000 | 18925cam a2200937 i 4500 | ||
---|---|---|---|
001 | on1041140080 | ||
003 | OCoLC | ||
005 | 20220517104207.0 | ||
006 | m d | ||
007 | cr cnu---unuuu | ||
008 | 180620s2011 flua ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dOCLCO _dCRCPR _dOCLCF _dNLE _dINT _dOCLCQ _dUKMGB _dOCLCA _dOCLCQ _dUKAHL _dSFB _dLVT _dOCLCO _dOCLCQ _dOCLCO _dK6U _dN$T |
||
066 | _c(S | ||
016 | 7 |
_a018390110 _2Uk |
|
019 |
_a958798778 _a1228650532 _a1229797554 |
||
020 |
_a9781439817001 _q(electronic bk.) |
||
020 |
_a1439817006 _q(electronic bk.) |
||
020 | _z9781439816998 | ||
020 | _z1439816999 | ||
020 | _a9781439891162 | ||
020 | _a1439891168 | ||
020 | _a0429066740 | ||
020 | _a9780429066740 | ||
020 | _a9780367452261 | ||
020 | _a036745226X | ||
020 |
_a9781439893494 _q(online) |
||
020 | _a1439893497 | ||
029 | 1 |
_aUKMGB _b018390110 |
|
029 | 1 |
_aAU@ _b000065156327 |
|
029 | 1 |
_aAU@ _b000066750432 |
|
035 |
_a(OCoLC)1041140080 _z(OCoLC)958798778 _z(OCoLC)1228650532 _z(OCoLC)1229797554 |
||
037 |
_aTANDF_250002 _bIngram Content Group |
||
050 | 4 |
_aTP248.25.B54 _bB33 2011eb |
|
060 | 4 | _a2011 G-068 | |
060 | 4 | _aW 26 | |
072 | 7 |
_aSCI _x013060 _2bisacsh |
|
072 | 7 |
_aTEC _x009010 _2bisacsh |
|
082 | 0 | 4 |
_a660.6 _223 |
049 | _aN$TA | ||
100 | 1 |
_aBadilescu, Simona, _eauthor _923848 |
|
245 | 1 | 0 |
_aBioMEMS : _bscience and engineering perspectives / _cSimona Badilescu, Muthukumaran Packirisamy. |
264 | 1 |
_aBoca Raton : _bTaylor and Francis/CRC Press, _c©2011. |
|
300 |
_a1 online resource (xvii, 329 pages) : _billustrations (some color) |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
520 | _a"As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (ơTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications"--Provided by publisher | ||
520 | _a"Preface We are proud to present this book as an attempt to bridge different areas that constitute the field of biomicroelectromechanical systems (BioMEMS), often called biomicrosystems. The field of BioMEMS has been growing rapidly since the early 1990s due to the advancements in microtechnologies that could cater to the vast application requirements of bio areas. The potential of BioMEMS suits this technology for many applications, including clinical and environmental diagnostics, drug delivery, agriculture, nutrition, pharmaceuticals, chemical synthesis, etc. It is foreseen that BioMEMS will have a deep impact on many aspects of the life science operations and functionalities in the near future. Scientists and students that work in the field of BioMEMS will need to have knowledge and skills at the interface between engineering and biosciences. Development of a BioMEMS device usually involves many scientists and students from various disciplines, such as biosciences, medicine, biochemistry, engineering, physics, etc. One could anticipate many communication and understanding issues that would arise among these people with varied expertise and training. The methods, details, and languages of training are quite different for the students and researchers of engineering and biosciences. As a result, researchers and students involved with multidisciplinary projects like BioMEMS undergo an interesting and refreshing learning on multidisciplinary subjects along the project development. This book aims to support and expedite the multidisciplinary learning involved with the development of biomicrosystems, from both bioscience and engineering perspectives"--Provided by publisher | ||
