000 18925cam a2200937 i 4500
001 on1041140080
003 OCoLC
005 20220517104207.0
006 m d
007 cr cnu---unuuu
008 180620s2011 flua ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dOCLCO
_dCRCPR
_dOCLCF
_dNLE
_dINT
_dOCLCQ
_dUKMGB
_dOCLCA
_dOCLCQ
_dUKAHL
_dSFB
_dLVT
_dOCLCO
_dOCLCQ
_dOCLCO
_dK6U
_dN$T
066 _c(S
016 7 _a018390110
_2Uk
019 _a958798778
_a1228650532
_a1229797554
020 _a9781439817001
_q(electronic bk.)
020 _a1439817006
_q(electronic bk.)
020 _z9781439816998
020 _z1439816999
020 _a9781439891162
020 _a1439891168
020 _a0429066740
020 _a9780429066740
020 _a9780367452261
020 _a036745226X
020 _a9781439893494
_q(online)
020 _a1439893497
029 1 _aUKMGB
_b018390110
029 1 _aAU@
_b000065156327
029 1 _aAU@
_b000066750432
035 _a(OCoLC)1041140080
_z(OCoLC)958798778
_z(OCoLC)1228650532
_z(OCoLC)1229797554
037 _aTANDF_250002
_bIngram Content Group
050 4 _aTP248.25.B54
_bB33 2011eb
060 4 _a2011 G-068
060 4 _aW 26
072 7 _aSCI
_x013060
_2bisacsh
072 7 _aTEC
_x009010
_2bisacsh
082 0 4 _a660.6
_223
049 _aN$TA
100 1 _aBadilescu, Simona,
_eauthor
_923848
245 1 0 _aBioMEMS :
_bscience and engineering perspectives /
_cSimona Badilescu, Muthukumaran Packirisamy.
264 1 _aBoca Raton :
_bTaylor and Francis/CRC Press,
_c©2011.
300 _a1 online resource (xvii, 329 pages) :
_billustrations (some color)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (ơTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications"--Provided by publisher
520 _a"Preface We are proud to present this book as an attempt to bridge different areas that constitute the field of biomicroelectromechanical systems (BioMEMS), often called biomicrosystems. The field of BioMEMS has been growing rapidly since the early 1990s due to the advancements in microtechnologies that could cater to the vast application requirements of bio areas. The potential of BioMEMS suits this technology for many applications, including clinical and environmental diagnostics, drug delivery, agriculture, nutrition, pharmaceuticals, chemical synthesis, etc. It is foreseen that BioMEMS will have a deep impact on many aspects of the life science operations and functionalities in the near future. Scientists and students that work in the field of BioMEMS will need to have knowledge and skills at the interface between engineering and biosciences. Development of a BioMEMS device usually involves many scientists and students from various disciplines, such as biosciences, medicine, biochemistry, engineering, physics, etc. One could anticipate many communication and understanding issues that would arise among these people with varied expertise and training. The methods, details, and languages of training are quite different for the students and researchers of engineering and biosciences. As a result, researchers and students involved with multidisciplinary projects like BioMEMS undergo an interesting and refreshing learning on multidisciplinary subjects along the project development. This book aims to support and expedite the multidisciplinary learning involved with the development of biomicrosystems, from both bioscience and engineering perspectives"--Provided by publisher
505 0 0 _6880-01
_gMachine generated contents note:
_g1.1.
_tIntroduction to BioMEMS --
_g1.2.
_tApplication Areas --
_g1.3.
_tIntersection of Science and Engineering --
_g1.4.
_tEvolution of Systems Based on Size --
_g1.5.
_tCommercialization, Potential, and Market --
_tReferences --
_g2.1.
_tIntroduction --
_g2.2.
_tMetals --
_g2.3.
_tGlasses and Ceramics --
_g2.4.
_tSilicon and Silicon-Based Surfaces --
_g2.5.
_tPolymers --
_g2.6.
_tBiopolymers --
_g2.7.
_tOrganic Molecules (Functional Groups) Involved in the Formation of Self-Assembled Monolayers --
_tReferences --
_tReview Questions --
_g3.1.
_tAmino Acids --
_g3.2.
_tPolypeptides and Proteins --
_g3.3.
_tLipids --
_g3.3.1.
_tFatty Acids and Their Esters --
_g3.3.2.
_tPhospholipids --
_g3.3.3.
_tLipoproteins --
_g3.4.
