Amazon cover image
Image from Amazon.com

Nanomaterials handbook / edited by Yuri Gogotsi.

Contributor(s): Material type: TextTextPublisher: Boca Raton, Fla. ; London : CRC, 2006Description: 780 pages : illustrations ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780849323089 (cased)
  • 0849323088 (cased)
Subject(s): DDC classification:
  • 620.11 23 N.A.N.
Online resources:
Contents:
1 Materials Science at the NanoscaleC.N.R. Rao and A.K. Cheetham 1.1 Introduction p. 1 1.2 The Nanoworld Is Uniquely Different p. 3 1.3 Synthesis and Characterization p. 5 1.4 Experimental Methods p. 9 1.5 Computer Simulation and Modeling p. 9 1.6 Applications p. 10 1.7 Outlook p. 12 References p. 12 2 Perspectives on the Science and Technology of Nanoparticle SynthesisGanesh Skandan and Amit Singhal 2.1 Introduction p. 13 2.2 Classification of Nanoparticle Synthesis Techniques p. 14 2.2.1 Solid-State Synthesis of Nanoparticles p. 14 2.2.2 Vapor-Phase Synthesis of Nanoparticles p. 15 2.3 Solution Processing of Nanoparticles p. 22 2.3.1 Sol-Gel Processing p. 23 2.3.2 Solution Precipitation p. 23 2.3.3 Water-Oil Microemulsion (Reverse Micelle) Method p. 24 2.4 Commercial Production and Use of Nanoparticles p. 25 2.5 Future Perspectives p. 25 Acknowledgment p. 26 References p. 26 3 Fullerenes and Their DerivativesAurelio Mateo-Alonso and Nikos Tagmatarchis and Maurizio Prato 3.1 Introduction p. 29 3.2 Functionalization of Fullerenes p. 30 3.2.1 Cycloadditions p. 30 3.2.2 Cyclopropanation Reactions p. 39 3.3 Self-Assembled Fullerene Architectures p. 43 3.3.1 Rotaxanes, Catenanes, Pseudorotaxanes p. 43 3.3.2 Nanorings, Peapods p. 47 3.3.3 Supramolecular Assemblies with Porphyrins p. 50 3.3.4 Complementary Hydrogen Bonded Supramolecular Systems p. 50 3.4 Applications p. 52 3.4.1 Donor-Acceptor Systems p. 52 3.4.2 Plastic Solar Cells p. 56 3.5 Conclusions p. 61 Acknowledgments p. 61 References p. 61 4 Carbon Nanotubes: Structure and PropertiesJohn E. Fischer 4.1 Introduction p. 69 4.2 Structure p. 71 4.2.1 Single-Wall Tubes, Bundles, and Crystalline Ropes p. 71 4.2.2 Multiwall Tubes p. 73 4.2.3 Macroscopic Nanotube Materials p. 73 4.2.4 Fibers p. 75 4.2.5 Filled Tubes p. 75 4.2.6 Nanotube Suspensions p. 78 4.3 Physical Properties p. 79 4.3.1 Mechanical Properties p. 80 4.3.2 Thermal Properties p. 81 4.3.3 Electronic Properties p. 86 4.3.4 Magnetic and Superconducting Properties p. 98 4.4 Summary and Prospects p. 99 Acknowledgments p. 99 References p. 99 5 Chemistry of Carbon NanotubesEduard G. Rakov Abstract p. 106 5.1 Introduction p. 106 5.2 Carbon Nanotube Morphology and Structure p. 107 5.3 Synthesis of Carbon Nanotubes p. 108 5.4 Opening of Carbon Nanotubes p. 109 5.5 Functionalization of Carbon Nanotubes p. 110 5.5.1 Attachment of Oxidic Groups p. 111 5.5.2 Reactions of Carboxylic Groups Attached to Nanotubes p. 111 5.5.3 Fluorination p. 115 5.5.4 Amidation p. 116 5.5.5 Other Types of Covalent Bonding p. 118 5.5.6 Noncovalent Bonding p. 121 5.5.7 Dispersions in Oleum p. 124 5.5.8 Self-Assembly, Film, and Fiber Formation p. 124 5.6 Filling the Inner Cavity of Carbon Nanotubes p. 127 5.6.1 In Situ Filling p. 128 5.6.2 Post-Processing Filling p. 129 5.6.3 Reactions inside Nanotube p. 132 5.6.4 The Structure of Crystals inside Nanotubes p. 133 5.7 Adsorption and Storage of Gases p. 134 5.7.1 Hydrogen Problem p. 135 5.7.2 Carbon Nanotube Gas Sensors p. 137 5.8 Attachment of Biomolecules p. 138 5.8.1 Biosensors p. 138 5.8.2 Others Fields of Application p. 140 5.9 Nanotubes as Templates p. 140 5.9.1 Substitution of the Carbon Atoms of Nanotubes p. 140 5.9.2 Decoration of Carbon Nanotubes p. 141 5.10 Intercalation of "Guest" Moieties p. 143 5.11 Summary and Conclusions p. 145 Acknowledgments p. 145 References p. 145 6 Graphite Whiskers, Cones, and Polyhedral CrystalsSvetlana Dimovski and Yury Gogotsi Abstract p. 177 6.1 Preface p. 178 6.2 Graphite Whiskers and Cones p. 178 6.2.1 Synthetic Whiskers and Cones p. 179 6.2.2 Occurrence of Graphite Whiskers and Cones in Nature p. 184 6.2.3 Structure: Geometrical Considerations p. 185 6.2.4 Properties and Applications p. 189 6.3 Graphite Polyhedral Crystals - Polygonal Multiwall Tubes p. 191 6.3.1 Synthesis p. 191 6.3.2 Structure of Polygonal Tubes p. 193 6.3.3 Properties and Applications p. 196 6.4 Conclusions p. 199 Acknowledgment p. 200 References p. 200 7 Nanocrystalline DiamondOlga Shenderova and Gary McGuire 7.1 Introduction p. 203 7.2 Stability of Nanodiamond p. 204 7.3 Types of Nanodiamond and Methods of Their Synthesis p. 208 7.3.1 Zero-Dimensional Nanodiamond Structures p. 209 7.3.2 One-Dimensional Nanodiamond Structures p. 214 7.3.3 Two-Dimensional Nanodiamond Structures p. 217 7.3.4 Three-Dimensional Nanodiamond Structures p. 217 7.4 Ultrananocrystalline Diamond Particulate Produced by Explosive Detonation p. 219 7.4.1 Synthesis and Properties p. 219 7.4.2 Applications of Ultrananocrystalline Diamond Particulate p. 225 7.5 Ultrananocrystalline Diamond Films Produced by Chemical Vapor Deposition p. 227 7.6 Carbide-Derived Diamond-Structured Carbon p. 228 7.7 Medical and Biological Applications