+
dSB(UB)
dUB

]

dU > 0. (A.1)

Since dU > 0 the bracket must be positive and therefore

dSA(UA)
dUA

<
dSB(UB)
dUB

. (A.2)

The result in Equations (A.1) and (A.2) means that the system, which
receives heat (B) and thereby increases its entropy, must have a larger
increase in S due to the energy exchange than the reduction in S of
the other system (A). This is natural, because otherwise the total en-
tropy SA + SB and therefore ΩAB would not increase, contrary to our
starting point. According to Equation (A.2), the systemwith the lowest
temperature has the largest value of the derivative dS/dU . By taking

T =
1

dS/dU

as a measure of temperature, a warm body will have a higher temper-
ature than a cold one. This is the definition of absolute temperature
introduced in Section 2.7.



appendix B

The Boltzmann distribution law*

In this appendix we proceed with the arguments in Section 2.8 one
step further in order to determine the probability that system A at
a constant temperature T (Figure 2.27) is in a particular microstate
with energy UA. We denote this probability pA(UA). The temperature
is determined by the surroundings B. Just as in Section 2.8 it is as-
sumed that B is very much greater than A, so that the temperature is
not affected by the energy exchange between A and B.

Let the total energy of the combined system AB be equal to UAB =
UA+UB, where UAB is constant while UA and UB may vary because of
energy transfer between A and B. The entire system AB is assumed to
be isolated and does not exchange any energy with its environment.
At equilibrium, each of the microstates of AB is equally probable in
accordance with what has been said earlier (Section 2.6) and we de-
note this probability pAB.1 When A is in a particular microstate with
energy UA, the number of possible microstates for the entire AB is
equal to 1 ×ΩB(UAB −UA) because B can be in any of ΩB(UAB −UA)
different states (compare with the discussion of the first row of Figure
2.15 in Section 2.4).

The probability for each one of the microstates of AB is equal to
pAB regardless of the distribution of energy between A and B, so pAB is
a constant independent of UA. Among all microstates of AB there are
ΩB(UAB−UA) which have system A in a particular microstate with en-
ergy UA. Therefore the probability of observing this state isΩB(UAB−
UA) times greater than pAB, that is, pA(UA) =ΩB(UAB −UA)pAB. Thus,
pA(UA) is proportional toΩB(UAB−UA). According to Equation (2.24)
with U =UAB and ∆U =UA we have

ΩB(UAB −UA) =ΩB(UAB)e
− UA

kBT ,

whereΩB(UAB) is constant sinceUAB is constant. Hence,ΩB(UAB−UA)
is proportional to exp(−UA/kBT ) and it follows that the same thing is

1We have pAB = 1/ΩAB because the total number of microstates of AB isΩAB and
all of them are equally probable.
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true for pA(UA), so we have

pA(UA) = KA × e
− UA

kBT , (B.1)

where KA is a constant of proportionality. This constant can be deter-
mined in the following manner. If we add up a probability over all
possibilities, we obtain the result 1 and therefore

1 =
∑

all microstates of A

pA(UA) =KA ×
∑

all microstates of A

e
− UA

kBT =KA ×ZA,

where we have summed over all microstates of A (for all possible en-
ergies UA) and where ZA denotes the sum

ZA =
∑

all microstates of A

e
− UA

kBT . (B.2)

Thus, KA = 1/ZA and we have2

pA(UA) =
e
− UA

kBT

ZA
. (B.3)

This relationship is called Boltzmann’s distribution law and it is of
great importance in statistical mechanics. As we have seen in Section
2.8, the exponential function in the numerator is a measure of the
availability of energy from the environment at temperature T . The
part of pA(UA) that is specific to system A is included in the denomi-
nator ZA, which contains a sum over all possible microstates of A.3

2From the reasoning above and footnote 1 we can see that KA = ΩB(UAB)pAB =
ΩB(UAB)/ΩAB, but the advantage with Equation (B.2) is that it provides an expres-
sion for KA = 1/ZA in terms of the properties of system A alone.

3Incidentally, it can bementioned that in statistical mechanics one makes the iden-
tification AA = −kBT lnZA, with ZA from Equation (B.2) – a very important relation-
ship. Here, AA is Helmholtz energy for system A, which is introduced in Section
3.8. A key property of Helmholtz energy is that when some process occurs in A at
constant temperature T and volume V we have ∆AA = −T∆Stot (see Equation 3.7),
where Stot is the total entropy of system A and its surroundings (here system B is
the surroundings, so Stot = SAB). It is easy to see that AA = −kBT lnZA indeed has
this relationship to Stot. From footnote 2 we see that lnKA = lnΩB(UAB) − lnΩAB
which implies that kB lnKA = SB(UAB)−SAB. Therefore, −kBT∆ lnZA = kBT∆ lnKA =
−T∆SAB = −T∆Stot since SB(UAB) is constant and vanishes in the difference (it is the
entropy of B in the absence of A).
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Application: Distribution of molecular speeds*
One application of the Boltzmann distribution law is to let sys-

tem A be composed of a single particle in an ideal gas, and let B be
the rest of the gas, which we assume is a macroscopic system at a
given temperature T . The gas particles can exchange energy with each
other and they have different speeds at different moments of time. We
shall determine the probability that a particle has the speed v. The
kinetic energy (translational energy) for a molecule with speed v is
εtr = mv2/2. We are here only considering that the particle has trans-
lational energy.4