_tNucleotides and Nucleic Acids --
_g3.4.1.
_tNucleotides --
_g3.4.2.
_tNucleic Acids --
_g3.4.3.
_tDNA Sensing Strategies --
_g3.5.
_tCarbohydrates --
_g3.5.1.
_tIntroduction --
_g3.5.2.
_tMonosaccharides --
_g3.5.3.
_tOligosaccharides and Polysaccharides --
_g3.5.4.
_tBiosensing Applications --
_g3.6.
_tEnzymes --
_g3.6.1.
_tDefinition and Nomenclature.
505 0 0 _g3.6.2.
_tMechanism of the Enzymatic Catalysis --
_g3.6.3.
_tCatalysis by RNA --
_g3.6.4.
_tApplications of Enzymes in Biotechnology and Biosensing --
_g3.7.
_tCells --
_g3.7.1.
_tCellular Organization --
_g3.7.2.
_tCell Movement --
_g3.7.3.
_tWhole Cell Biosensors: Applications --
_g3.8.
_tBacteria and Viruses --
_g3.8.1.
_tBacterial Cell Structure --
_g3.8.2.
_tVirus Structure --
_g3.8.3.
_tBiosensors and BioMEMS Sensor Systems for the Detection of Pathogenic Microorganisms and Bacterial Toxins --
_tReferences --
_tReview Questions --
_g4.1.
_tIntroduction --
_g4.2.
_tPlasma Treatment and Plasma-Mediated Surface Modification --
_g4.3.
_tSurface Modifications Mediated by Self-Assembled Monolayers (SAMs) --
_g4.4.
_tLangmuir-Blodgett and Layer-by-Layer Assembly --
_g4.5.
_tBiosmart Hydrogels --
_g4.6.
_tImmobilization and Detection of Biomolecules by Using Gold Nanoparticles: Case Studies --
_g4.6.1.
_tGold Nanoparticles Functionalized by Dextran --
_g4.6.2.
_tGold Nanoparticles in Hybridization Experiments --
_g4.6.3.
_tEnhanced Biomolecular Binding Sensitivity by Using Gold Nanoislands and Nanoparticles --
_g4.6.4.
_tStudy of Antigen-Antibody Interactions by Gold Nanoparticle Localized Surface Plasmon Resonance Spectroscopy.
505 0 0 _g4.6.5.
_tArray of Gold Nanoparticles for Binding of Single Biomolecules --
_g4.7.
_tBiomimetic Surface Engineering --
_g4.8.
_tAttachment of Proteins to Surfaces --
_g4.9.
_tSurface Modification of Biomaterials for Tissue Engineering Applications --
_g4.10.
_tTemperature-Responsive Intelligent Interfaces --
_tReferences --
_tReview Questions --
_g5.1.
_tContact Angle --
_g5.1.1.
_tIntroduction to Contact Angle and Surface Science Principles --
_g5.1.2.
_tContact Angle Measurement --
_g5.1.3.
_tEvaluation of Hydrophobicity of the Modified Surfaces by Contact Angle Measurements: Case Studies --
_g5.1.3.1.
_tSensitivity of Contact Angle to Surface Treatment --
_g5.1.3.2.
_tContact Angle Measurements of Surfaces Functionalized with Polyethyleneglycol (PEG) --
_g5.1.3.3.
_tStudy of Surface Wettability of Polypyrrole for Microfluidics Applications --
_g5.1.3.4.
_tWetting Properties of an Open-Channel Microfluidic System --
_g5.1.3.5.
_tContact Angle Analysis of the Interfacial Tension --
_g5.2.
_tAtomic Force Microscopy (AFM) --
_g5.2.1.
_tBasic Concepts of AFM and Instrumentation --
_g5.2.2.
_tAFM Imaging of Biological Sample Surfaces --
_g5.2.2.1.
_tEx Situ and In Situ AFM Characterization of Phospholipid Layers Formed by Solution Spreading (Casting) on a Mica Substrate.
505 0 0 _g5.2.2.2.
_tStudy of Bacterial Surfaces in Aqueous Solution --
_g5.2.2.3.
_tAFM Study of Native Polysomes of Saccharomyces in a Physiological Buffer Solution --
_g5.2.2.4.
_tSingle DNA Molecule Stretching Experiments by Using Chemical Force Microscopy --
_g5.2.2.5.