of Nanodiamond p. 229 7.8 Conclusion p. 232 References p. 233 8 Carbide-Derived CarbonG. Yushin and A. Nikitin and Y. Gogotsi Abstract p. 240 8.1 Introduction p. 240 8.2 Selective Etching of Carbides by Halogens p. 241 8.2.1 Chlorination of Carbides for Production of Chlorides p. 241 8.2.2 Thermodynamic Simulations p. 242 8.2.3 Historic Overview of Carbide-Derived Carbon Studies p. 243 8.2.4 Kinetics of Halogenation of Carbides p. 245 8.2.5 Conservation of Shape p. 246 8.2.6 Nanoporous Structure and Adsorption Properties p. 246 8.2.7 Analysis of CDC Structure p. 256 8.3 Selective Etching of Carbides by Melts and Supercritical Water p. 260 8.3.1 Reaction of Calcium Carbide with Inorganic Salts p. 260 8.3.2 Hydrothermal Leaching of Carbides p. 261 8.4 Thermal Decomposition of Carbides p. 263 8.4.1 Carbon Structure and Conservation of Shape p. 263 8.4.2 Synthesis of Carbon Nanotubes and Carbon Onions p. 265 8.5 Applications p. 269 8.5.1 Supercapacitors p. 269 8.5.2 Hydrogen Storage p. 270 8.5.3 Methane Storage p. 271 8.5.4 Lithium-Ion Batteries p. 271 8.5.5 Pt Catalyst on CDC Support p. 272 8.5.6 Tribological Coatings p. 272 8.6 Conclusions p. 273 Acknowledgments p. 273 References p. 273 9 One-Dimensional Semiconductor and Oxide NanostructuresJonathan E. Spanier Abstract p. 283 9.1 Introduction p. 284 9.2 Strategies for the Synthesis of 1-D Nanostructures p. 285 9.2.1 Metal Nanoclusters: Facilitating 1-D Growth p. 286 9.2.2 Laser-Assisted Metal-Catalyzed Nanowire Growth p. 287 9.2.3 Metal-Catalyzed Vapor-Liquid-Solid Growth p. 288 9.2.4 Vapor-Solid-Solid Growth p. 290 9.2.5 Catalyst-Free Vapor-Phase Growth p. 291 9.2.6 Chemical Solution-Based Growth p. 291 9.2.7 Template-Assisted Growth p. 293 9.2.8 Selected Other Methods p. 295 9.3 Hierarchal Complexity in 1-D Nanostructures p. 295 9.3.1 Control of Diameter and Diameter Dispersion p. 295 9.3.2 Control of Shape: Novel Topologies p. 296 9.3.3 Other Binary Oxide 1-D Nanostructures p. 297 9.3.4 Hierarchal 1-D Nanostructures p. 297 9.3.5 Axial and Radial Modulation of Composition and Doping p. 299 9.4 Selected Properties and Applications p. 304 9.4.1 Mechanical and Thermal Properties and Phonon Transport p. 304 9.4.2 Electronic Properties of Nanowires p. 305 9.4.3 Optical Properties of Nanowires p. 306 9.5 Concluding Remarks p. 309 Acknowledgments p. 309 References p. 309 10 Inorganic Nanotubes and Fullerene-Like Materials of Metal Dichalcogenide and Related Layered CompoundsR. Tenne 10.1 Preface p. 317 10.2 Synthesis of Inorganic Nanotubes p. 320 10.3 Inorganic Nanotubes and Fullerene-Like Structures Studied by Computational Methods p. 326 10.4 Study of the Properties of Inorganic Nanotubes in Relation to Their Applications p. 330 10.5 Conclusions p. 332 Acknowledgments p. 332 References p. 332 11 Boron Nitride Nanotubes: Synthesis and StructureHongzhou Zhang and Ying Chen Abstract p. 339 11.1 Introduction p. 339 11.2 Structures of Boron Nitride Nanotubes p. 340 11.2.1 Hexagonal Boron Nitride p. 340 11.2.2 Boron Nitride Nanotube Structure p. 341 11.2.3 Transmission Electron Microscopy Studies of Boron Nitride Nanotube Chirality p. 343 11.3 Synthesis Methods of Boron Nitride Nanotubes p. 346 11.3.1 Arc Discharge and Arc Melting p. 346 11.3.2 Laser-Assisted Method p. 348 11.3.3 Ball Milling and Annealing p. 350 11.3.4 Carbon Nanotube Substitution p. 351 11.3.5 Chemical Vapor Deposition and Other Thermal Methods p. 354 11.4 Summary p. 355 Acknowledgments p. 356 References p. 356 12 Sintering of NanoceramicsXiao-Hui Wang and I-Wei Chen Abstract p. 361 12.1 Introduction p. 362 12.2 Powder Compact p. 362 12.3 Sintering p. 364 12.3.1 Sintering Additives p. 364 12.3.2 Hot Pressing and Sinter Forging p. 364 12.3.3 Spark Plasma Sintering p. 365 12.3.4 Transformation Sintering p. 365 12.3.5 Two-Step Sintering p. 365 12.4 Two-Step Sintering of Y[subscript 2]O[subscript 3] Nanoceramics p. 366 12.4.1 Introduction p. 366 12.4.2 Sintering of Y[subscript 2]O[subscript 3] p. 366 12.4.3 Kinetics of Constant Structure Sintering p. 369 12.5 Two-Step Sintering of Other Functional and Structural Ceramics p. 373 12.5.1 BaTiO[subscript 3] Ceramics p. 373 12.5.2 NiCuZn Ferrite p. 375 12.5.3 ZnO Varistor p. 378 12.5.4 SiC Ceramics p. 379 12.6 Conclusions p. 380 Acknowledgments p. 381 References p. 381 13 Nanolayered or Kinking Nonlinear Elastic SolidsMichel W. Barsoum Abstract p. 385 13.1 Introduction p. 386 13.2 Kinking in Crystalline Solids p. 386 13.3 Kinking Nonlinear Elastic Solids p. 387 13.4 Theoretical Aspects of Spherical Nanoindentations p. 391 13.5 Nanoindentation Results on KNE Solids p. 392 13.5.1 Sapphire p. 392 13.5.2 The MAX Phases p. 392 13.5.3 Graphite p. 395 13.5.4 Mica p. 397 13.5.5 Hexagonal Boron Nitride p. 401 13.6 Bulk vs. Nanoindentation Results p. 402 13.7 Summary and Conclusions p. 402 Acknowledgments p. 402 References p. 402 14 Nanocrystalline High-Melting Point Carbides, Borides, and NitridesRostislav A. Andrievski Abstract p. 405 14.1 Introduction p. 406 14.2 Ultrafine Powder, Amorphous Precursors, Nanotubes, and Nanowires p. 406 14.2.1 General Characteristics p. 406 