505 | 0 | 0 |
_6880-01 _gMachine generated contents note: _g1.1. _tIntroduction to BioMEMS -- _g1.2. _tApplication Areas -- _g1.3. _tIntersection of Science and Engineering -- _g1.4. _tEvolution of Systems Based on Size -- _g1.5. _tCommercialization, Potential, and Market -- _tReferences -- _g2.1. _tIntroduction -- _g2.2. _tMetals -- _g2.3. _tGlasses and Ceramics -- _g2.4. _tSilicon and Silicon-Based Surfaces -- _g2.5. _tPolymers -- _g2.6. _tBiopolymers -- _g2.7. _tOrganic Molecules (Functional Groups) Involved in the Formation of Self-Assembled Monolayers -- _tReferences -- _tReview Questions -- _g3.1. _tAmino Acids -- _g3.2. _tPolypeptides and Proteins -- _g3.3. _tLipids -- _g3.3.1. _tFatty Acids and Their Esters -- _g3.3.2. _tPhospholipids -- _g3.3.3. _tLipoproteins -- _g3.4. _tNucleotides and Nucleic Acids -- _g3.4.1. _tNucleotides -- _g3.4.2. _tNucleic Acids -- _g3.4.3. _tDNA Sensing Strategies -- _g3.5. _tCarbohydrates -- _g3.5.1. _tIntroduction -- _g3.5.2. _tMonosaccharides -- _g3.5.3. _tOligosaccharides and Polysaccharides -- _g3.5.4. _tBiosensing Applications -- _g3.6. _tEnzymes -- _g3.6.1. _tDefinition and Nomenclature. |
505 | 0 | 0 |
_g3.6.2. _tMechanism of the Enzymatic Catalysis -- _g3.6.3. _tCatalysis by RNA -- _g3.6.4. _tApplications of Enzymes in Biotechnology and Biosensing -- _g3.7. _tCells -- _g3.7.1. _tCellular Organization -- _g3.7.2. _tCell Movement -- _g3.7.3. _tWhole Cell Biosensors: Applications -- _g3.8. _tBacteria and Viruses -- _g3.8.1. _tBacterial Cell Structure -- _g3.8.2. _tVirus Structure -- _g3.8.3. _tBiosensors and BioMEMS Sensor Systems for the Detection of Pathogenic Microorganisms and Bacterial Toxins -- _tReferences -- _tReview Questions -- _g4.1. _tIntroduction -- _g4.2. _tPlasma Treatment and Plasma-Mediated Surface Modification -- _g4.3. _tSurface Modifications Mediated by Self-Assembled Monolayers (SAMs) -- _g4.4. _tLangmuir-Blodgett and Layer-by-Layer Assembly -- _g4.5. _tBiosmart Hydrogels -- _g4.6. _tImmobilization and Detection of Biomolecules by Using Gold Nanoparticles: Case Studies -- _g4.6.1. _tGold Nanoparticles Functionalized by Dextran -- _g4.6.2. _tGold Nanoparticles in Hybridization Experiments -- _g4.6.3. _tEnhanced Biomolecular Binding Sensitivity by Using Gold Nanoislands and Nanoparticles -- _g4.6.4. _tStudy of Antigen-Antibody Interactions by Gold Nanoparticle Localized Surface Plasmon Resonance Spectroscopy. |
505 | 0 | 0 |
_g4.6.5. _tArray of Gold Nanoparticles for Binding of Single Biomolecules -- _g4.7. _tBiomimetic Surface Engineering -- _g4.8. _tAttachment of Proteins to Surfaces -- _g4.9. _tSurface Modification of Biomaterials for Tissue Engineering Applications -- _g4.10. _tTemperature-Responsive Intelligent Interfaces -- _tReferences -- _tReview Questions -- _g5.1. _tContact Angle -- _g5.1.1. _tIntroduction to Contact Angle and Surface Science Principles -- _g5.1.2. _tContact Angle Measurement -- _g5.1.3. _tEvaluation of Hydrophobicity of the Modified Surfaces by Contact Angle Measurements: Case Studies -- _g5.1.3.1. _tSensitivity of Contact Angle to Surface Treatment -- _g5.1.3.2. _tContact Angle Measurements of Surfaces Functionalized with Polyethyleneglycol (PEG) -- _g5.1.3.3. _tStudy of Surface Wettability of Polypyrrole for Microfluidics Applications -- _g5.1.3.4. _tWetting Properties of an Open-Channel Microfluidic System -- _g5.1.3.5. _tContact Angle Analysis of the Interfacial Tension -- _g5.2. _tAtomic Force Microscopy (AFM) -- _g5.2.1. _tBasic Concepts of AFM and Instrumentation -- _g5.2.2. _tAFM Imaging of Biological Sample Surfaces -- _g5.2.2.1. _tEx Situ and In Situ AFM Characterization of Phospholipid Layers Formed by Solution Spreading (Casting) on a Mica Substrate. |