Let us begin with motions in the x direction. The velocity com-
ponent in this direction is vx and the corresponding kinetic energy
is mv2x /2. According to the Boltzmann distribution law, the prob-
ability of observing a microstate with energy ε is proportional to
exp(−ε/kBT ). It is not meaningful to talk about the probability that
a particle has exactly the velocity vx, but instead we ask ourselves
what is the probability that the velocity is between vx and vx + dvx,
where dvx is a small number. For the motion in the x direction, the
energy is ε = mv2x /2 and the probability that the particle has velocity
between vx and vx + dvx is thus proportional to exp(−mv2x /2kBT )dvx.
The reason why we have the factor dvx here is that the probability
must be proportional to dvx (if we increase dvx with, say, a factor of 2,
the probability must be twice as large).

We are now ready to treat motions in three dimensions: in the x,
y, and z directions. We start with the probability that the velocity is
between vx and vx + dvx in the x direction at the same time as it is
between vy and vy +dvy in the y direction and between vz and vz +dvz
in the z direction (see Figure B.1a). This probability is proportional to

e
− mv2x

2kBT dvx × e
− mv2y

2kBT dvy × e
− mv2z

2kBT dvz

4If the particle also has any other energy such as rotational energy or internal bind-
ing energy, one can show that this does not affect the probability that the particle has
a certain speed. When the energy is εtr + εother where εother is any other form of en-
ergy (which is independent of the particle’s velocity), then exp(−[εtr + εother]/kBT ) =
exp(−εtr/kBT )× exp(−εother/kBT ). This means that the probabilities for the distribu-
tion of translational energy and for the other energy are independent of each other
(the proportionality constant in the Boltzmann distribution can also be written as a
product for the same reason).
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since the three probabilities in each direction are independent of each
other. The probability that the velocity of a particle is equal to v =
(vx,vy ,vz) within the margin (dvx ,dvy ,dvz) is thus equal to

const.× e−
m(v2x+v

2
y +v

2
z )

2kBT dvxdvydvz,

where “const.” is a proportionality constant and where we have used
the exponentiation rule eaebec = ea+b+c. This probability is accordingly
proportional to the exponential function times the volume dvxdvydvz
of the small box in Figure B.1a and the expression gives the probabil-
ity for a particle motion in a certain direction. In the figure, the “tip”
of the velocity vector then lies within the volume dvxdvydvz of the
box.

However, we are not interested in what direction the particle has,
but only in its speed v independently of the direction of v (see Fig-
ure B.1b). We want to find the probability that the particle’s speed is
between v and v + dv. In Figure B.1b, the tip of the velocity vector is
therefore allowed to be within the volume of a spherical shell of ra-
dius v and thickness dv. Since dv is a very small number, which we
assume here, the shell has a volume equal to the shell’s area times its
thickness, i.e., 4πv2 × dv.

The probability P (v)dv that the speed of a particle lies between
v and v + dv regardless of direction is thus obtained by replacing
dvxdvydvz with 4πv2dv in the expression above. We thereby obtain

P (v)dv = const.× e−
mv2
2kBT 4πv2dv, (B.4)

where we have used that v2 = v2x+v
2
y +v

2
z according to the Pythagorean

theorem. The proportionality constant can be determined from the
fact that the sum of the probability of all possibilities must be equal
to 1, meaning that the integral of P (v) over all speeds v is equal to 1.
One can show that it means that the constant must be (m/2πkBT )3/2

so we have

P (v) =
(

m

2πkBT

) 3
2

e
− mv2

2kBT 4πv2. (B.5)

This result is called theMaxwell-Boltzmann distribution law for
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molecular speeds and it is plotted in Figure 2.1 for different temper-
atures T . Since the temperature and the particle mass occur only as
m/T in this expression, one can realize that if one increases m by, say,
a factor of 2, one obtains the same distribution as if one instead re-
duces the temperature by the same factor. Figure 2.1 therefore also
shows the distribution of speed for particles with different masses at
the same temperature, where the curve for low temperature then cor-
responds to highmass and high temperature corresponds to lowmass.

v

dvz dvydvx

v dv

a b

Figure B.1 (a)When the velocity is between vx and vx+dvx in the x direction
at the same time as it is between vy and vy+dvy in the y direction and between
vz and vz+dvz in the z direction, the “tip” of the velocity vector v = (vx,vy ,vz)
lies within the depicted box with sides dvx, dvy and dvz. (b) When the speed
v = |v| lies between v and v+dv regardless of direction, the tip of the velocity
vector v lies within the depicted spherical shell of thickness dv.