14.2.2 Silicon Carbide and Silicon Nitride p. 407 14.2.3 Aluminium Nitride, Boron Nitride, and Boron Carbide p. 409 14.2.4 Tungsten Carbide, Titanium Carbide (Nitride, Boride), and Related Compounds p. 410 14.2.5 Properties of UFP and Nanotubes p. 411 14.3 Nanocrystalline Bulks p. 414 14.3.1 General Characteristic of Consolidation p. 414 14.3.2 Structure and Properties p. 415 14.4 Nanocrystalline Films and Coatings p. 429 14.4.1 General Characteristics of Preparation p. 429 14.4.2 Film Structure and Content p. 431 14.4.3 Properties p. 435 14.5 Summary p. 443 References p. 446 15 Nanostructured Oxide SuperconductorsPavel E. Kazin and Yuri D. Tretyakov Abstract p. 455 15.1 Introduction p. 456 15.2 Superconductor Parameters and Magnetic Flux Pinning p. 456 15.3 Design of Flux Pinning Centers p. 458 15.4 Superconductor Materials with Crystalline Defects p. 459 15.4.1 Point Defects p. 459 15.4.2 Dislocations and Grain Boundaries p. 460 15.4.3 Irradiation Defects p. 461 15.5 Superconductor Matrix-Based Composites p. 461 15.5.1 Formation of Composites p. 461 15.5.2 Composites: Superconductor Matrix - Secondary-Phase Inclusions p. 462 15.5.3 Composites: Superconductor Matrix - Foreign-Phase Inclusions p. 464 15.5.4 Composites Obtained by Superconductor Phase Decomposition p. 467 15.6 Conclusions p. 468 Acknowledgments p. 469 References p. 469 16 Electrochemical Deposition of Nanostructured MetalsE. J. Podlaha and Y. Li and J. Zhang and Q. Huang and A. Panda and A. Lozano-Morales and D. Davis and Z. Guo Abstract p. 475 16.1 Introduction p. 475 16.2 Compositionally Modulated Multilayer p. 476 16.3 Nanowires, Pillars, and Tubes p. 480 16.3.1 Nanowires p. 480 16.3.2 Pillars p. 481 16.3.3 Nanotubes p. 482 16.4 Nanoparticulate Materials p. 485 16.4.1 Nanoparticles p. 485 16.4.2 Metal-Matrix Nanocomposites p. 486 16.5 Summary p. 490 Acknowledgments p. 490 References p. 490 17 Mechanical Behavior of Nanocrystalline MetalsMingwei Chen and En Ma and Kevin Hemker 17.1 Introduction p. 498 17.2 Characterization Techniques p. 498 17.2.1 Mechanical Behavior p. 498 17.2.2 Microstructural Characterization p. 499 17.3 Mechanical Response p. 501 17.3.1 Strength p. 501 17.3.2 Tensile Ductility p. 504 17.3.3 Work Hardening p. 506 17.3.4 Strain Rate Sensitivity p. 506 17.3.5 Localized Deformation p. 506 17.3.6 Cryogenic Behavior p. 508 17.3.7 Creep and Superplasticity p. 509 17.3.8 Fatigue and Fracture p. 511 17.4 Deformation Mechanisms p. 513 17.4.1 Extensions of Microscale Deformation Mechanisms p. 513 17.4.2 Observed Deformation Mechanisms for Nanocrystalline Metals p. 518 17.4.3 Collective Response p. 524 17.5 Concluding Remarks p. 524 References p. 526 18 Grain Boundaries in NanomaterialsI.A. Ovid'ko and C.S. Pande and R.A. Masumura Abstract p. 531 18.1 Introduction p. 531 18.2 Specific Structural Features of Grain Boundaries in Nanocrystalline Materials p. 533 18.3 Effects of Grain Boundaries on Plastic Flow in Nanocrystalline Materials: General View p. 536 18.4 Competition between Lattice Dislocation Slip and Grain Boundary Diffusional Creep (Coble Creep) in Nanocrystalline Materials p. 537 18.5 Grain Boundary Sliding and High-Strain-Rate Superplasticity in Nanocrystalline Materials p. 539 18.6 Grain Growth Processes in Nanocrystalline Material p. 544 18.7 Concluding Remarks p. 547 Acknowledgments p. 548 References p. 548 19 Nanofiber TechnologyFrank K. Ko 19.1 Introduction p. 553 19.2 The Electrospinning Process p. 554 19.3 Key Processing Parameters p. 555 19.4 Nanofiber Yarns and Fabrics Formation p. 558 19.5 Potential Applications of Electrospun Fibers p. 558 19.5.1 Nanofibers for Tissue Engineering Scaffolds p. 559 19.5.2 Nanofibers for Chemical/Bio Protective Membranes p. 559 19.5.3 Nanocomposite Fibers for Structural Applications p. 562 19.6 Summary and Conclusions p. 563 References p. 564 20 Nanotubes in Multifunctional Polymer NanocompositesFangming Du and Karen I. Winey 20.1 Introduction p. 565 20.2 Nanocomposite Fabrication and Nanotube Alignment p. 567 20.3 Mechanical Properties p. 571 20.4 Thermal and Rheological Properties p. 573 20.5 Electrical Conductivity p. 576 20.6 Thermal Conductivity and Flammability p. 578 20.7 Conclusions p. 579 Acknowledgments p. 581 References p. 581 21 Nanoporous Polymers - Design and ApplicationsVijay I. Raman and Giuseppe R. Palmese Abstract p. 585 21.1 Introduction p. 586 21.2 Design of Nanoporous Polymers p. 586 21.2.1 No Porogen p. 587 21.2.2 Templates p. 588 21.2.3 Solvent As Porogen p. 592 21.2.4 TIPS p. 592 21.2.5 DIPS p. 595 21.2.6 Carbon Dioxide Foaming p. 595 21.2.7 PIPS p. 596 21.2.8 Microemulsion Systems p. 597 21.2.9 Miscible Systems p. 598 21.3 Potential Applications for Nanoporous Polymers p. 599 21.3.1 Polymer Electrolyte Membranes for Fuel Cells p. 599 21.3.2 Separation Membranes p. 600 21.3.3 Template for Nanostructures/Nanomaterials Synthesis p. 600 21.3.4 Nanocomposites p. 600 21.4 Conclusions and Future Direction p. 601 References p. 602 22 Nanotechnology and BiomaterialsJ. Brock Thomas and Nicholas A. Peppas and Michiko Sato and Thomas J. Webster 22.1 Introduction p. 605 22.2 