Amazon cover image
Image from Amazon.com

Analytical heat transfer / Je-Chin Han.

By: Material type: TextTextPublisher: Boca Raton, FL : CRC Press, ©2012Description: 1 online resource (xii, 314 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781439896891
  • 1439896895
Subject(s): Genre/Form: Additional physical formats: Print version:: Analytical heat transfer.DDC classification:
  • 621.402/2 23
LOC classification:
  • QC320 .H225 2012eb
Other classification:
  • SCI024000 | TEC009070
Online resources:
Contents:
Machine generated contents note: 1. Heat Conduction Equations -- 1.1. Introduction -- 1.1.1. Conduction -- 1.1.1.1. Fourier's Conduction Law -- 1.1.2. Convection -- 1.1.2.1. Newton's Cooling Law -- 1.1.3. Radiation -- 1.1.3.1. Stefan-Boltzmann Law -- 1.1.4.Combined Modes of Heat Transfer -- 1.2. General Heat Conduction Equations -- 1.2.1. Derivations of General Heat Conduction Equations -- 1.3. Boundary and Initial Conditions -- 1.3.1. Boundary Conditions -- 1.3.2. Initial Conditions -- 1.4. Simplified Heat Conduction Equations -- Problems -- Reference -- 2.1-D Steady-State Heat Conduction -- 2.1. Conduction through Plane Walls -- 2.1.1. Conduction through Circular Tube Walls -- 2.1.2. Critical Radius of Insulation -- 2.2. Conduction with Heat Generation -- 2.3. Conduction through Fins with Uniform Cross-Sectional Area -- 2.3.1. Fin Performance -- 2.3.1.1. Fin Effectiveness -- 2.3.1.2. Fin Efficiency -- 2.3.2. Radiation Effect -- 2.4. Conduction through Fins with Variable Cross-Sectional Area: Bessel Function Solutions -- 2.4.1. Radiation Effect -- Problems -- References -- 3.2-D Steady-State Heat Conduction -- 3.1. Method of Separation of Variables: Given Temperature BC -- 3.2. Method of Separation of Variables: Given Heat Flux and Convection BCs -- 3.2.1. Given Surface Heat Flux BC -- 3.2.2. Given Surface Convection BC -- 3.3. Principle of Superposition for Nonhomogeneous BCs Superposition -- 3.3.1.2-D Heat Conduction in Cylindrical Coordinates -- 3.4. Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations -- 3.4.1.3-D Heat Conduction Problem -- 3.4.2. Nonhomogeneous Heat Conduction Problem -- Problems -- References -- 4. Transient Heat Conduction -- 4.1. Method of Lumped Capacitance for 0-D Problems -- 4.1.1. Radiation Effect -- 4.2. Method of Separation of Variables for 1-D and for Multidimensional Transient Conduction Problems -- 4.2.1.1-D Transient Heat Conduction in a Slab -- 4.2.2. Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D) -- 4.2.3.1-D Transient Heat Conduction in a Rectangle with Heat Generation -- 4.3.1-D Transient Heat Conduction in a Semiinfinite Solid Material -- 4.3.1. Similarity Method for Semiinfinite Solid Material -- 4.3.2. Laplace Transform Method for Semiinfinite Solid Material -- 4.3.3. Approximate Integral Method for Semiinfinite Solid Material -- 4.4. Heat Conduction with Moving Boundaries -- 4.4.1. Freezing and Solidification Problems Using the Similarity Method -- 4.4.2. Melting and Ablation Problems Using the Approximate Integral Method -- 4.4.2.1. Ablation -- Problems -- References -- 5. Numerical Analysis in Heat Conduction -- 5.1. Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction -- 5.2. Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction -- 5.2.1. Finite-Difference Explicit Method -- 5.2.2. Finite-Difference Implicit Method -- 5.3.2-D Transient Heat Conduction -- Problems -- References -- 6. Heat Convection Equations -- 6.1. Boundary-Layer Concepts -- 6.2. General Heat Convection Equations -- 6.3.2-D Heat Convection Equations -- 6.4. Boundary-Layer Approximations -- 6.4.1. Boundary-Layer Similarity/Dimensional Analysis -- 6.4.2. Reynolds Analogy -- Problems -- References -- 7. External Forced Convection -- 7.1. Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution -- 7.1.1. Summary of the Similarity Solution for Laminar Boundary-Layer Flow and Heat Transfer over a Flat Surface -- 7.2. Laminar Flow and Heat Transfer over a Flat Surface: Integral Method -- 7.2.1. Momentum Integral Equation by Von Karman -- 7.2.2. Energy Integral Equation by Pohlhausen -- 7.2.3. Outline of the Integral Approximate Method -- Problems -- References -- 8. Internal Forced Convection -- 8.1. Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates -- 8.2. Fully Developed Laminar Flow and Heat Transfer in a Circular Tube or between Parallel Plates -- 8.2.1. Fully Developed Flow in a Tube: Friction Factor -- 8.2.2 Case 1 Uniform Wall Heat Flux -- 8.2.3 Case 2 Uniform Wall Temperature -- Problems -- References -- 9. Natural Convection -- 9.1. Laminar Natural Convection on a Vertical Wall: Similarity Solution -- 9.2. Laminar Natural Convection on a Vertical Wall: Integral Method -- Problems -- References -- 10. Turbulent Flow Heat Transfer -- 10.1. Reynolds-Averaged Navier-Stokes (RANS) Equation -- 10.1.1. Continuity Equation -- 10.1.2. Momentum Equation: RANS -- 10.1.3. Enthalpy/Energy Equation -- 10.1.4. Concept of Eddy or Turbulent Diffusivity -- 10.1.5. Reynolds Analogy for Turbulent Flow -- 10.2. Prandtl Mixing Length Theory and Law of Wall for Velocity and Temperature Profiles -- 10.3. Turbulent Flow Heat Transfer -- Problems -- References -- 11. Fundamental Radiation -- 11.1. Thermal Radiation Intensity and Emissive Power -- 11.2. Surface Radiation Properties for Blackbody and Real-Surface Radiation -- 11.3. Solar and Atmospheric Radiation -- Problems -- References -- 12. View Factor -- 12.1. View Factor -- 12.2. Evaluation of View Factor -- 12.2.1 Method 1 Hottel's Crossed-String Method for 2-D Geometry -- 12.2.2 Method 2 Double-Area Integration -- 12.2.3 Method 3 Contour Integration -- 12.2.4 Method 4 Algebraic Method -- Problems -- References -- 13. Radiation Exchange in a Nonparticipating Medium -- 13.1. Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure -- 13.1.1 Method 1 Electric Network Analogy -- 13.1.2 Method 2 Matrix Linear Equations -- 13.2. Radiation Exchange between Gray Diffuse Nonisothermal Surfaces -- 13.3. Radiation Exchange between Nongray Diffuse Isothermal Surfaces -- 13.4. Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces -- 13.5. Energy Balance in an Enclosure with Diffuse and Specular Surface -- Problems -- References -- 14. Radiation Transfer through Gases -- 14.1. Gas Radiation Properties -- 14.1.1. Volumetric Absorption -- 14.1.2. Geometry of Gas Radiation: Geometric Mean Beam Length -- 14.2. Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure -- 14.2.1. Matrix Linear Equations -- 14.2.2. Electric Network Analogy -- 14.3. Radiation Transfer through Gases with Nonuniform Temperature -- 14.3.1. Cryogenic Thermal Insulation -- 14.3.2. Radiation Transport Equation in the Participating Medium -- Problems -- References -- Appendix A Mathematical Relations and Functions -- A.1. Useful Formulas -- A.2. Hyperbolic Functions -- A.3. Bessel Functions -- A.3.1. Bessel Functions and Properties -- A.3.2. Bessel Functions of the First Kind -- A.3.3. Modified Bessel Functions of the First and Second Kinds -- A.4. Gaussian Error Function -- References.
Summary: "Developed from the authors 30 years of teaching a graduate-level intermediate heat transfer course, Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. Suitable for entry-level graduate students, the book fills the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses. The author places emphasis on modeling and solving engineering heat transfer problems analytically, rather than simply applying the equations and correlations for engineering problem calculations. He describes many well-known analytical methods and their solutions, such as Bessel functions, separation of variables, similarity method, integral method, and matrix inversion method. He also presents step-by-step mathematical formula derivations, analytical solution procedures, and numerous demonstration examples of heat transfer applications. By providing a strong analytical background, the text enables students to tackle complex engineering heat transfer problems encountered in practice. This analytical knowledge also helps them to read and understand heat transfer-related research papers"--Provided by publisher.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

"Developed from the authors 30 years of teaching a graduate-level intermediate heat transfer course, Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. Suitable for entry-level graduate students, the book fills the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses. The author places emphasis on modeling and solving engineering heat transfer problems analytically, rather than simply applying the equations and correlations for engineering problem calculations. He describes many well-known analytical methods and their solutions, such as Bessel functions, separation of variables, similarity method, integral method, and matrix inversion method. He also presents step-by-step mathematical formula derivations, analytical solution procedures, and numerous demonstration examples of heat transfer applications. By providing a strong analytical background, the text enables students to tackle complex engineering heat transfer problems encountered in practice. This analytical knowledge also helps them to read and understand heat transfer-related research papers"--Provided by publisher.