appendix C

Collision with a piston in motion*

In this appendix we shall consider what happens when a particle col-
lides with the surface of, for example, a piston. We take for granted
that the piston has a much larger mass than the particle and we as-
sume for simplicity that the surface is completely smooth. Let us be-
gin with the case of a stationary piston. Consider a particle that ap-
proaches the surface. It is appropriate to divide the particle veloc-
ity vector v into a component perpendicular to the surface, vx, and
two components along with the surface, vy and vz (see Figure C.1).
The speed v = |v| is given according to the Pythagorean theorem by
v2 = v2x + v2y + v2z . At the collision, the particle’s motion will change di-
rection. If the collision is elastic, the speed will be the same as before
the collision. The only thing that happens is that vx changes sign (see
Figure C.2).

vx

vy

vz

v

surface

Figure C.1 A particle that approaches a surface. The velocity vector v of the
particle has been divided into components, vx, vy , and vz. We have chosen the
x axis perpendicular to the surface and the y and z axes along the surface.

Let us now assume that the piston moves with speed u to the left
towards the approaching particle (see Figure C.3a). If we were to con-
sider the particle from the surface’s point of view, that is, if we would
accompany the piston in its motion, the particle would approach with
the speed vx +u in the x direction (see Figure C.3b).
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vx

vy v

–vx

vy

Before:

After:

Surface

Figure C.2 In an elastic collision between a particle and the surface of a sta-
tionary body that is very heavy, the sign of the particle’s velocity component
perpendicular to the surface is changed while the other velocity components
are unchanged (the z component is perpendicular to the plane of the paper
and is not shown). In all figures, vx denotes the initial value of the x compo-
nent of the velocity.

  morf nees sA
a fixed point in space

As seen from 
the piston in motion

a

vx u vx + u

b

Figure C.3 (a) A particle approaches a piston that is moving to the left with
speed u. When viewed from a fixed point in space, both the particle and
piston are moving. (b) From the piston’s perspective, the particle approaches
with the relative speed vx+u in the x direction while the piston itself has the
speed zero.

At the collision, the particle will change the sign of the velocity
component in the x direction when we consider the collision as seen
from the surface, which thus is stationary relative to ourselves (see
Figure C.4a). As seen from a fixed point in space, however, the par-
ticle has not only changed the sign of the velocity’s x component,
but the magnitude of this component differs by 2u from the origi-
nal (see Figure C.4b). Thus, speed of the particle has increased from
vbefore = [v2x +v2y +v2z ]

1/2 to vafter = [(vx +2u)2+v2y +v2z ]
1/2. This is what

happens when one compresses a gas, whereby the speeds of the parti-
cles increase when they collide with the piston.

Let us now turn to the case where the piston moves with speed u
to the right, i.e., in the same direction as the approaching particle (see
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u

a

  morf nees sA
a fixed point in space

As seen from 
the piston in motion

–(vx + u (–) vx + 2u)

b

Figure C.4 (a) After the collision, the particle has changed the sign of its
velocity in the x direction when viewed from the piston’s perspective. (b) As
seen from a fixed point in space, the particle velocity in the x direction differs
by −u from the relative velocity in (a), that is, its magnitude is 2u larger than
it was before the collision.

u

a b

  morf nees sA
a fixed point in space

  morf nees sA
a fixed point in space

vx u –(vx – 2u)

Figure C.5 (a) A particle approaches a piston that moves to the right with
speed u. (b) After the collision, the magnitude of the particle velocity in the
x direction has decreased by 2u compared to what it was before the collision.
(If vx initially is less than 2u but greater than u, the particle does not change
direction at the collision, but the magnitude of the velocity component is
changed in the same way.)
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Figure C.5a; only particles moving towards the piston with at least
speed u in the x direction will collide with the surface). The treatment
is completely analogous to the previous case, but one must change
u to −u all formulas (see Figure C.5b), and we leave the analysis as
an exercise to the reader. The particle speed decreases from vbefore
to vafter = [(vx − 2u)2 + v2y + v2z ]

1/2. This is what happens when one
expands a gas, whereby the speeds of the particles are reduced when
they collide with the piston.



appendix D

Kinetic energy and pressure*

Consider a gas enclosed in a container. Let us examine the gas
molecules’ collisions with the container walls. The force acting on the
wall at a collision depends on how fast the molecule approaches the
surface. A fast molecule causes a larger force than a slow molecule.
It is the velocity component perpendicular to the surface, vx, which
is crucial (we choose the x axis perpendicular to the surface). This
component changes sign at the collision (see Figure C.2). The force on
the wall also depends on the mass of the molecule; a twice as heavy
molecule gives rise to twice the force. The relevant quantity is the
product mvx, which is called momentum. According to the laws of
mechanics, the force is equally large as the change in momentum per
unit time. At the collision, the momentum changes from mvx to −mvx
in the x direction, i.e., a decrease by the amount 2mvx. Thus the con-
tribution from each collision is proportional to mvx.