Nanotechnology in Biomaterials Science p. 608 22.3 Current Research Efforts to Improve Biomedical Performance at the Nanoscale p. 610 22.4 Soft Biomaterials p. 611 22.4.1 Structural Characteristics p. 612 22.4.2 Surface Properties p. 612 22.4.3 Biomimetics p. 613 22.4.4 Nanoscale Biopolymer Carriers p. 613 22.5 Ceramic Nanomaterials p. 615 22.5.1 Increased Osteoblast Functions p. 615 22.5.2 Increased Osteoclast Functions p. 617 22.5.3 Decreased Competitive Cell Functions p. 619 22.5.4 Increased Osteoblast Functions on Nanofibrous Materials p. 620 22.6 Metal Nanomaterials p. 621 22.7 Polymeric Nanomaterials p. 623 22.8 Composite Nanomaterials p. 624 22.9 Areas of Application p. 626 22.9.1 Drug Delivery p. 626 22.9.2 Tissue Engineering p. 628 22.9.3 Biological Micro-Electro-Mechanical Systems p. 628 22.10 Considerations and Future Directions p. 629 Acknowledgments p. 629 References p. 630 23 Nanoparticles for Drug DeliveryMeredith L. Hans and Anthony M. Lowman 23.1 Introduction p. 638 23.2 Synthesis of Solid Nanoparticles p. 639 23.3 Processing Parameters p. 642 23.3.1 Surfactant/Stabilizer p. 642 23.3.2 Type of Polymer p. 643 23.3.3 Polymer Choice p. 646 23.3.4 Polymer Molecular Weight p. 647 23.3.5 Collection Method p. 647 23.4 Characterization p. 647 23.4.1 Size and Encapsulation Efficiency p. 647 23.4.2 Zeta Potential p. 649 23.4.3 Surface Modification p. 649 23.5 Nanoparticulate Delivery Systems p. 651 23.5.1 Liposomes p. 651 23.5.2 Polymeric Micelles p. 651 23.5.3 Worm-Like Micelles p. 653 23.5.4 Polymersomes p. 653 23.6 Targeted Drug Delivery Using Nanoparticles p. 653 23.6.1 Oral Delivery p. 653 23.6.2 Brain Delivery p. 654 23.6.3 Arterial Delivery p. 654 23.6.4 Tumor Therapy p. 654 23.6.5 Lymphatic System and Vaccines p. 656 23.6.6 Pulmonary Delivery p. 656 23.7 Drug Release p. 657 23.7.1 Mechanisms p. 657 23.7.2 Release Characteristics p. 658 Acknowledgments p. 658 References p. 658 24 Nanostructured Materials for Field Emission DevicesJ.D. Carey and S.R.P. Silva Abstract p. 665 24.1 Introduction to Field Emission and Criteria for Practical Electron Sources p. 665 24.2 Carbon Nanomaterial Based Cold Cathodes p. 668 24.3 Field Emission from Different Types of Amorphous Carbon p. 671 24.3.1 Polymer-Like Amorphous Carbon Films p. 671 24.3.2 Diamond-Like Amorphous Carbon Films p. 672 24.3.3 Tetrahedral Amorphous Carbon Films p. 675 24.3.4 Graphite-Like Amorphous Carbon Films p. 676 24.3.5 Nanocomposite Amorphous Carbon Films p. 676 24.3.6 Ultrananocrystalline Diamond Thin Films p. 676 24.4 Field Emission and Dielectric Inhomogeneity p. 677 24.5 Field Emission as a Function of Conditioning p. 678 24.6 Surface Modifications p. 680 24.7 Summary and Outlook for the Future p. 682 References p. 682 25 Tribology of Nanostructured and Composite CoatingsAli Erdemir and Osman Levent Eryilmaz and Mustafa Urgen and Kursat Kazmanli and Nikhil Mehta and Barton Prorok 25.1 Introduction p. 685 25.2 Recent Advances in Deposition Technologies p. 688 25.2.1 Hybrid Deposition Processes p. 688 25.2.2 Control of Process Parameters p. 690 25.2.3 Modern Coating Practices p. 690 25.3 Structure and Mechanical Properties p. 691 25.4 Tribology of Nanostructured and Composite Films p. 694 25.4.1 Self-Lubricating Nanocomposite Coatings p. 695 25.4.2 Superhard Nanocomposite Films p. 698 25.4.3 Nanostructured Carbon Films p. 700 25.5 Novel Design Concepts for Self-Lubricating Nanocomposite Films for High-Temperature Applications p. 703 25.6 Summary p. 706 Acknowledgments p. 706 References p. 707 26 Nanotextured Carbons for Electrochemical Energy StorageFrancois Beguin and Elzbieta Frackowiak 26.1 General Properties of Carbons for Energy Storage p. 713 26.2 Supercapacitors p. 714 26.2.1 Performance of Supercapacitors p. 714 26.2.2 Carbons for Pure Electrochemical Double-Layer Capacitors p. 718 26.2.3 Electrochemical Capacitors from Carbons with Pseudocapacitance Properties p. 720 26.2.4 Carbon Nanotubes as a Composite Component p. 723 26.3 Electrochemical Hydrogen Storage p. 726 26.3.1 Introduction p. 726 26.3.2 Mechanism of Reversible Hydrogen Insertion p. 727 26.4 Conclusions and Perspectives p. 733 References p. 734 27 Low-Dimensional ThermoelectricityJoseph P. Heremans and Mildred S. Dresselhaus Abstract p. 739 27.1 Introduction p. 739 27.2 Phenomenological Theory for Transport in Different Dimensionalities p. 742 27.3 Two-Dimensional Thermoelectric Materials: Quantum Wells p. 746 27.4 One-Dimensional Thermoelectric Materials: Quantum Wires p. 747 27.5 Quasi-Zero-Dimensional Thermoelectric Materials p. 756 27.5.1 Segmented Superlattice Quantum Wires p. 756 27.5.2 Quantum-Dot Superlattices p. 761 27.5.3 Quantum Dots between Quantum-Point Contacts p. 763 27.6 Other Related Topics p. 765 Acknowledgments p. 768 References p. 768
Summary: Even before it was identified as a science and given a name,¿ nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology¿s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books Books Media and mass communication Library N2 620.11 N.A.N. Available E0000360
Total holds: 0

Includes bibliographical references and index.