_tAFM Measurements of Competitive Binding Interactions between an Enzyme and Two Ligands --
_g5.2.2.6.
_tStudy of Antigen-Antibody Interactions by Molecular Recognition Force Microscopy (MRFM) --
_g5.2.2.7.
_tStudy of Cancer Alterations of Single Living Cells by AFM --
_g5.3.
_tX-Ray Photoelectron Spectroscopy --
_g5.3.1.
_tIntroduction --
_g5.3.2.
_tX-Ray Photoelectron Spectroscopy of Biologically Important Materials --
_g5.3.2.1.
_tPeptide Nucleic Acids on Gold Surfaces as DNA Affinity Biosensors --
_g5.3.2.2.
_tApplication of XPS to Probing Enzyme-Polymer Interactions at Biosensor Interfaces --
_g5.3.2.3.
_tDetection of Adsorbed Protein Films at Interfaces --
_g5.4.
_tConfocal Fluorescence Microscopy --
_g5.4.1.
_tIntroduction --
_g5.4.2.
_tBiological Confocal Microscopy: Case Studies --
_g5.4.2.1.
_tBioconjugated Carbon Nanotubes for Biosensor Applications --
_g5.5.
_tAttenuated Total Reflection (Internal Reflection) Infrared Spectroscopy.
505 0 0 _g5.5.1.
_tIntroduction: ATR-FTIR Basics --
_g5.5.2.
_tApplications of ATR-FTIR Spectroscopy to Biomolecules and Biomedical Samples: Case Studies --
_g5.5.2.1.
_tHydration Studies of Surface Adsorbed Layers of Adenosine-5'-Phosphoric Acid and Cytidine-5'-Phosphoric Acid by Freeze-Drying ATR-FTIR Spectroscopy --
_g5.5.2.2.
_tStudy of the Interaction of Local Anesthetics with Phospholipid Model Membranes --
_g5.5.2.3.
_tAssessment of Synthetic and Biologic Membrane Permeability by Using ATR-FTIR Spectroscopy --
_g5.5.2.4.
_tATR Measurement of the Physiological Concentration of Glucose in Blood by Using a Laser Source --
_g5.5.2.5.
_tApplication of ATR-FTIR Spectroscopic Imaging in Pharmaceutical Research --
_g5.6.
_tMechanical Methods: Use of Micro- and Nanocantilevers for Characterization of Surfaces --
_tReferences --
_tReview Questions --
_g6.1.
_tBiosensors --
_g6.1.1.
_tIntroduction --
_g6.1.2.
_tClassification: Case Studies --
_g6.1.2.1.
_tEnzyme-Based Biosensors --
_g6.1.2.2.
_tNucleic-Acid-Based Biosensors --
_g6.1.2.3.
_tAntibody-Based Biosensors --
_g6.1.2.4.
_tMicrobial Biosensors --
_g6.2.
_tImmunoassays --
_g6.2.1.
_tIntroduction.
505 0 0 _g6.2.2.
_tEnzyme-Linked Immunosorbent Assay (ELISA) --
_g6.2.3.
_tMicrofluidic Immunoassay Devices --
_g6.2.3.1.
_tA Compact-Disk-Like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay --
_g6.2.3.2.
_tPortable Low-Cost Immunoassay for Resource-Poor Settings --
_g6.3.
_tComparison between Biosensors and ELISA Immunoassays --
_tReferences --
_tReview Questions --
_g7.1.
_tBasic Microfabrication Processes --
_g7.1.1.
_tIntroduction --
_g7.1.2.
_tThin-Film Deposition --
_g7.1.3.
_tPhotolithography --
_g7.1.4.
_tEtching --
_g7.1.5.
_tSubstrate Bonding --
_g7.2.
_tMicromachining --
_g7.2.1.
_tBulk Micromachining --
_g7.2.2.
_tSurface Micromachining --
_g7.2.3.
_tHigh-Aspect-Ratio Micromachining (LIGA Process) --
_g7.3.
_tSoft Micromachining --
_g7.3.1.
_tIntroduction --
_g7.3.2.
_tMolding and Hot Embossing --
_g7.3.3.
_tMicro Contact Printing (CP) --
_g7.3.4.
_tMicro Transfer Molding (TM) --
_g7.3.5.
_tMicromolding in Capillaries --
_g7.4.
_tMicrofabrication Techniques for Biodegradable Polymers --
_g7.5.
_tNanofabrication Methods --
_g7.5.1.