SurfaceSurface

Figure D.1 A molecule in an ideal gas collides repeatedly with the surfaces
of the container walls.

The total force on each surface depends on the number of colli-
sions that takes place on the surface per unit time. A fast molecule
will collide more often than a slow molecule; each molecule will, of
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course, sooner or later return to the wall as we can realize from Figure
D.1.

The number of times per second that the molecule collides with
a surface is proportional to the velocity component vx. Therefore, the
contribution to the force from each moleculewill be proportional to the
square of vx:

Force = const.× m× vx
︸︷︷︸

From each collision

× vx
︸︷︷︸

Several collisions

(D.1)

Since different molecules have different speeds, the total force on the
wall is proportional to the mean value of the force from the individual
molecules

Total force = B ×m
〈

(vx)
2
〉

, (D.2)

where 〈·〉 denotes the average over all molecules and B is a new con-
stant. The total force on the surface is, of course, proportional to the
surface area a and to the molecular density ρ = N/V of the gas, so
these factors are included in B. A more detailed analysis shows that B
contains solely these two factors (readers who are particularly inter-
ested are referred to the derivation at the end of this appendix), so we
have B = aρ and hence

P =
Total force

a
= ρm

〈

(vx)
2
〉

. (D.3)

The speed v for each individual molecule is according to the
Pythagorean theorem given by

v2 = (vx)
2 + (vy )

2 + (vz)
2,

where vx, vy , and vz are velocity components in the x, y, and z di-
rections, respectively. If we take the average over all molecules, we
obtain

〈

v2
〉

=
〈

(vx)
2
〉

+
〈

(vy)
2
〉

+
〈

(vz)
2
〉

.

For a macroscopic gas phase there is no difference between properties
of the gas in the x, y, and z directions, so therefore the average value
of the squared velocity component must be equal in all directions

〈

(vx)
2
〉

=
〈

(vy)
2
〉

=
〈

(vz)
2
〉

. (D.4)
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This implies that
〈

v2
〉

= 3
〈

(vx)
2
〉

(D.5)

and therefore we have according to Equation (D.3)

P =
ρm

〈

v2
〉

3
. (D.6)

Each molecule has a kinetic energy (translational energy) equal to
εtr = mv2/2, so the mean value of the translational energy per
molecule is ε̄tr = 〈εtr〉 = m

〈

v2
〉

/2.1 Thus we have the pressure due
to the molecular collisions

P =
2ρε̄tr
3

, (D.7)

which is our final results (used in Section 4.4, Equation (4.17)).

Derivation of the constant B in Equation (D.2)*
At each collision with the surface, a molecule’s velocity in the x

direction changes from vx to −vx, that is, a change with an absolute
value of 2vx. The corresponding change in momentum is 2mvx. If l is
the distance between the two surfaces in Figure D.1, the molecule will
collide with the right surface vx/2l times per second (the distance that
the molecule traverses in the x direction between two such collisions
is 2l). During one second, the total change in momentum in the x
direction due to the molecule’s collisions with right surface is hence
2mvx × vx/2l =mv2x /l in absolute value.

The change in momentum per second is according to the laws of
mechanics equally large as the force. Thus, each molecule affects the
surface with the force mv2x /l, which means that the proportionality
constant in Equation (D.1) is 1/l. The volume between the surfaces
is la and the number of molecules there is equal to laρ. The total
force on the surface from all molecules is the number of molecules laρ
times the average of the force mv2x /l per molecule, that is, the force is
aρ

〈

mv2x
〉

. In Equation (D.2), we accordingly have B = aρ.

1The notations ε̄tr and 〈εtr〉 mean the same thing. The former is, however, more
compact to write and is therefore used in the main text.





appendix E

Kinetic energy and entropy for
monatomic gas*

In this appendix, we will examine an ideal monatomic gas, the en-
ergy of which only consists of kinetic energy (translational energy).
The gas is enclosed in a box of volume V . A molecule’s energy is given
by εtr = mv2/2, where m is the mass of the particle, v = |v| its speed,
v = (vx,vy ,vz), and vx, vy , and vz are the velocity components in the
x, y, and z directions, respectively. We have v2 = (vx)2 + (vy)2 + (vz)2

according to the Pythagorean theorem. It is appropriate here to in-
troduce the concept of momentum that is defined as p = mv, so the
momentum components are given by pα = mvα for α = x,y,z. The
translational energy is

εtr =
(px)2 + (py)2 + (pz)2

2m
(E.1)

expressed in these components.
The energy for each molecule is quantized and can only assume

discrete values. This quantum mechanical phenomenon can (some-
what improperly) be expressed as that only certain values of momen-
tum components are possible for a monatomic molecule that bounces
between the walls.1 A quantum-mechanical treatment, which we will
not do here,2 shows that there is a minimal absolute value, pmin, for

1In quantummechanics the momentum pα for α = x,y,z is quantized for a particle
in a box. A particle with a well-defined momentum pα does not have a velocity in the
classical sense, but it is described by a so-called standing wave between the walls of
wavelength λ = h/ |pα |, where h is Planck’s constant. The standing wave may be said to
describe the particle which bounces between the walls. Similarly to the vibrations of
a guitar string that is stretched between two walls, the standing wave can only have
certain wavelengths and therefore only certain values of pα are possible.