1 Materials Science at the NanoscaleC.N.R. Rao and A.K. Cheetham
1.1 Introduction p. 1
1.2 The Nanoworld Is Uniquely Different p. 3
1.3 Synthesis and Characterization p. 5
1.4 Experimental Methods p. 9
1.5 Computer Simulation and Modeling p. 9
1.6 Applications p. 10
1.7 Outlook p. 12
References p. 12
2 Perspectives on the Science and Technology of Nanoparticle SynthesisGanesh Skandan and Amit Singhal
2.1 Introduction p. 13
2.2 Classification of Nanoparticle Synthesis Techniques p. 14
2.2.1 Solid-State Synthesis of Nanoparticles p. 14
2.2.2 Vapor-Phase Synthesis of Nanoparticles p. 15
2.3 Solution Processing of Nanoparticles p. 22
2.3.1 Sol-Gel Processing p. 23
2.3.2 Solution Precipitation p. 23
2.3.3 Water-Oil Microemulsion (Reverse Micelle) Method p. 24
2.4 Commercial Production and Use of Nanoparticles p. 25
2.5 Future Perspectives p. 25
Acknowledgment p. 26
References p. 26
3 Fullerenes and Their DerivativesAurelio Mateo-Alonso and Nikos Tagmatarchis and Maurizio Prato
3.1 Introduction p. 29
3.2 Functionalization of Fullerenes p. 30
3.2.1 Cycloadditions p. 30
3.2.2 Cyclopropanation Reactions p. 39
3.3 Self-Assembled Fullerene Architectures p. 43
3.3.1 Rotaxanes, Catenanes, Pseudorotaxanes p. 43
3.3.2 Nanorings, Peapods p. 47
3.3.3 Supramolecular Assemblies with Porphyrins p. 50
3.3.4 Complementary Hydrogen Bonded Supramolecular Systems p. 50
3.4 Applications p. 52
3.4.1 Donor-Acceptor Systems p. 52
3.4.2 Plastic Solar Cells p. 56
3.5 Conclusions p. 61
Acknowledgments p. 61
References p. 61
4 Carbon Nanotubes: Structure and PropertiesJohn E. Fischer
4.1 Introduction p. 69
4.2 Structure p. 71
4.2.1 Single-Wall Tubes, Bundles, and Crystalline Ropes p. 71
4.2.2 Multiwall Tubes p. 73
4.2.3 Macroscopic Nanotube Materials p. 73
4.2.4 Fibers p. 75
4.2.5 Filled Tubes p. 75
4.2.6 Nanotube Suspensions p. 78
4.3 Physical Properties p. 79
4.3.1 Mechanical Properties p. 80
4.3.2 Thermal Properties p. 81
4.3.3 Electronic Properties p. 86
4.3.4 Magnetic and Superconducting Properties p. 98
4.4 Summary and Prospects p. 99
Acknowledgments p. 99
References p. 99
5 Chemistry of Carbon NanotubesEduard G. Rakov
Abstract p. 106
5.1 Introduction p. 106
5.2 Carbon Nanotube Morphology and Structure p. 107
5.3 Synthesis of Carbon Nanotubes p. 108
5.4 Opening of Carbon Nanotubes p. 109
5.5 Functionalization of Carbon Nanotubes p. 110
5.5.1 Attachment of Oxidic Groups p. 111
5.5.2 Reactions of Carboxylic Groups Attached to Nanotubes p. 111
5.5.3 Fluorination p. 115
5.5.4 Amidation p. 116
5.5.5 Other Types of Covalent Bonding p. 118
5.5.6 Noncovalent Bonding p. 121
5.5.7 Dispersions in Oleum p. 124
5.5.8 Self-Assembly, Film, and Fiber Formation p. 124
5.6 Filling the Inner Cavity of Carbon Nanotubes p. 127
5.6.1 In Situ Filling p. 128
5.6.2 Post-Processing Filling p. 129
5.6.3 Reactions inside Nanotube p. 132
5.6.4 The Structure of Crystals inside Nanotubes p. 133
5.7 Adsorption and Storage of Gases p. 134
5.7.1 Hydrogen Problem p. 135
5.7.2 Carbon Nanotube Gas Sensors p. 137
5.8 Attachment of Biomolecules p. 138
5.8.1 Biosensors p. 138
5.8.2 Others Fields of Application p. 140
5.9 Nanotubes as Templates p. 140
5.9.1 Substitution of the Carbon Atoms of Nanotubes p. 140
5.9.2 Decoration of Carbon Nanotubes p. 141
5.10 Intercalation of "Guest" Moieties p. 143
5.11 Summary and Conclusions p. 145
Acknowledgments p. 145
References p. 145
6 Graphite Whiskers, Cones, and Polyhedral CrystalsSvetlana Dimovski and Yury Gogotsi
Abstract p. 177
6.1 Preface p. 178
6.2 Graphite Whiskers and Cones p. 178
6.2.1 Synthetic Whiskers and Cones p. 179
6.2.2 Occurrence of Graphite Whiskers and Cones in Nature p. 184
6.2.3 Structure: Geometrical Considerations p. 185
6.2.4 Properties and Applications p. 189
6.3 Graphite Polyhedral Crystals - Polygonal Multiwall Tubes p. 191
6.3.1 Synthesis p. 191
6.3.2 Structure of Polygonal Tubes p. 193
6.3.3 Properties and Applications p. 196
6.4 Conclusions p. 199
Acknowledgment p. 200
References p. 200
7 Nanocrystalline DiamondOlga Shenderova and Gary McGuire
7.1 Introduction p. 203
7.2 Stability of Nanodiamond p. 204
7.3 Types of Nanodiamond and Methods of Their Synthesis p. 208
7.3.1 Zero-Dimensional Nanodiamond Structures p. 209
7.3.2 One-Dimensional Nanodiamond Structures p. 214
7.3.3 Two-Dimensional Nanodiamond Structures p. 217
7.3.4 Three-Dimensional Nanodiamond Structures p. 217
7.4 Ultrananocrystalline Diamond Particulate Produced by Explosive Detonation p. 219
7.4.1 Synthesis and Properties p. 219
7.4.2 Applications of Ultrananocrystalline Diamond Particulate p. 225
7.5 Ultrananocrystalline Diamond Films Produced by Chemical Vapor Deposition p. 227
7.6 Carbide-Derived Diamond-Structured Carbon p. 228
7.7 Medical and Biological Applications of Nanodiamond p. 229
7.8 Conclusion p. 232
References p. 233
8 Carbide-Derived CarbonG. Yushin and A. Nikitin and Y. Gogotsi
Abstract p. 240
8.1 Introduction p. 240
8.2 Selective Etching of Carbides by Halogens p. 241
8.2.1 Chlorination of Carbides for Production of Chlorides p. 241
8.2.2 Thermodynamic Simulations p. 242
