000 04329cam a2200685Mi 4500
001 on1013947651
003 OCoLC
005 20220517104522.0
006 m d
007 cr |||||||||||
008 170517s2017 gw ob 000 0 eng d
010 _a 2017300123
040 _aDEGRU
_beng
_erda
_epn
_cDEGRU
_dYDX
_dVT2
_dWYU
_dOCLCQ
_dOCLCF
_dHS0
_dUAB
_dN$T
019 _a1000272553
_a1084343501
_a1224921823
_a1235831767
_a1253414490
020 _a3110550881
020 _a9783110550856
_q(hbk.)
020 _a3110550857
_q(hbk.)
020 _a9783110550887
_q(electronic bk.)
024 7 _a10.1515/9783110550887
_2doi
035 _a2945153
_b(N$T)
035 _a(OCoLC)1013947651
_z(OCoLC)1000272553
_z(OCoLC)1084343501
_z(OCoLC)1224921823
_z(OCoLC)1235831767
_z(OCoLC)1253414490
050 4 _aInternet Access
_bAEU
072 7 _aMAT000000
_2bisacsh
072 7 _aMAT012000
_2bisacsh
072 7 _aMAT042000
_2bisacsh
082 0 4 _a100
_223
049 _aMAIN
100 1 _aHenrot, Antoine,
_eauthor
_937734
245 1 0 _aShape optimization and spectral theory /
_cAntoine Henrot.
264 1 _aWarsaw ;
_aBerlin :
_bDe Gruyter Open,
_c[2017]
264 4 _c©2017
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tContents --
_t1 Introduction --
_t2 Existence results --
_t3 Regularity of optimal spectral domains --
_t4 The Robin problem --
_t5 Spectral geometry of the Steklov problem --
_t6 Triangles and Other Special Domains --
_t7 Spectral inequalities in quantitative form --
_t8 Universal Inequalities for the Eigenvalues of the Dirichlet Laplacian --
_t9 Spectral optimization problems for Schrödinger operators --
_t10 Nodal and spectral minimal partitions -- The state of the art in 2016 -- --
_t11 Numerical results for extremal problem for eigenvalues of the Laplacian --
_tBibliography --
_tIndex
520 _a"Shape optimization and spectral theory" is a survey book aiming to give an overview of recent results in spectral geometry and its links with shape optimization.It covers most of the issues which are important for people working in PDE and differential geometry interested in sharp inequalities and qualitative behaviour for eigenvalues of the Laplacian with different kind of boundary conditions (Dirichlet, Robin and Steklov). This includes: existence of optimal shapes, their regularity, the case of special domains like triangles, isospectrality, quantitative form of the isoperimetric inequalities, optimal partitions, universal inequalities and numerical results.Much progress has been made in these extremum problems during the last ten years and this edited volume presents a valuable update to a wide community interested in these topics. List of contributorsAntunes Pedro R.S., Ashbaugh Mark, Bonnaillie-Noël Virginie, Brasco Lorenzo, Bucur Dorin, Buttazzo Giuseppe,? De? Philippis? Guido,? Freitas? Pedro,? Girouard? Alexandre,? Helffer? Bernard,? Kennedy? James, Lamboley? Jimmy,? Laugesen? Richard? S.,? Oudet? Edouard,? Pierre? Michel,? Polterovich? Iosif,? Siudeja Bartłomiej A., Velichkov Bozhidar.
546 _aIn English.
588 0 _aOnline resource; title from PDF title page (publisher's Web site, viewed May. 17, 2017).
504 _aIncludes bibliographical references (pages 413-461) and index.
590 _aAdded to collection customer.56279.3
650 0 _aGeometry, Algebraic.
_937735
650 0 _aMathematical optimization.
_91638
650 0 _aShapes.
_937736
650 7 _aMATHEMATICS / Optimization.
_2bisacsh
_94868
650 7 _aGeometry, Algebraic.
_2fast
_0(OCoLC)fst00940902
_937735
650 7 _aMathematical optimization.
_2fast
_0(OCoLC)fst01012099
_91638
650 7 _aShapes.
_2fast
_0(OCoLC)fst01115245
_937736
655 4 _aElectronic books.
776 0 8 _iPrint version:
_z9783110551181
776 0 8 _iPrint version:
_z9783110550856
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2945153
938 _aDe Gruyter
_bDEGR
_n9783110550887
938 _aYBP Library Services
_bYANK
_n14743737
938 _aEBSCOhost
_bEBSC
_n2945153
942 _cEBK
994 _a92
_bN$T
999 _c6580
_d6580