Includes bibliographical references and index.

Machine generated contents note: 1. Heat Conduction Equations -- 1.1. Introduction -- 1.1.1. Conduction -- 1.1.1.1. Fourier's Conduction Law -- 1.1.2. Convection -- 1.1.2.1. Newton's Cooling Law -- 1.1.3. Radiation -- 1.1.3.1. Stefan-Boltzmann Law -- 1.1.4.Combined Modes of Heat Transfer -- 1.2. General Heat Conduction Equations -- 1.2.1. Derivations of General Heat Conduction Equations -- 1.3. Boundary and Initial Conditions -- 1.3.1. Boundary Conditions -- 1.3.2. Initial Conditions -- 1.4. Simplified Heat Conduction Equations -- Problems -- Reference -- 2.1-D Steady-State Heat Conduction -- 2.1. Conduction through Plane Walls -- 2.1.1. Conduction through Circular Tube Walls -- 2.1.2. Critical Radius of Insulation -- 2.2. Conduction with Heat Generation -- 2.3. Conduction through Fins with Uniform Cross-Sectional Area -- 2.3.1. Fin Performance -- 2.3.1.1. Fin Effectiveness -- 2.3.1.2. Fin Efficiency -- 2.3.2. Radiation Effect -- 2.4. Conduction through Fins with Variable Cross-Sectional Area: Bessel Function Solutions -- 2.4.1. Radiation Effect -- Problems -- References -- 3.2-D Steady-State Heat Conduction -- 3.1. Method of Separation of Variables: Given Temperature BC -- 3.2. Method of Separation of Variables: Given Heat Flux and Convection BCs -- 3.2.1. Given Surface Heat Flux BC -- 3.2.2. Given Surface Convection BC -- 3.3. Principle of Superposition for Nonhomogeneous BCs Superposition -- 3.3.1.2-D Heat Conduction in Cylindrical Coordinates -- 3.4. Principle of Superposition for Multidimensional Heat Conduction and for Nonhomogeneous Equations -- 3.4.1.3-D Heat Conduction Problem -- 3.4.2. Nonhomogeneous Heat Conduction Problem -- Problems -- References -- 4. Transient Heat Conduction -- 4.1. Method of Lumped Capacitance for 0-D Problems -- 4.1.1. Radiation Effect -- 4.2. Method of Separation of Variables for 1-D and for Multidimensional Transient Conduction Problems -- 4.2.1.1-D Transient Heat Conduction in a Slab -- 4.2.2. Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D) -- 4.2.3.1-D Transient Heat Conduction in a Rectangle with Heat Generation -- 4.3.1-D Transient Heat Conduction in a Semiinfinite Solid Material -- 4.3.1. Similarity Method for Semiinfinite Solid Material -- 4.3.2. Laplace Transform Method for Semiinfinite Solid Material -- 4.3.3. Approximate Integral Method for Semiinfinite Solid Material -- 4.4. Heat Conduction with Moving Boundaries -- 4.4.1. Freezing and Solidification Problems Using the Similarity Method -- 4.4.2. Melting and Ablation Problems Using the Approximate Integral Method -- 4.4.2.1. Ablation -- Problems -- References -- 5. Numerical Analysis in Heat Conduction -- 5.1. Finite-Difference Energy Balance Method for 2-D Steady-State Heat Conduction -- 5.2. Finite-Difference Energy Balance Method for 1-D Transient Heat Conduction -- 5.2.1. Finite-Difference Explicit Method -- 5.2.2. Finite-Difference Implicit Method -- 5.3.2-D Transient Heat Conduction -- Problems -- References -- 6. Heat Convection Equations -- 6.1. Boundary-Layer Concepts -- 6.2. General Heat Convection Equations -- 6.3.2-D Heat Convection Equations -- 6.4. Boundary-Layer Approximations -- 6.4.1. Boundary-Layer Similarity/Dimensional Analysis -- 6.4.2. Reynolds Analogy -- Problems -- References -- 7. External Forced Convection -- 7.1. Laminar Flow and Heat Transfer over a Flat Surface: Similarity Solution -- 