8.2.3 Historic Overview of Carbide-Derived Carbon Studies p. 243
8.2.4 Kinetics of Halogenation of Carbides p. 245
8.2.5 Conservation of Shape p. 246
8.2.6 Nanoporous Structure and Adsorption Properties p. 246
8.2.7 Analysis of CDC Structure p. 256
8.3 Selective Etching of Carbides by Melts and Supercritical Water p. 260
8.3.1 Reaction of Calcium Carbide with Inorganic Salts p. 260
8.3.2 Hydrothermal Leaching of Carbides p. 261
8.4 Thermal Decomposition of Carbides p. 263
8.4.1 Carbon Structure and Conservation of Shape p. 263
8.4.2 Synthesis of Carbon Nanotubes and Carbon Onions p. 265
8.5 Applications p. 269
8.5.1 Supercapacitors p. 269
8.5.2 Hydrogen Storage p. 270
8.5.3 Methane Storage p. 271
8.5.4 Lithium-Ion Batteries p. 271
8.5.5 Pt Catalyst on CDC Support p. 272
8.5.6 Tribological Coatings p. 272
8.6 Conclusions p. 273
Acknowledgments p. 273
References p. 273
9 One-Dimensional Semiconductor and Oxide NanostructuresJonathan E. Spanier
Abstract p. 283
9.1 Introduction p. 284
9.2 Strategies for the Synthesis of 1-D Nanostructures p. 285
9.2.1 Metal Nanoclusters: Facilitating 1-D Growth p. 286
9.2.2 Laser-Assisted Metal-Catalyzed Nanowire Growth p. 287
9.2.3 Metal-Catalyzed Vapor-Liquid-Solid Growth p. 288
9.2.4 Vapor-Solid-Solid Growth p. 290
9.2.5 Catalyst-Free Vapor-Phase Growth p. 291
9.2.6 Chemical Solution-Based Growth p. 291
9.2.7 Template-Assisted Growth p. 293
9.2.8 Selected Other Methods p. 295
9.3 Hierarchal Complexity in 1-D Nanostructures p. 295
9.3.1 Control of Diameter and Diameter Dispersion p. 295
9.3.2 Control of Shape: Novel Topologies p. 296
9.3.3 Other Binary Oxide 1-D Nanostructures p. 297
9.3.4 Hierarchal 1-D Nanostructures p. 297
9.3.5 Axial and Radial Modulation of Composition and Doping p. 299
9.4 Selected Properties and Applications p. 304
9.4.1 Mechanical and Thermal Properties and Phonon Transport p. 304
9.4.2 Electronic Properties of Nanowires p. 305
9.4.3 Optical Properties of Nanowires p. 306
9.5 Concluding Remarks p. 309
Acknowledgments p. 309
References p. 309
10 Inorganic Nanotubes and Fullerene-Like Materials of Metal Dichalcogenide and Related Layered CompoundsR. Tenne
10.1 Preface p. 317
10.2 Synthesis of Inorganic Nanotubes p. 320
10.3 Inorganic Nanotubes and Fullerene-Like Structures Studied by Computational Methods p. 326
10.4 Study of the Properties of Inorganic Nanotubes in Relation to Their Applications p. 330
10.5 Conclusions p. 332
Acknowledgments p. 332
References p. 332
11 Boron Nitride Nanotubes: Synthesis and StructureHongzhou Zhang and Ying Chen
Abstract p. 339
11.1 Introduction p. 339
11.2 Structures of Boron Nitride Nanotubes p. 340
11.2.1 Hexagonal Boron Nitride p. 340
11.2.2 Boron Nitride Nanotube Structure p. 341
11.2.3 Transmission Electron Microscopy Studies of Boron Nitride Nanotube Chirality p. 343
11.3 Synthesis Methods of Boron Nitride Nanotubes p. 346
11.3.1 Arc Discharge and Arc Melting p. 346
11.3.2 Laser-Assisted Method p. 348
11.3.3 Ball Milling and Annealing p. 350
11.3.4 Carbon Nanotube Substitution p. 351
11.3.5 Chemical Vapor Deposition and Other Thermal Methods p. 354
11.4 Summary p. 355
Acknowledgments p. 356
References p. 356
12 Sintering of NanoceramicsXiao-Hui Wang and I-Wei Chen
Abstract p. 361
12.1 Introduction p. 362
12.2 Powder Compact p. 362
12.3 Sintering p. 364
12.3.1 Sintering Additives p. 364
12.3.2 Hot Pressing and Sinter Forging p. 364
12.3.3 Spark Plasma Sintering p. 365
12.3.4 Transformation Sintering p. 365
12.3.5 Two-Step Sintering p. 365
12.4 Two-Step Sintering of Y[subscript 2]O[subscript 3] Nanoceramics p. 366
12.4.1 Introduction p. 366
12.4.2 Sintering of Y[subscript 2]O[subscript 3] p. 366
12.4.3 Kinetics of Constant Structure Sintering p. 369
12.5 Two-Step Sintering of Other Functional and Structural Ceramics p. 373
12.5.1 BaTiO[subscript 3] Ceramics p. 373
12.5.2 NiCuZn Ferrite p. 375
12.5.3 ZnO Varistor p. 378
12.5.4 SiC Ceramics p. 379
12.6 Conclusions p. 380
Acknowledgments p. 381
References p. 381
13 Nanolayered or Kinking Nonlinear Elastic SolidsMichel W. Barsoum
Abstract p. 385
13.1 Introduction p. 386
13.2 Kinking in Crystalline Solids p. 386
13.3 Kinking Nonlinear Elastic Solids p. 387
13.4 Theoretical Aspects of Spherical Nanoindentations p. 391
13.5 Nanoindentation Results on KNE Solids p. 392
13.5.1 Sapphire p. 392
13.5.2 The MAX Phases p. 392
13.5.3 Graphite p. 395
13.5.4 Mica p. 397
13.5.5 Hexagonal Boron Nitride p. 401
13.6 Bulk vs. Nanoindentation Results p. 402
13.7 Summary and Conclusions p. 402
Acknowledgments p. 402
References p. 402
14 Nanocrystalline High-Melting Point Carbides, Borides, and NitridesRostislav A. Andrievski
Abstract p. 405
14.1 Introduction p. 406
14.2 Ultrafine Powder, Amorphous Precursors, Nanotubes, and Nanowires p. 406
14.2.1 General Characteristics p. 406
14.2.2 Silicon Carbide and Silicon Nitride p. 407
14.2.3 Aluminium Nitride, Boron Nitride, and Boron Carbide p. 409
14.2.4 Tungsten Carbide, Titanium Carbide (Nitride, Boride), and Related Compounds p. 410
14.2.5 Properties of UFP and Nanotubes p. 411