_tLaser Processing, Ablation, and Deposition --
_g7.5.2.
_tHigh-Precision Milling.
505 0 0 _g7.5.3.
_tInductively Coupled Plasma (ICP) Reactive Ion Etching --
_g7.5.4.
_tElectron Beam Lithography --
_g7.5.5.
_tDip Pen Nanolithography --
_g7.5.6.
_tNanosphere Lithography (Colloid Lithography) --
_g7.5.7.
_tSurface Patterning by Microlenses --
_g7.5.8.
_tElectrochemical Patterning --
_g7.5.9.
_tElectric-Field-Assisted Nanopatterning --
_g7.5.10.
_tLarge-Area Nanoscale Patterning --
_g7.5.11.
_tSelective Molecular Assembly Patterning (SMAP) --
_g7.5.12.
_tSite-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template --
_g7.5.13.
_tHighly Ordered Metal Oxide Nanopatterns Prepared by Template-Assisted Chemical Solution Deposition --
_g7.5.14.
_tWetting-Driven Self-Assembly: A New Approach to Template-Guided Fabrication of Metal Nanopatterns --
_g7.5.15.
_tPatterned Gold Films via Site-Selective Deposition of Nanoparticles onto Polymer-Templated Surfaces --
_g7.5.16.
_tNanopatterning by PDMS Relief Structures of Polymer Colloidal Crystals --
_tReferences --
_tReview Questions --
_g8.1.
_tIntroduction --
_g8.2.
_tFluid Physics at the Microscale --
_g8.3.
_tMethods for Enhancing Diffusive Mixing between Two Laminar Flows.
505 0 0 _g8.4.
_tControlling Flow and Transport in Microfluidic Channels --
_g8.4.1.
_tPhysical Processes Underlying Electrokinetics in Electroosmosis Systems --
_g8.4.2.
_tDroplet Actuation Based on Marangoni Flows --
_g8.4.3.
_tElectrowetting --
_g8.4.4.
_tThermocapillary Pumping --
_g8.4.5.
_tSurface Electrodeposition --
_g8.5.
_tModeling Microchannel Flow --
_g8.5.1.
_tIntroduction --
_g8.5.2.
_tThe Finite Element Method --
_g8.5.3.
_tSimulation of Flow in Microfluidic Channels: Case Studies --
_g8.5.3.1.
_tCase 1: Silicon Microfluidic Platform for Fluorescence-Based Biosensing --
_g8.5.3.2.
_tCase 2: Numerical Simulation of Electroosmotic Flow in Hydrophobic Microchannels: Influence of Electrode's Position --
_g8.5.3.3.
_tCase 3: Prediction of Intermittent Flow Microreactor System --
_g8.5.3.4.
_tCase 4: Modeling of Electrowetting Flow --
_g8.6.
_tExperimental Methods --
_g8.6.1.
_tFlow Visualization at Microscale --
_g8.6.2.
_tFluorescent Imaging Method --
_g8.6.3.
_tParticle Streak Velocimetry --
_g8.6.4.
_tParticle Tracking Velocimetry --
_g8.6.5.
_tMicro Particle Imaging Velocimetry (and mu;PIV) --
_g8.6.6.
_tMicro-Laser-Induced Fluorescence (and mu;LIF) Method for Shape Measurements.
505 0 0 _g8.6.7.
_tCaged and Bleached Fluorescence --
_tReferences --
_tReview Questions --
_g9.1.
_tIntroduction to Microarrays --
_g9.2.
_tMicroarrays Based on DNA --
_g9.2.1.
_tIntroduction to DNA Chips --
_g9.2.2.
_tPrinciples of DNA Microarray: The Design, Manufacturing, and Data Handling --
_g9.2.3.
_tApplications of DNA Microarrays --
_g9.3.
_tPolymerase Chain Reaction (PCR) --
_g9.3.1.
_tIntroduction --
_g9.3.2.
_tPCR Process --
_g9.3.3.
_tOn-Chip Single-Copy Real-Time Reverse Transcription PCR in Isolated Picoliter Droplets: A Case Study.
505 0 0 _g9.4.
_tProtein Microarrays --
_g9.4.1.
_tIntroduction --
_g9.4.2.
_tFabrication of Protein Microarrays --
_g9.4.3.
_tApplications of Protein Arrays --
_g9.5.
_tCell and Tissue-Based Assays on a Chip --
_g9.6.