2For those who are familiar with the quantum mechanical treatment of what is
often called “the particle in a box,” the following may serve as a reminder (see also
footnote 1). We have a gas of noninteracting particles in a box that we, for simplicity,
assume to be cubic with sides L, so the box volume is V = L3. The sides of the box are
aligned with the coordinate axes. (That we choose a cubic box makes no difference
for the macroscopic properties of a homogeneous gas since these properties do not
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Figure E.1 The possible absolute values of px, py , and pz for a monatomic
molecule in a box are represented by vertical bars (which continue infinitely
upwards). Bold lines show each component’s value for the molecule in the
example.

each component (where pmin , 0) and that all other possible values
are integer multiples of pmin. For instance, |px | can assume the values
pmin, 2pmin, 3pmin, et cetera, and the same thing applies for py and pz.

Figure E.1 shows an example where3

|px | = 4pmin, |py | = 5pmin and |pz | = 3pmin.

Another possibility is, for instance, that

|px | = 5pmin, |py | = 4pmin and |pz | = 3pmin,

where 4pmin and 5pmin have changed places. The number of possi-
bilities is, as we can realize, very large. Each constitutes a possible
quantum state of the monatomic molecule.4

For a gas with N molecules, there are a total of 3N momentum
components (three per molecule), which generally have different val-
ues.5 An example with three molecules is given in Figure E.2. Each

depend on the shape of the box that the gas is contained in.) Consider, for example,
the momentum px in the x direction for one of the particles. The quantization of px is
due to the fact that the standing wave (the solution to the Schrödinger equation) must
have zero amplitude at the surfaces of the box walls. This means that the available
wavelengths λ = h/ |px | satisfy the condition jλ/2 = L, where j is any positive integer
(like for a guitar string), and we thus obtain |px | = jh/2L. The smallest possible posi-
tive integer is 1, so the minimum value of |px | is pmin = h/2L = h/(2V 1/3). This means
that |px | = jpmin for any integer j ≥ 1. The same applies in the y and z directions.

3As explained in footnote 2, pmin for the x, y, and z directions can, without loss of
generality, be assumed to be the same for a macroscopic, homogeneous gas.

4The internal quantum states of the molecule (electronic states) are not considered
here. We only include those associated with the translational energy.

5If the energy is sufficiently high, it is very unlikely that two components have the
same value because the number of possible values is much larger than the number of
molecules.
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molecule 1

4 5 3

| px | | py | | pz |

molecule 2

2 6 8

| px | | py | | pz |

molecule 3

3 2 4

| px | | py | | pz |

Figure E.2 Illustration of three molecules with examples of values of the
momentum components. The numbers at the top show the value of each
component (expressed as multiples of pmin). All possible distributions of val-
ues for the nine different components (three permolecule) must be taken into
account. The figure only shows one example of such a distribution.

component pα , with α = x, y, or z, gives the contribution (pα)2/2m to
the energy since εtr for each molecule is given by Equation (E.1). The
total energy is the sum of εtr for all molecules.

In a manner that corresponds to the arguments in Section 2.6, we
will now determine how many different energy distributions there
are among the molecules.6 In doing so, we must take into account
all possible distributions of energy between all 3N components for
all molecules. It turns out to be easiest to first determine the num-
ber of possible energy distributions when the total energy is ≤U and
then from this result determine the number of distributions when the
energy is U , which is the quantity we seek.

Let us first look at the case of a single momentum component pα .
The lowest energy is obtained when the component’s absolute value is
pmin, that is, the minimum energy is εmin = (pmin)2/2m. If we allow en-
ergies between εmin andU , the possible values of |pα | are between pmin
and pmax, which satisfies (pmax)2/2m = U , that is, pmax = (2mU)1/2.
All positive integer multiples of pmin are allowed, so the number of
possible values of |pα | is equal to pmax/pmin = (U/εmin)1/2 (or more
specifically, the integer closest below this number). Thus, the number
of possible values is proportional to

√
U .

The derivation of the number of different energy distributions for
N molecules, that is, for 3N momentum components, is given at the

6As before, we assume for simplicity that the molecules are distinguishable. This
assumption does not affect, as we shall see, our final result in any significant way for
those applications we shall consider.
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end of this appendix (to be read by those who are particularly inter-
ested). It is shown that the number of possible energy distributions
when the total energy is ≤U is proportional to (

√
U)3N , provided that

the energy is not very small. The number of distributions for 3N com-
ponents is thus proportional to the corresponding number for a single
component to the power 3N . We have

Number of distributions = const.×U3N/2,

where “const.” is independent of U .
For a macroscopic system, N is a very large number, say, 1020 or

greater. The number of energy distributions thus increases faster than
U1020 , which is incredibly fast. Even if U only increases by, say, one
part per billion, the number of energy distributions with energies ≤U
increases by a factor that is greater than

(1.000000001)10
20 ≈ 104·10

10
.