14.3 Nanocrystalline Bulks p. 414
14.3.1 General Characteristic of Consolidation p. 414
14.3.2 Structure and Properties p. 415
14.4 Nanocrystalline Films and Coatings p. 429
14.4.1 General Characteristics of Preparation p. 429
14.4.2 Film Structure and Content p. 431
14.4.3 Properties p. 435
14.5 Summary p. 443
References p. 446
15 Nanostructured Oxide SuperconductorsPavel E. Kazin and Yuri D. Tretyakov
Abstract p. 455
15.1 Introduction p. 456
15.2 Superconductor Parameters and Magnetic Flux Pinning p. 456
15.3 Design of Flux Pinning Centers p. 458
15.4 Superconductor Materials with Crystalline Defects p. 459
15.4.1 Point Defects p. 459
15.4.2 Dislocations and Grain Boundaries p. 460
15.4.3 Irradiation Defects p. 461
15.5 Superconductor Matrix-Based Composites p. 461
15.5.1 Formation of Composites p. 461
15.5.2 Composites: Superconductor Matrix - Secondary-Phase Inclusions p. 462
15.5.3 Composites: Superconductor Matrix - Foreign-Phase Inclusions p. 464
15.5.4 Composites Obtained by Superconductor Phase Decomposition p. 467
15.6 Conclusions p. 468
Acknowledgments p. 469
References p. 469
16 Electrochemical Deposition of Nanostructured MetalsE. J. Podlaha and Y. Li and J. Zhang and Q. Huang and A. Panda and A. Lozano-Morales and D. Davis and Z. Guo
Abstract p. 475
16.1 Introduction p. 475
16.2 Compositionally Modulated Multilayer p. 476
16.3 Nanowires, Pillars, and Tubes p. 480
16.3.1 Nanowires p. 480
16.3.2 Pillars p. 481
16.3.3 Nanotubes p. 482
16.4 Nanoparticulate Materials p. 485
16.4.1 Nanoparticles p. 485
16.4.2 Metal-Matrix Nanocomposites p. 486
16.5 Summary p. 490
Acknowledgments p. 490
References p. 490
17 Mechanical Behavior of Nanocrystalline MetalsMingwei Chen and En Ma and Kevin Hemker
17.1 Introduction p. 498
17.2 Characterization Techniques p. 498
17.2.1 Mechanical Behavior p. 498
17.2.2 Microstructural Characterization p. 499
17.3 Mechanical Response p. 501
17.3.1 Strength p. 501
17.3.2 Tensile Ductility p. 504
17.3.3 Work Hardening p. 506
17.3.4 Strain Rate Sensitivity p. 506
17.3.5 Localized Deformation p. 506
17.3.6 Cryogenic Behavior p. 508
17.3.7 Creep and Superplasticity p. 509
17.3.8 Fatigue and Fracture p. 511
17.4 Deformation Mechanisms p. 513
17.4.1 Extensions of Microscale Deformation Mechanisms p. 513
17.4.2 Observed Deformation Mechanisms for Nanocrystalline Metals p. 518
17.4.3 Collective Response p. 524
17.5 Concluding Remarks p. 524
References p. 526
18 Grain Boundaries in NanomaterialsI.A. Ovid'ko and C.S. Pande and R.A. Masumura
Abstract p. 531
18.1 Introduction p. 531
18.2 Specific Structural Features of Grain Boundaries in Nanocrystalline Materials p. 533
18.3 Effects of Grain Boundaries on Plastic Flow in Nanocrystalline Materials: General View p. 536
18.4 Competition between Lattice Dislocation Slip and Grain Boundary Diffusional Creep (Coble Creep) in Nanocrystalline Materials p. 537
18.5 Grain Boundary Sliding and High-Strain-Rate Superplasticity in Nanocrystalline Materials p. 539
18.6 Grain Growth Processes in Nanocrystalline Material p. 544
18.7 Concluding Remarks p. 547
Acknowledgments p. 548
References p. 548
19 Nanofiber TechnologyFrank K. Ko
19.1 Introduction p. 553
19.2 The Electrospinning Process p. 554
19.3 Key Processing Parameters p. 555
19.4 Nanofiber Yarns and Fabrics Formation p. 558
19.5 Potential Applications of Electrospun Fibers p. 558
19.5.1 Nanofibers for Tissue Engineering Scaffolds p. 559
19.5.2 Nanofibers for Chemical/Bio Protective Membranes p. 559
19.5.3 Nanocomposite Fibers for Structural Applications p. 562
19.6 Summary and Conclusions p. 563
References p. 564
20 Nanotubes in Multifunctional Polymer NanocompositesFangming Du and Karen I. Winey
20.1 Introduction p. 565
20.2 Nanocomposite Fabrication and Nanotube Alignment p. 567
20.3 Mechanical Properties p. 571
20.4 Thermal and Rheological Properties p. 573
20.5 Electrical Conductivity p. 576
20.6 Thermal Conductivity and Flammability p. 578
20.7 Conclusions p. 579
Acknowledgments p. 581
References p. 581
21 Nanoporous Polymers - Design and ApplicationsVijay I. Raman and Giuseppe R. Palmese
Abstract p. 585
21.1 Introduction p. 586
21.2 Design of Nanoporous Polymers p. 586
21.2.1 No Porogen p. 587
21.2.2 Templates p. 588
21.2.3 Solvent As Porogen p. 592
21.2.4 TIPS p. 592
21.2.5 DIPS p. 595
21.2.6 Carbon Dioxide Foaming p. 595
21.2.7 PIPS p. 596
21.2.8 Microemulsion Systems p. 597
21.2.9 Miscible Systems p. 598
21.3 Potential Applications for Nanoporous Polymers p. 599
21.3.1 Polymer Electrolyte Membranes for Fuel Cells p. 599
21.3.2 Separation Membranes p. 600
21.3.3 Template for Nanostructures/Nanomaterials Synthesis p. 600
21.3.4 Nanocomposites p. 600
21.4 Conclusions and Future Direction p. 601
References p. 602
22 Nanotechnology and BiomaterialsJ. Brock Thomas and Nicholas A. Peppas and Michiko Sato and Thomas J. Webster
22.1 Introduction p. 605
22.2 Nanotechnology in Biomaterials Science p. 608
22.3 Current Research Efforts to Improve Biomedical Performance at the Nanoscale p. 610
22.4 Soft Biomaterials p. 611
22.4.1 Structural Characteristics p. 612