_tMicroreactors --
_g9.6.1.
_tIntroduction --
_g9.6.2.
_tMicrochannel Enzyme Reactors --
_g9.6.3.
_tEnzymatic Conversions: Case Studies --
_g9.6.3.1.
_tGlycosidase-Promoted Hydrolysis in Microchannels --
_g9.6.3.2.
_tLactose Hydrolysis by Hyperthermophilic I3-Glycoside Hydrolase with Immobilized Enzyme --
_g9.6.3.3.
_tPhotopatterning Enzymes inside Microfluidic Channels --
_g9.6.3.4.
_tIntegrated Microfabricated Device for an Automated Enzymatic Assay --
_g9.6.3.5.
_tSilicon Microstructured Enzyme Reactor with Porous Silicon as the Carrier Matrix --
_g9.6.3.6.
_tEnzymatic Reactions Using Droplet-Based Microfluidics --
_g9.6.4.
_tSynthesis of Nanoparticles and Biomaterials in Microfluidic Devices --
_g9.6.5.
_tMicrofluidic Devices for Separation.
505 0 0 _g9.6.5.1.
_tSeparation of Blood Cells --
_g9.6.5.2.
_tCell or Particle Sorting --
_g9.7.
_tMicro Total Analysis Systems (pTAS) and Lab-on-a-Chip (LOC) --
_g9.8.
_tLab-on-a-Chip: Conclusion and Outlook --
_g9.9.
_tMicrocanti lever BioMEMS --
_g9.9.1.
_tIntroduction --
_g9.9.2.
_tBasic Principles of Sensing Biomechanical Interactions --
_g9.9.3.
_tDetection Modes of Biomechanical Interactions --
_g9.9.3.1.
_tStatic Mode --
_g9.9.3.2.
_tDynamic Mode --
_g9.9.4.
_tLocation of Interaction in the Case of Mass-Dominant BioMEMS Devices --
_g9.9.5.
_tLocation of Interaction for Stress-Dominant BioMEMS Devices --
_g9.9.6.
_tFabrication and Functionalization of Microcantilevers --
_g9.9.6.1.
_tCase 1: Detection of Interaction between ssDNA and the Thiol Group Using Cantilevers in the Static Mode --
_g9.9.6.2.
_tCase 2: Specific Detection of Enzymatic Interactions in the Static Mode --
_g9.9.6.3.
_tCase 3: Detection of Enzymatic Interactions in the Dynamic Mode --
_tReferences --
_tReview Questions.
588 0 _aPrint version record.
546 _aEnglish.
506 0 _aOpen Access
_5EbpS
650 0 _aBioMEMS.
_923850
650 1 2 _aBiomedical Technology
_xinstrumentation.
_0(DNLM)D020811Q000295
_926682
650 2 2 _aNanotechnology.
_0(DNLM)D036103
650 2 2 _aBiosensing Techniques.
_0(DNLM)D015374
_926683
650 7 _aSCIENCE
_xChemistry
_xIndustrial & Technical.
_2bisacsh
_91393
650 7 _aTECHNOLOGY & ENGINEERING
_xChemical & Biochemical.
_2bisacsh
650 7 _aBioMEMS.
_2fast
_0(OCoLC)fst01740379
_923850
655 0 _aElectronic books.
655 4 _aElectronic books.
700 1 _aPackirisamy, Muthukumaran.
_923851
776 0 8 _iPrint version:
_aBadilescu, Simona.
_tBioMEMS.
_dBoca Raton : Taylor & Francis/CRC Press, ©2011
_z9781439816998
_w(DLC) 2011018878
_w(OCoLC)665138050
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=384529
880 0 _6505-01/(S
_aMicrofluidics Fluid Physics at the Microscale Methods for Enhancing Diffusive Mixing between Two Laminar Flows Controlling Flow and Transport in Microfluidic Channels Modeling Microchannel Flow Experimental Methods BioMEMS: Life Science Applications Introduction to Microarrays Microarrays Based on DNA Polymerase Chain Reaction (PCR) Protein Microarrays Cell and Tissue-Based Assays on a Chip Microreactors Micro Total Analysis Systems (μTAS) and Lab-on-a-Chip (LOC) Lab-on-a-Chip: Conclusion and Outlook Microcantilever BioMEMS.
938 _aEBSCOhost
_bEBSC
_n384529
942 _cEBK
994 _aC0
_bN$T
999 _c4377
_d4377