505 | 0 | 0 |
_g5.2.2.2. _tStudy of Bacterial Surfaces in Aqueous Solution -- _g5.2.2.3. _tAFM Study of Native Polysomes of Saccharomyces in a Physiological Buffer Solution -- _g5.2.2.4. _tSingle DNA Molecule Stretching Experiments by Using Chemical Force Microscopy -- _g5.2.2.5. _tAFM Measurements of Competitive Binding Interactions between an Enzyme and Two Ligands -- _g5.2.2.6. _tStudy of Antigen-Antibody Interactions by Molecular Recognition Force Microscopy (MRFM) -- _g5.2.2.7. _tStudy of Cancer Alterations of Single Living Cells by AFM -- _g5.3. _tX-Ray Photoelectron Spectroscopy -- _g5.3.1. _tIntroduction -- _g5.3.2. _tX-Ray Photoelectron Spectroscopy of Biologically Important Materials -- _g5.3.2.1. _tPeptide Nucleic Acids on Gold Surfaces as DNA Affinity Biosensors -- _g5.3.2.2. _tApplication of XPS to Probing Enzyme-Polymer Interactions at Biosensor Interfaces -- _g5.3.2.3. _tDetection of Adsorbed Protein Films at Interfaces -- _g5.4. _tConfocal Fluorescence Microscopy -- _g5.4.1. _tIntroduction -- _g5.4.2. _tBiological Confocal Microscopy: Case Studies -- _g5.4.2.1. _tBioconjugated Carbon Nanotubes for Biosensor Applications -- _g5.5. _tAttenuated Total Reflection (Internal Reflection) Infrared Spectroscopy. |
505 | 0 | 0 |
_g5.5.1. _tIntroduction: ATR-FTIR Basics -- _g5.5.2. _tApplications of ATR-FTIR Spectroscopy to Biomolecules and Biomedical Samples: Case Studies -- _g5.5.2.1. _tHydration Studies of Surface Adsorbed Layers of Adenosine-5'-Phosphoric Acid and Cytidine-5'-Phosphoric Acid by Freeze-Drying ATR-FTIR Spectroscopy -- _g5.5.2.2. _tStudy of the Interaction of Local Anesthetics with Phospholipid Model Membranes -- _g5.5.2.3. _tAssessment of Synthetic and Biologic Membrane Permeability by Using ATR-FTIR Spectroscopy -- _g5.5.2.4. _tATR Measurement of the Physiological Concentration of Glucose in Blood by Using a Laser Source -- _g5.5.2.5. _tApplication of ATR-FTIR Spectroscopic Imaging in Pharmaceutical Research -- _g5.6. _tMechanical Methods: Use of Micro- and Nanocantilevers for Characterization of Surfaces -- _tReferences -- _tReview Questions -- _g6.1. _tBiosensors -- _g6.1.1. _tIntroduction -- _g6.1.2. _tClassification: Case Studies -- _g6.1.2.1. _tEnzyme-Based Biosensors -- _g6.1.2.2. _tNucleic-Acid-Based Biosensors -- _g6.1.2.3. _tAntibody-Based Biosensors -- _g6.1.2.4. _tMicrobial Biosensors -- _g6.2. _tImmunoassays -- _g6.2.1. _tIntroduction. |
505 | 0 | 0 |
_g6.2.2. _tEnzyme-Linked Immunosorbent Assay (ELISA) -- _g6.2.3. _tMicrofluidic Immunoassay Devices -- _g6.2.3.1. _tA Compact-Disk-Like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay -- _g6.2.3.2. _tPortable Low-Cost Immunoassay for Resource-Poor Settings -- _g6.3. _tComparison between Biosensors and ELISA Immunoassays -- _tReferences -- _tReview Questions -- _g7.1. _tBasic Microfabrication Processes -- _g7.1.1. _tIntroduction -- _g7.1.2. _tThin-Film Deposition -- _g7.1.3. _tPhotolithography -- _g7.1.4. _tEtching -- _g7.1.5. _tSubstrate Bonding -- _g7.2. _tMicromachining -- _g7.2.1. _tBulk Micromachining -- _g7.2.2. _tSurface Micromachining -- _g7.2.3. _tHigh-Aspect-Ratio Micromachining (LIGA Process) -- _g7.3. _tSoft Micromachining -- _g7.3.1. _tIntroduction -- _g7.3.2. _tMolding and Hot Embossing -- _g7.3.3. _tMicro Contact Printing (CP) -- _g7.3.4. _tMicro Transfer Molding (TM) -- _g7.3.5. _tMicromolding in Capillaries -- _g7.4. _tMicrofabrication Techniques for Biodegradable Polymers -- _g7.5. _tNanofabrication Methods -- _g7.5.1. _tLaser Processing, Ablation, and Deposition -- _g7.5.2. _tHigh-Precision Milling. |