22.4.2 Surface Properties p. 612
22.4.3 Biomimetics p. 613
22.4.4 Nanoscale Biopolymer Carriers p. 613
22.5 Ceramic Nanomaterials p. 615
22.5.1 Increased Osteoblast Functions p. 615
22.5.2 Increased Osteoclast Functions p. 617
22.5.3 Decreased Competitive Cell Functions p. 619
22.5.4 Increased Osteoblast Functions on Nanofibrous Materials p. 620
22.6 Metal Nanomaterials p. 621
22.7 Polymeric Nanomaterials p. 623
22.8 Composite Nanomaterials p. 624
22.9 Areas of Application p. 626
22.9.1 Drug Delivery p. 626
22.9.2 Tissue Engineering p. 628
22.9.3 Biological Micro-Electro-Mechanical Systems p. 628
22.10 Considerations and Future Directions p. 629
Acknowledgments p. 629
References p. 630
23 Nanoparticles for Drug DeliveryMeredith L. Hans and Anthony M. Lowman
23.1 Introduction p. 638
23.2 Synthesis of Solid Nanoparticles p. 639
23.3 Processing Parameters p. 642
23.3.1 Surfactant/Stabilizer p. 642
23.3.2 Type of Polymer p. 643
23.3.3 Polymer Choice p. 646
23.3.4 Polymer Molecular Weight p. 647
23.3.5 Collection Method p. 647
23.4 Characterization p. 647
23.4.1 Size and Encapsulation Efficiency p. 647
23.4.2 Zeta Potential p. 649
23.4.3 Surface Modification p. 649
23.5 Nanoparticulate Delivery Systems p. 651
23.5.1 Liposomes p. 651
23.5.2 Polymeric Micelles p. 651
23.5.3 Worm-Like Micelles p. 653
23.5.4 Polymersomes p. 653
23.6 Targeted Drug Delivery Using Nanoparticles p. 653
23.6.1 Oral Delivery p. 653
23.6.2 Brain Delivery p. 654
23.6.3 Arterial Delivery p. 654
23.6.4 Tumor Therapy p. 654
23.6.5 Lymphatic System and Vaccines p. 656
23.6.6 Pulmonary Delivery p. 656
23.7 Drug Release p. 657
23.7.1 Mechanisms p. 657
23.7.2 Release Characteristics p. 658
Acknowledgments p. 658
References p. 658
24 Nanostructured Materials for Field Emission DevicesJ.D. Carey and S.R.P. Silva
Abstract p. 665
24.1 Introduction to Field Emission and Criteria for Practical Electron Sources p. 665
24.2 Carbon Nanomaterial Based Cold Cathodes p. 668
24.3 Field Emission from Different Types of Amorphous Carbon p. 671
24.3.1 Polymer-Like Amorphous Carbon Films p. 671
24.3.2 Diamond-Like Amorphous Carbon Films p. 672
24.3.3 Tetrahedral Amorphous Carbon Films p. 675
24.3.4 Graphite-Like Amorphous Carbon Films p. 676
24.3.5 Nanocomposite Amorphous Carbon Films p. 676
24.3.6 Ultrananocrystalline Diamond Thin Films p. 676
24.4 Field Emission and Dielectric Inhomogeneity p. 677
24.5 Field Emission as a Function of Conditioning p. 678
24.6 Surface Modifications p. 680
24.7 Summary and Outlook for the Future p. 682
References p. 682
25 Tribology of Nanostructured and Composite CoatingsAli Erdemir and Osman Levent Eryilmaz and Mustafa Urgen and Kursat Kazmanli and Nikhil Mehta and Barton Prorok
25.1 Introduction p. 685
25.2 Recent Advances in Deposition Technologies p. 688
25.2.1 Hybrid Deposition Processes p. 688
25.2.2 Control of Process Parameters p. 690
25.2.3 Modern Coating Practices p. 690
25.3 Structure and Mechanical Properties p. 691
25.4 Tribology of Nanostructured and Composite Films p. 694
25.4.1 Self-Lubricating Nanocomposite Coatings p. 695
25.4.2 Superhard Nanocomposite Films p. 698
25.4.3 Nanostructured Carbon Films p. 700
25.5 Novel Design Concepts for Self-Lubricating Nanocomposite Films for High-Temperature Applications p. 703
25.6 Summary p. 706
Acknowledgments p. 706
References p. 707
26 Nanotextured Carbons for Electrochemical Energy StorageFrancois Beguin and Elzbieta Frackowiak
26.1 General Properties of Carbons for Energy Storage p. 713
26.2 Supercapacitors p. 714
26.2.1 Performance of Supercapacitors p. 714
26.2.2 Carbons for Pure Electrochemical Double-Layer Capacitors p. 718
26.2.3 Electrochemical Capacitors from Carbons with Pseudocapacitance Properties p. 720
26.2.4 Carbon Nanotubes as a Composite Component p. 723
26.3 Electrochemical Hydrogen Storage p. 726
26.3.1 Introduction p. 726
26.3.2 Mechanism of Reversible Hydrogen Insertion p. 727
26.4 Conclusions and Perspectives p. 733
References p. 734
27 Low-Dimensional ThermoelectricityJoseph P. Heremans and Mildred S. Dresselhaus
Abstract p. 739
27.1 Introduction p. 739
27.2 Phenomenological Theory for Transport in Different Dimensionalities p. 742
27.3 Two-Dimensional Thermoelectric Materials: Quantum Wells p. 746
27.4 One-Dimensional Thermoelectric Materials: Quantum Wires p. 747
27.5 Quasi-Zero-Dimensional Thermoelectric Materials p. 756
27.5.1 Segmented Superlattice Quantum Wires p. 756
27.5.2 Quantum-Dot Superlattices p. 761
27.5.3 Quantum Dots between Quantum-Point Contacts p. 763
27.6 Other Related Topics p. 765
Acknowledgments p. 768
References p. 768

Even before it was identified as a science and given a name,¿ nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry.

The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials.

The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology¿s application in drug delivery systems, bioimplants, and field-emission displays.

The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.

There are no comments on this title.

to post a comment.