The number of energy distributions between 0.999999999U (that is,
U/1.000000001) and U is thus more than 104·10

10
times greater than

those between 0 and 0.999999999U (!). The distributions for energies
≤ 0.999999999U are thus negligibly few compared to those with en-
ergies in the immediate vicinity of U . Obviously, this is also the case
when the system contains far fewer molecules than in 1020 and when
the margin is much smaller than one part per billion. From this we
can make the important conclusion that for macroscopic systems the
number of energy distributions with energies ≤ U is in practice equal
to the number at the energy U .7

In Section 2.6 we considered Ω(U), which is the number of pos-
sible energy distributions for total energy U of the system. From
our previous argument we see that for a macroscopic system with N

7Since energies cannot be determined with infinite precision, it is actually not
relevant to talk about the number of distributions with energy exactly equal to U .
Therefore, the number of microstates with energies in the immediate vicinity of U ,
that we consider here, is the relevant quantity and constitutes Ω(U ). One can show
that lnΩ is extremely insensitive to how wide the “immediate vicinity” is and one can
actually even include all microstates with energy ≤U in Ω(U ) in calculations of lnΩ
for macroscopic systems at sufficiently high energies.
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monatomic molecules, the following holds8

Ω(U) =K′U3N/2, (E.2)

where K′ is independent of U (the factor K′ depends only on N , the
volume V , and the mass m of a molecule and it is constant when only
U varies). The entropy S = kB lnΩ for the monatomic gas is thus equal
to9

S(U,V ,N ) =
3
2
NkB lnU + S ′(V ,N ), (E.3)

where S ′ = kB lnK′ is a contribution to the entropy that depends only
on N and V (it includes the configurational entropy).

Derivation of the number of energy distributions*

We will here determine how many different distributions of en-
ergy exist for 3N momentum components. Let us initially allow the
value of each component to vary between pmin and Jpmin, where J is an
arbitrarily large positive integer. How many ways are there to realize
a system where each component may independently adopt J different
values?

As an example we take two components: the first component may
assume the values j1pmin, 1 ≤ j1 ≤ J , and the second j2pmin, 1 ≤ j2 ≤ J ,
where j1 and j2 are integers (see Figure E.3a). When component 1 has
the value pmin (j1 = 1), component 2 has any of the values pmin, 2pmin,
. . . , Jpmin (1 ≤ j2 ≤ J). The same applies when component 1 has the
value 2pmin (j1 = 2). For each value of component 1, component 2
can thus assume J different values. In total there are thus J × J = J2

possibilities, which is the number of integer points within the square
in Figure E.3a, that is, the area of the square.

8This result applies provided the energy is not very low, which we assume here.
The value of K′ depends on whether the molecules are treated as distinguishable or
not, but otherwise the formula applies in both cases. In our applications of Equation
(E.2) in Section 6.2 the value of K′ does not matter.

9The complete expression for S of a monatomic ideal gas of indistinguishable par-
ticles is

S = kB lnΩ(U,V ,N ) ≈ kB ln

[(4πme

3h2

)3N/2 (
U

N

)3N/2 VN

N !

]

,

where e is the base of the natural logarithm, h is Planck’s constant and the right-
hand side is an excellent approximation for sufficiently largeU andN (compare with
footnote 9 in Section 5.2 and footnote 20 in Section 6.2).
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This result can be easily generalized to more components. If one
has three components, j1 and j2 can assume J2 different values for
each value that the third component adopts. There are thus J2 × J = J3

possibilities. (This is the number of integer points within a cube with
sides J and is equal to the volume of the cube.) For 3N components
there are in an analogous manner J3N possibilities.

1 5 10 15

1

5

10

15

j1

j2

ba

1 5 10 15

1

5

10

15

j1

j2
J

Figure E.3 An example of the various possibilities for two momentum com-
ponents, which can have values j1pmin and j2pmin where j1 and j2 are posi-
tive integers. Each possibility for the two components is indicated by a dot.
(a) The two components can each adopt J different values independently of
each other, 1 ≤ j1 ≤ J and 1 ≤ j2 ≤ J . In this example, J = 15. (b) If one has the
condition that the energy at most can be U = J2εmin, only the points within
the radius J are included.

When we have a certain amount of energy to distribute, we are,
however, not interested in all these possibilities. Let us therefore ex-
amine howmany distributions of momentum there are when the total
energy of the N molecules is lower than a certain value U . Each com-
ponent pα provides the contribution (pα)2/2m to energy. The smallest
possible value of the energy contribution is εmin = (pmin)2/2m. When
the component has the value |pα | = jpmin, where j is a positive integer,
its contribution to the energy is (jpmin)2/2m = j2εmin.