505 | 0 | 0 |
_g7.5.3. _tInductively Coupled Plasma (ICP) Reactive Ion Etching -- _g7.5.4. _tElectron Beam Lithography -- _g7.5.5. _tDip Pen Nanolithography -- _g7.5.6. _tNanosphere Lithography (Colloid Lithography) -- _g7.5.7. _tSurface Patterning by Microlenses -- _g7.5.8. _tElectrochemical Patterning -- _g7.5.9. _tElectric-Field-Assisted Nanopatterning -- _g7.5.10. _tLarge-Area Nanoscale Patterning -- _g7.5.11. _tSelective Molecular Assembly Patterning (SMAP) -- _g7.5.12. _tSite-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template -- _g7.5.13. _tHighly Ordered Metal Oxide Nanopatterns Prepared by Template-Assisted Chemical Solution Deposition -- _g7.5.14. _tWetting-Driven Self-Assembly: A New Approach to Template-Guided Fabrication of Metal Nanopatterns -- _g7.5.15. _tPatterned Gold Films via Site-Selective Deposition of Nanoparticles onto Polymer-Templated Surfaces -- _g7.5.16. _tNanopatterning by PDMS Relief Structures of Polymer Colloidal Crystals -- _tReferences -- _tReview Questions -- _g8.1. _tIntroduction -- _g8.2. _tFluid Physics at the Microscale -- _g8.3. _tMethods for Enhancing Diffusive Mixing between Two Laminar Flows. |
505 | 0 | 0 |
_g8.4. _tControlling Flow and Transport in Microfluidic Channels -- _g8.4.1. _tPhysical Processes Underlying Electrokinetics in Electroosmosis Systems -- _g8.4.2. _tDroplet Actuation Based on Marangoni Flows -- _g8.4.3. _tElectrowetting -- _g8.4.4. _tThermocapillary Pumping -- _g8.4.5. _tSurface Electrodeposition -- _g8.5. _tModeling Microchannel Flow -- _g8.5.1. _tIntroduction -- _g8.5.2. _tThe Finite Element Method -- _g8.5.3. _tSimulation of Flow in Microfluidic Channels: Case Studies -- _g8.5.3.1. _tCase 1: Silicon Microfluidic Platform for Fluorescence-Based Biosensing -- _g8.5.3.2. _tCase 2: Numerical Simulation of Electroosmotic Flow in Hydrophobic Microchannels: Influence of Electrode's Position -- _g8.5.3.3. _tCase 3: Prediction of Intermittent Flow Microreactor System -- _g8.5.3.4. _tCase 4: Modeling of Electrowetting Flow -- _g8.6. _tExperimental Methods -- _g8.6.1. _tFlow Visualization at Microscale -- _g8.6.2. _tFluorescent Imaging Method -- _g8.6.3. _tParticle Streak Velocimetry -- _g8.6.4. _tParticle Tracking Velocimetry -- _g8.6.5. _tMicro Particle Imaging Velocimetry (and mu;PIV) -- _g8.6.6. _tMicro-Laser-Induced Fluorescence (and mu;LIF) Method for Shape Measurements. |
505 | 0 | 0 |
_g8.6.7. _tCaged and Bleached Fluorescence -- _tReferences -- _tReview Questions -- _g9.1. _tIntroduction to Microarrays -- _g9.2. _tMicroarrays Based on DNA -- _g9.2.1. _tIntroduction to DNA Chips -- _g9.2.2. _tPrinciples of DNA Microarray: The Design, Manufacturing, and Data Handling -- _g9.2.3. _tApplications of DNA Microarrays -- _g9.3. _tPolymerase Chain Reaction (PCR) -- _g9.3.1. _tIntroduction -- _g9.3.2. _tPCR Process -- _g9.3.3. _tOn-Chip Single-Copy Real-Time Reverse Transcription PCR in Isolated Picoliter Droplets: A Case Study. |
505 | 0 | 0 |