7.1.1. Summary of the Similarity Solution for Laminar Boundary-Layer Flow and Heat Transfer over a Flat Surface -- 7.2. Laminar Flow and Heat Transfer over a Flat Surface: Integral Method -- 7.2.1. Momentum Integral Equation by Von Karman -- 7.2.2. Energy Integral Equation by Pohlhausen -- 7.2.3. Outline of the Integral Approximate Method -- Problems -- References -- 8. Internal Forced Convection -- 8.1. Velocity and Temperature Profiles in a Circular Tube or between Parallel Plates -- 8.2. Fully Developed Laminar Flow and Heat Transfer in a Circular Tube or between Parallel Plates -- 8.2.1. Fully Developed Flow in a Tube: Friction Factor -- 8.2.2 Case 1 Uniform Wall Heat Flux -- 8.2.3 Case 2 Uniform Wall Temperature -- Problems -- References -- 9. Natural Convection -- 9.1. Laminar Natural Convection on a Vertical Wall: Similarity Solution -- 9.2. Laminar Natural Convection on a Vertical Wall: Integral Method -- Problems -- References -- 10. Turbulent Flow Heat Transfer -- 10.1. Reynolds-Averaged Navier-Stokes (RANS) Equation -- 10.1.1. Continuity Equation -- 10.1.2. Momentum Equation: RANS -- 10.1.3. Enthalpy/Energy Equation -- 10.1.4. Concept of Eddy or Turbulent Diffusivity -- 10.1.5. Reynolds Analogy for Turbulent Flow -- 10.2. Prandtl Mixing Length Theory and Law of Wall for Velocity and Temperature Profiles -- 10.3. Turbulent Flow Heat Transfer -- Problems -- References -- 11. Fundamental Radiation -- 11.1. Thermal Radiation Intensity and Emissive Power -- 11.2. Surface Radiation Properties for Blackbody and Real-Surface Radiation -- 11.3. Solar and Atmospheric Radiation -- Problems -- References -- 12. View Factor -- 12.1. View Factor -- 12.2. Evaluation of View Factor -- 12.2.1 Method 1 Hottel's Crossed-String Method for 2-D Geometry -- 12.2.2 Method 2 Double-Area Integration -- 12.2.3 Method 3 Contour Integration -- 12.2.4 Method 4 Algebraic Method -- Problems -- References -- 13. Radiation Exchange in a Nonparticipating Medium -- 13.1. Radiation Exchange between Gray Diffuse Isothermal Surfaces in an Enclosure -- 13.1.1 Method 1 Electric Network Analogy -- 13.1.2 Method 2 Matrix Linear Equations -- 13.2. Radiation Exchange between Gray Diffuse Nonisothermal Surfaces -- 13.3. Radiation Exchange between Nongray Diffuse Isothermal Surfaces -- 13.4. Radiation Interchange among Diffuse and Nondiffuse (Specular) Surfaces -- 13.5. Energy Balance in an Enclosure with Diffuse and Specular Surface -- Problems -- References -- 14. Radiation Transfer through Gases -- 14.1. Gas Radiation Properties -- 14.1.1. Volumetric Absorption -- 14.1.2. Geometry of Gas Radiation: Geometric Mean Beam Length -- 14.2. Radiation Exchange between an Isothermal Gray Gas and Gray Diffuse Isothermal Surfaces in an Enclosure -- 14.2.1. Matrix Linear Equations -- 14.2.2. Electric Network Analogy -- 14.3. Radiation Transfer through Gases with Nonuniform Temperature -- 14.3.1. Cryogenic Thermal Insulation -- 14.3.2. Radiation Transport Equation in the Participating Medium -- Problems -- References -- Appendix A Mathematical Relations and Functions -- A.1. Useful Formulas -- A.2. Hyperbolic Functions -- A.3. Bessel Functions -- A.3.1. Bessel Functions and Properties -- A.3.2. Bessel Functions of the First Kind -- A.3.3. Modified Bessel Functions of the First and Second Kinds -- A.4. Gaussian Error Function -- References.

Print version record.

There are no comments on this title.

to post a comment.