We first examine the case of two components in Figure E.3. The
sum of the energy contributions cannot exceed U , that is

[(j1)
2 + (j2)

2]εmin ≤U = J2εmin, (E.4)

where we have introduced

J =

[

U

εmin

]1/2

(E.5)
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(J is not necessarily an integer; as we shall see, this does not matter).
We can express the condition (E.4) as (j1)2 + (j2)2 ≤ J2, which means
that the possible points (j1, j2) lie within the radius J (see Figure E.3b),
that is, within a quarter of a circle of radius J . The number of such
points is proportional to the circle sector area (this is true at least
as a very good approximation when J is a large number, i.e., when the
energy is large enough). For two momentum components, the number
of different distributions of energy ≤U is thus proportional to J2. The
number of possibilities is growing with increasing J in the same way
in both parts of Figure E.3 (both the area of the square and of the
circle sector grow proportionally to J2).

If we have three components, we saw earlier for the case corre-
sponding to Figure E.3a that the number of possibilities is equal to J3,
which is the volume of a cube with the sides J . If we limit the energy
≤U (which corresponds to the case of Figure E.3b) we have

[(j1)
2 + (j2)

2 + (j3)
2]εmin ≤U = J2εmin,

which implies that

(j1)
2 + (j2)

2 + (j3)
2 ≤ J2,

where J is still given by Equation (E.5). Thereby, the possible points
(j1, j2, j3) lie within a sphere of radius J from the origin, as depicted in
Figure E.4 (the points lie within the part that has positive coordinates,
i.e., 1/8 sphere). The number of points grows with increasing J pro-
portionally to the volume of the sphere,10 which means the number
grows proportionally to J3.

We see that the number of possible energy distributions for both
two and three components grows with increasing J as Jη , where η is
the number of components, regardless of whether the energy is re-
stricted to ≤U = J2εmin or the values of the components are restricted
to ≤ Jpmin independently of each other. This generally applies. For
N molecules, we have 3N components and we saw earlier that for
the case corresponding to Figure E.3a, the number of possibilities is

10More precisely, the number of possible distributions of energy ≤ U (the number
of points) is, to an excellent approximation, equal to the volume of 1/8 sphere, that
is, πJ3/6 when U and therefore J are large.
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J

j
1

j
2

j
3

Figure E.4 The various possibilities for three momentum components are
given by the values jαpmin, where jα , α = 1,2,3, are positive integers. The
integer points (j1, j2, j3) are spread out in space in the figure; only a few of
them are drawn. When we have the condition that the energy must be ≤U =
J2εmin, only the points within the radius J are counted.

equal to J3N . When we instead restrict the energy to ≤U , we have the
condition

[(j1)
2 + (j2)

2 + (j3)
2 + . . .+ (j3N )

2]εmin ≤U, (E.6)

which can be written

(j1)
2 + (j2)

2 + (j3)
2 + . . .+ (j3N )

2 ≤ J2. (E.7)

We cannot draw figures in 3N dimensions as illustrations, but also in
this case the number of possibilities is proportional to J3N (the “vol-
ume” of a so-called hypercube with sides J and the “volume” of a hy-
persphere of radius J grow both as J3N when J increases).11 Since J ac-
cording to Equation (E.5) is proportional to

√
U , we can thus conclude

that the number of energy distributions with energy ≤ U is growing
like U3N/2 when we increase U .

11In an analogy to the case of three dimensions (footnote 10), it follows that the
number of possibilities (microstates) with energy ≤ U will be 1/23N times the “vol-
ume” of a hypersphere in 3N dimensions with radius J . (Incidentally, it can be men-
tioned that this together with εmin = (pmin)2/2m and pmin = h/(2V 1/3) [see footnote
2] can be used to obtain the expression for lnΩ in footnote 9. It would, however, lead
too far to give the details here.)



appendix F

Symbols

Symbol Explanation SI unit

A Helmholtz energy, A =U −TS J

a area m2

atm pressure unit “atmosphere”
(1 atm = 1.01325 · 105 Pa)

1 Pa
= 9.869 · 10−6
atm

bar pressure unit (1 bar = 105 Pa) 1 Pa= 10−5 bar

C heat capacity JK−1

c concentration (moles per unit volume),
c = n/V

molm−3

c0 concentration in the standard state;
c0 = P0/RT for ideal gas

molm−3

CP heat capacity at constant P JK−1

CV heat capacity at constant V JK−1

d differential symbol; df is a small
contribution to f

dA,dS,dU , etc., see d above

dq small amount of heat (added to the
system)

J

dw small amount of work (done on the
system)

J

F force N = kgms−2

G Gibbs energy, G =H −TS =U +PV −TS J

219
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Symbol Explanation SI unit