_g9.4. _tProtein Microarrays -- _g9.4.1. _tIntroduction -- _g9.4.2. _tFabrication of Protein Microarrays -- _g9.4.3. _tApplications of Protein Arrays -- _g9.5. _tCell and Tissue-Based Assays on a Chip -- _g9.6. _tMicroreactors -- _g9.6.1. _tIntroduction -- _g9.6.2. _tMicrochannel Enzyme Reactors -- _g9.6.3. _tEnzymatic Conversions: Case Studies -- _g9.6.3.1. _tGlycosidase-Promoted Hydrolysis in Microchannels -- _g9.6.3.2. _tLactose Hydrolysis by Hyperthermophilic I3-Glycoside Hydrolase with Immobilized Enzyme -- _g9.6.3.3. _tPhotopatterning Enzymes inside Microfluidic Channels -- _g9.6.3.4. _tIntegrated Microfabricated Device for an Automated Enzymatic Assay -- _g9.6.3.5. _tSilicon Microstructured Enzyme Reactor with Porous Silicon as the Carrier Matrix -- _g9.6.3.6. _tEnzymatic Reactions Using Droplet-Based Microfluidics -- _g9.6.4. _tSynthesis of Nanoparticles and Biomaterials in Microfluidic Devices -- _g9.6.5. _tMicrofluidic Devices for Separation. |
505 | 0 | 0 |
_g9.6.5.1. _tSeparation of Blood Cells -- _g9.6.5.2. _tCell or Particle Sorting -- _g9.7. _tMicro Total Analysis Systems (pTAS) and Lab-on-a-Chip (LOC) -- _g9.8. _tLab-on-a-Chip: Conclusion and Outlook -- _g9.9. _tMicrocanti lever BioMEMS -- _g9.9.1. _tIntroduction -- _g9.9.2. _tBasic Principles of Sensing Biomechanical Interactions -- _g9.9.3. _tDetection Modes of Biomechanical Interactions -- _g9.9.3.1. _tStatic Mode -- _g9.9.3.2. _tDynamic Mode -- _g9.9.4. _tLocation of Interaction in the Case of Mass-Dominant BioMEMS Devices -- _g9.9.5. _tLocation of Interaction for Stress-Dominant BioMEMS Devices -- _g9.9.6. _tFabrication and Functionalization of Microcantilevers -- _g9.9.6.1. _tCase 1: Detection of Interaction between ssDNA and the Thiol Group Using Cantilevers in the Static Mode -- _g9.9.6.2. _tCase 2: Specific Detection of Enzymatic Interactions in the Static Mode -- _g9.9.6.3. _tCase 3: Detection of Enzymatic Interactions in the Dynamic Mode -- _tReferences -- _tReview Questions. |
588 | 0 | _aPrint version record. | |
546 | _aEnglish. | ||
506 | 0 |
_aOpen Access _5EbpS |
|
650 | 0 |
_aBioMEMS. _923850 |
|
650 | 1 | 2 |
_aBiomedical Technology _xinstrumentation. _0(DNLM)D020811Q000295 _926682 |
650 | 2 | 2 |
_aNanotechnology. _0(DNLM)D036103 |
650 | 2 | 2 |
_aBiosensing Techniques. _0(DNLM)D015374 _926683 |
650 | 7 |
_aSCIENCE _xChemistry _xIndustrial & Technical. _2bisacsh _91393 |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xChemical & Biochemical. _2bisacsh |
|
650 | 7 |
_aBioMEMS. _2fast _0(OCoLC)fst01740379 _923850 |
|
655 | 0 | _aElectronic books. | |
655 | 4 | _aElectronic books. | |
700 | 1 |
_aPackirisamy, Muthukumaran. _923851 |
|
776 | 0 | 8 |
_iPrint version: _aBadilescu, Simona. _tBioMEMS. _dBoca Raton : Taylor & Francis/CRC Press, ©2011 _z9781439816998 _w(DLC) 2011018878 _w(OCoLC)665138050 |
856 | 4 | 0 |
_3EBSCOhost _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=384529 |
880 | 0 |
_6505-01/(S _aMicrofluidics Fluid Physics at the Microscale Methods for Enhancing Diffusive Mixing between Two Laminar Flows Controlling Flow and Transport in Microfluidic Channels Modeling Microchannel Flow Experimental Methods BioMEMS: Life Science Applications Introduction to Microarrays Microarrays Based on DNA Polymerase Chain Reaction (PCR) Protein Microarrays Cell and Tissue-Based Assays on a Chip Microreactors Micro Total Analysis Systems (μTAS) and Lab-on-a-Chip (LOC) Lab-on-a-Chip: Conclusion and Outlook Microcantilever BioMEMS. |
|
938 |
_aEBSCOhost _bEBSC _n384529 |
||
942 | _cEBK | ||
994 |
_aC0 _bN$T |
||
999 |
_c4377 _d4377 |