Gm Gibbs energy per mole of substance,
Gm = G/n

Jmol−1

G0 Gibbs energy for a substance in the
standard state, whereby the pressure
= P0

J

G0
m Gibbs energy per mole of a substance in

the standard state1
Jmol−1

H enthalpy, H =U +PV J

h Planck’s constant (h = 6.6261 · 10−34 Js) Js

Hm enthalpy per mole of substance,
Hm =H/n

Jmol−1

H0 enthalpy for a substance in the standard
state, whereby the pressure = P0

J

H0
m enthalpy per mole of a substance in the

standard state1
Jmol−1

K equilibrium constant (the thermo-
dynamic equilibrium constant)

dimensionless

kB Boltzmann’s constant
(kB = 1.3807 · 10−23 JK−1)

JK−1

Kc equilibrium constant in concentration
units, Kc = K(c0)∆Nr

(molm−3)∆Nr

KP equilibrium constant in pressure units,
KP = K(P0)∆Nr

(Pa)∆Nr

M concentration unit “molar” = mol dm−3

(1M = 103molm−3)
1molm−3=
10−3M

N number of particles or molecules unitless

n number of moles of a substance,
n =N/NAv

mol

NAv Avogadro’s constant
(NAv = 6.02214 · 1023mol−1)

mol−1
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Symbol Explanation SI unit

Ni number of molecules of species i unitless

ni number of moles of species i,
ni =Ni /NAv

mol

P pressure = force per unit area Pa

p momentum vector, p =mv kgms−1 = Ns

p probability unitless

Pa pressure unit “Pascal” = Nm−2 Pa

Pext external pressure Pa

Pi partial pressure of species i, Pi = xiP Pa

P0 pressure at the standard state (usually
P0 = 1bar = 105 Pa)

Pa

Q reaction quotient unitless

q heat (added to the system) J

Qeq the value of Q at equilibrium unitless

qsurr heat added to the surroundings J

R the universal gas constant
(R = kBNAv = 8.3145 JK−1mol−1)

JK−1mol−1

S entropy JK−1

s distance m

Sconf entropy from number of particle
configurations

JK−1

Sener ∆Sener and dSener are entropy changes
due to spreading of energy

JK−1

Sirrev ∆Sirrev and dSirrev are entropy changes
due to irreversible processes

JK−1

Sm entropy per mole of substance, Sm = S/n JK−1mol−1

Ssurr entropy of the surroundings JK−1
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Symbol Explanation SI unit

Stot total entropy of the system and the
surroundings, Stot = S + Ssurr

JK−1

S0 entropy for a substance in the standard
state, whereby the pressure = P0

JK−1

S0
m entropy per mole of a substance in the

standard state; the standard entropy
JK−1mol−1

T absolute temperature K

Tb boiling point temperature K

Tm melting point temperature K

U internal energy J

V volume m3

v speed (length of velocity vector), v = |v| ms−1

v velocity vector, v = (vx,vy ,vz) ms−1

w work (done on the system) J

wsurr work done on the surroundings J

xi mole fraction of substance i; for a
mixture of substances 1, 2, and 3:
xi =Ni /(N1 +N2 +N3) = ni /(n1 +n2 +n3)

unitless

∆ change of some quantity; ∆f is the
change of f

∆A,∆S,∆U , etc., see ∆ above

∆Nr change in number of molecules during a
reaction as given by the stoichiometric
coefficients (number of product
molecules − reactant molecules)

unitless

∆f G
0
m Gibbs energy of formation per mole of a

substance1
Jmol−1
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Symbol Explanation SI unit

∆f H
0
m enthalpy of formation per mole of a

substance1
Jmol−1

∆fus difference between the liquid and the
solid states for some quantity

∆r change of some quantity during a
reaction according to the stoichiometry
of the reaction formula (in moles)

∆rG ∆G during a reaction when reactants
and products are present in such a large
amount in the reaction mixture that the
changes in their concentrations are
negligible

Jmol−1

∆rG
0 ∆G during a reaction where reactants

and products are pure substances in
their standard states (see Figure 5.6)

Jmol−1

∆rH
0 see ∆rG

0 (but with H instead of G) Jmol−1

∆rS
0 see ∆rG

0 (but with S instead of G) JK−1mol−1

∆vap difference between the vapor and the
liquid states for some quantity

εtr kinetic (translational) energy for a
molecule, εtr =mv2/2

J

ε̄tr average of εtr over all molecules J

µ chemical potential (µ = Gm for pure
substance)

Jmol−1

ν cell volume m3

ρ particle (molecular) density, ρ =N/V m−3

ρ0 particle (molecular) density in the
standard state; ρ0 = P0/kBT for ideal gas

m−3

ρi particle (molecular) density for species i,
ρi =Ni /V

m−3
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Symbol Explanation SI unit

Ω number of microstates unitless

1The molar Gibbs energy G0
m and enthalpy H0

m for a pure substance in the stan-
dard state are equal to the Gibbs energy and enthalpy of formation, ∆f G

0
m and ∆f H

0
m,

respectively, provided the zero levels of H and G are set according to the convention
“for a pure element in its most stable form at the temperature in question H = 0
and G = 0 in the standard state.” This is the convention used in the book; see the
discussion in Section 5.1.
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